
Operating Systems:

Virtual Memory

Shankar

March 25, 2021

Outline overview

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Process Space → System Space overview

Process space (aka virtual space)

address space of its (machine code) program
structure: code, data, heap, stack, ...
attributes: read, read/write, execute, ...

System space

hierarchy of caches, main memory, disk, ...
small, fast −→ large, slow

Virtual space mapped to physical space at run time

instruction
execution

→ virtual
address

→ hw/sw
mapper

→ location in
cache/memory/disk

if location in disk
hw traps → sw moves content to memory → resume instruction

Bene�ts of Run-time Mapping overview

Program's address space starts at 0

Kernel enforces attributes of virtual address

memory protection
e�cient debugging

Virtual space can be larger than physical memory

memory-mapped �les, ...

Only the active part of virtual space need be in physical memory

faster starting up
higher degeree of multi-programming
better utilization of memory, IO devices, ...

E�cient sharing of memory between processes/kernel

avoid IO transfers between user and kernel space

E�cient system virtualization

guest operating systems

Some Basics overview

CPU can only access locations in memory

faster for caches, slower for main memory

Move more (less) frequently accessed stu� to fast (slow) mem

need to maintain info on usage, dirty/clean, ...

Suspend some programs if movement overhead too high

thrashing, low hit rate

E�cient management of physical space

partition space into blocks (physical pages, disk sectors, ...)
reduce fragmentation of space

Need cacheing in CPU to achieve low overhead of mapping

TLB (translation-lookaside bu�er): physical or virtual

...

Long ago ... Overlays overview

Way to run a program that doesn't �t in physical memory

Program image structured in parts:

common
phase 1
phase 2
...

Initially, common and phase 1 parts in physical memory

The last part of phase i , for i = 1, 2, · · ·
loads in phase i + 1, overwriting phase i
jumps to start of phase i + 1

No kernel intervention

No virtual address space: instructions generate physical addesses

Outline segmentation

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Segmentation: Overview � 1 segmentation

Virtual address: seg# o�set
m-bit n-bit

seg#'s: 0, · · · , 2m−1
seg max size: 2n bytes

Instructions generate virtual addresses

eg, load 2:0x030, reg1 // put data at 2:0x030 into reg1

Physical address: addr

Mapping de�ned by a segment table in memory

Program space consists of segments

eg, seg 0: code; seg 2: data; set 5: stack; ...
each segment has a size (in 0, · · · , 2n)
each segment has access attributes (x, r, r/w, ...)

Segmentation: Overview � 2 segmentation

A segment is mapped completely in one physical memory chunk

Assume all segments of a (non-suspended) process are mapped

hence, total virtual space of processes ≤ physical memory size

Segments can grow if there is adjacent free physical memory

allocate physical memory in out-of-bounds exception handler

External fragmentation: wasted space between segments

arises as processes enter/leave
chunks of memory too small to use
can �x by compaction, but expensive

Segment Tables segmentation

Kernel has a segment table

Each process has a segment table // part of PCB

seg# valid base size access

0
1

• •
• •
• •

Row for every j in {0, · · · , 2m − 1} // descriptor of j

valid (1 bit): true i� process has segment j
base: physical address of (start of) segment j
size of segment j
access: allowed access to segment j , eg, r, r/w, ...

Layout �xed by hardware

For partial mapping of segment set, may want status �eld also.

STBR: Segment-Table Base Register segmentation

CPU has a STBR

CPU treats wherever it points as the current segment table
below, we refer to this table as �STBR.table�

When a process or the kernel is dispatched:
STBR ← phys addr of the corresponding segment table

virtual address

sn offset →
physical address

STBR.table[sn].base + offset

Address Translation w/o Cacheing segmentation

Instruction generates virtual addr segno offset in user mode

CPU does following

sd ← STBR.table[segno]
if sd .valid is false −→ invalid-segment exception
if sd .size < offset −→ out-of-bounds exception
if sd .access violated −→ invalid-access exception
phyaddr ← sd .base + offset
access physical memory location phyaddr

Upon exception

CPU enters kernel mode
executes exception handler

Requires 2 memory accesses for every virtual address

Overcome with caches in the CPU

TLB Cache: Translation Lookaside Bu�er segmentation

TLB cache: holds a portion of the current segment table

valid (1 bit) sn (segment #) base size access

• •
• •
• •

for an entry x with valid bit set:
STBR.table[x .sn].valid is true and
[x .base, x .size, x .access] equals STBR.table[x .sn]

Hardware associatively searches on valid and sn �elds

Kernel clears all valid bits when a process/kernel is dispatched

unless TLB also has a pid �eld // associatively searched

TLB's valid bit is not the same segment table's valid bit

Address Translation with TLB segmentation

CPU generates virtual address segno:offset

If TLB does not have valid -segno entry // TLB miss

if STBR.table[segno].valid false −→ invalid-segment exception
create a valid -segno TLB entry from STBR.table[segno]

if TLB was full, overwrite an entry

Let x be valid -segno TLB entry // TLB hit

if access invalid wrt x .access −→ invalid-access exception
if offset > x .size −→ out-of-bounds exception
physaddr ← x .base + offset
access physical memory location physaddr

Cache replacement policy: fast and simple

FIFO, random, LRU approx, ...

More Caches segmentation

TLB is not the only cache in the CPU

Physical memory cache: holds a portion of physical memory

memory is divided into (small-sized) blocks

valid (1 bit) pa (phys addr) data (of block pa)

• •
• •
• •

associatively searched on valid and pa �elds

Virtual memory cache: holds a portion of virtual memory

Cache access order: virtual mem → TLB → phys mem

Multiple levels of caches

Outline non-demand paging

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Paging: Overview � 1 non-demand paging

Virtual space is linear (not segmented)

Virtual space and physical memory divided into pages

Virtual addr: virtual page # o�set

m-bit n-bit

Physical addr: physical page # o�set

p-bit n-bit

virtual page# range: 0, · · · , 2m − 1

physical page# range: 0, · · · , 2p − 1

page size: 2n bytes

Paging: Overview � 2 non-demand paging

Program space consists of virtual page ranges

eg, 0�1000: code; 2000�4000: data; 7000�9000: stack; ...
each page has access attributes (x, r, r/w, ...)

Virtual pages are mapped to physical pages

All virtual pages of an active process are mapped // for now

Paging increases physical memory utilization

Internal fragmentation: wasted space inside page

usually in the last page of a program �segment�
less wasteful than external fragmentation (between segments)

Page Table non-demand paging

Kernel and each process has a page table in memory
// part of PCB

vpn valid ppn access
(virtual page#) (1 bit) (physical page) # (r, r/w, ...)

0
1

• •
• •
• •

Row for every j in {0, · · · , 2m − 1} // descriptor of j

valid (1 bit): true i� process has page j
ppn: physical page # where j is mapped (if valid true)
access: allowed access to page j

Layout �xed by hardware

PTBR: Page-Table Base Register non-demand paging

CPU has a PTBR

CPU treats wherever it points as the current page table
below, we refer to this table as �PTBR.table�

When a process or kernel is dispatched:
PTBR ← phys addr of the corresponding page table

virtual address

vpn offset →
physical address

PTBR.table[vpn].ppn offset

Address Translation w/o Cacheing non-demand paging

Instruction generates virtual addr vpn offset in user mode

CPU does following

pd ← PTBR.table[vpn]
if pd .valid is false −→ invalid-page exception
if pd .access violated −→ invalid-access exception

phyaddr ← sd .ppn offset

access physical memory location phyaddr

Upon exception

CPU enters kernel mode
executes exception handler

Requires 2 memory accesses for every virtual address

Overcome with caches in the CPU

TLB non-demand paging

TLB cache: holds a portion of the current page table

valid vpn (virtual page #) ppn (phys page #) access

• •
• •
• •

for an entry x with valid bit set:
PTBR.table[x .vpn].valid is true and
x .[ppn, access] equals PTBR.table[x .vpn.[ppn, access]]

Hardware associatively searches on valid and vpn �elds

Kernel clears all valid bits when a process is dispatched

unless TLB also has a pid �eld // associatively searched

Address Translation with TLB non-demand paging

CPU generates virtual address vpn offset

If TLB does not have valid -vpn entry // TLB miss

if PTBR.table[vpn].valid false −→ invalid-page exception
create a valid -vpn TLB entry from PTBR.table[vpn]

if TLB was full, overwrite an entry

Let x be valid -vpn TLB entry // TLB hit

if access invalid wrt x .access −→ invalid-access exception

physaddr ← x .ppn offset

access physical memory location physaddr

Interaction with physical-memory and virtual-memory caches

Outline demand paging

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Demand-Paging: Overview � 1 demand paging

Paging with virtual pages mapped to physical memory as needed

Hence can exploit spatial locality in programs to provide

virtual space greater than physical memory size
more processes simultaneously active

Page fault exception

generated by access to virtual page not in memory (but in disk)
hw undoes any partial e�ects of page-faulting instruction
faulting virtual addr saved in a speci�ed place

Page fault handler:

bring in virtual page to physical memory
if no physical page is free, evict a virtual page in memory
if the evicted virtual page is dirty, write it back to disk

Demand-Paging: Overview � 2 demand paging

Page replacement policy:

which virtual page to evict when free physical page needed
goal: minimize page faults (to maximize cpu utilization)

maintain �usage� info for physical pages

eg, order of last allocation // sw-only
eg, order of least recently accessed // hw-sw
per process (local) or across all processes (global)

maintain dirty bit per physical page in memory // hw-sw

set i� its vpage has changed from on-disk copy

evict page based on usage and dirty

local or global

Page Table demand paging

Page table per process and kernel

vpn valid ppn access dirty hw -usage
0

• •
• •
• •

Row for every possible virtual page number j // as before

valid (1 bit): true i� page j in memory

false: page j in disk or does not exist

ppn: physical page number // as before
access: r, w, x, ... // as before
dirty (1 bit): true i� page j has changed from disk
hw -usage: hw-accessed usage info, if any

typically, referenced bit: set to true when hw accesses j

Additional state maintained by kernel demand paging

For each process: valid vpage numbers and their disk locations

can be kept in page table, if hw allows

List of free physical pages

Sw-accessed usage info for allocated physical pages

eg, order of last allocation
if info per process, can be kept in page table (if hw allows)

For each shared phy page: links to vpage entries (in page tables)

Core map: phy pages −→ global usage info, shared vpages

PTBR and TLB demand paging

CPU has PTBR that points to current page table

vpn offset → PTBR.table[vpn].ppn offset

CPU has TLB for fast address translation

valid vpn ppn access dirty hw -usage

• •
• •
• •

hw -usage: if present in page table
when entry x is evicted
PTBR.table[x .vpn] . dirty/hw -usage ← x . dirty/hw -usage

Address Translation (with TLB) demand paging

CPU generates virtual address vpn offset in user mode

If TLB does not have valid -vpn entry // TLB miss

let pd be PTBR.table[vpn]
if pd .valid false −→ page-fault/invalid-page exception
create a valid -vpn TLB entry from pd

if TLB was full, replace an entry and overwrite it

Let x be valid -vpn TLB entry // TLB hit

if access invalid wrt x .access −→ invalid-access exception
physaddr ← x .ppn offset
access physical memory location physaddr

Kernel activities demand paging

Handling page-fault for virtual page vpn of process P :

save state of P and move its pcb to �pagewait� queue
get a free physical page pp //may block
read vpage P .vpn from disk into pp
update P 's page table
move P 's pcb to ready queue

Generating free pages // executed asynchronously as needed

select an allocated page x to free // from usage info
mark x 's vpage(s) as invalid // in page table(s)
if x is dirty, write x 's vpage(s) back to disk // page cleaning
mark x as free

Page cleaning can also be done asynchronously as needed:

select an allocated dirty page, write to disk, mark as clean

Page Replacement: Local vs Global demand paging

Local

each process P is given a set of physical pages.
free page in this set can only go to P

so per-process page usage info su�ces

Kernel periodically adjusts the phy page allocation

maintains a page-fault �rate� for each process
eg, inverse of cpu-time between faults
not useful: inverse of wallclock-time between faults

moves pages from low-rate processes to high-rate processes

Global

a free page can go to any process // need global usage info
no separate phy page allocation policy

Page Replacement Algorithms � 1 demand paging

Objective

min # page faults given reference seqv and set of phy pages
implementable with acceptably low overhead

Can be applied locally or globally

Optimal: evict the page that is used farthest in the future

unrealizable, except in very constrained situations
useful as a standard for evaluating other policies

LRU: evict the page not accessed for the longest time in past

works well because the future is usually like the past
usage info: order pages by latest reference
hw needs to update the order on each access: impractical

Page Replacement Algorithms � 2 demand paging

FIFO: evict the page that was mapped in earliest

usage info: order pages by mapping time
update only when page is swapped in:

FIFO + Second Chance (also called �Clock�)

like FIFO but also requires referenced bit R (hw-usage)
// R is 1 means referenced
if head page's R is 0, free page (clean if needed)
if head page has R is 1, zero R and move page to tail
�clock�: hand moving over pages ordered in a circle

at each step, current page is made free or its R zeroed

LRU approximation

Page Replacement Algorithms � 3 demand paging

Clock using referenced bit R and dirty bit D

if R ,D = 0, 0: free page
if R ,D = 0, 1: clean page, R ,D ← 0, 0
if R ,D = 1, 0: R ,D ← 0, 0
if R ,D = 1, 1: R ,D ← 0, 1

Clock using referenced counter R (> 1 bit)

hw increments R at each access unless already at max
if R = 0: free page
if R > 0: R ← R − 1
closer to LRU

Clock using referenced counter R (> 1 bit) and dirty bit D

Belady's Anomaly demand paging

In FIFO, more memory may cause more page faults

Referenced sequence (of vp#s): 1 2 3 4 1 2 5 1 2 3 4 5

3 physical pages, all initially free
1 2 3 4 1 2 5 1 2 3 4 5 9 faults.

f1 1 4 5 -
f2 2 1 - 3
f3 3 2 - 4

4 physical pages, all initially free
1 2 3 4 1 2 5 1 2 3 4 5 10 faults

f1 1 - 5 4
f2 2 - 1 5
f3 3 2
f4 4 3

LRU (and most others) do not su�er from Belady's anomaly

Working set of a process demand paging

A process exibits locality of page accesses over �short� times

Working set at time t: virtual pages accessed in [t − δ, t]
δ ≈ few seconds/105 instructions
typical: working set stays �xed for some time, then changes

Let W (t) be the size of the working set at time t

typical: W (t) is much less than the total # virtual pages

phys pages

instr executed
between successive
page faults

W

Thrashing demand paging

Consider P physical pages, N identical cpu-intensive processes

each process gets P/N physical pages

As N increases to P/W , cpu throughput increases

As N increases beyond P/W , cpu throughput drops
// goodput drops even more

active processes

(# instrs / sec)
cpu throughput

P/W

thrashing

To recover from thrashing, suspend some processes

Observations � 1 demand paging

Upon excessive thrashing, which process to kill/suspend

one with most memory, one asking for memory, youngest
process, ...
probably not oldest process: init (root); gdm (user); ...

malloc() fails: out of virtual memory, not physical memory

Non-pageable pages

Page table? Could swap out if process is suspended
Current/active page tables
Pages that an IO adapter is going to use (DMA)

permanently allocated, eg, display
lock the page

Observations � 2 demand paging

To improve heap locality: program mallocs a large chunk and
divides it itself

How large should a page be? Page size vs IO size? Page the
Kernel?

Large sparse virtual address space: multi-level paging, inverted
page table

Outline seg+paging

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Segmentation+Paging: Overview � 1 seg+paging

Virtual space is segmented

Segments and physical memory is paged

Virtual addr: seg # virtual page # o�set

s-bit m-bit n-bit

Physical addr: physical page # o�set

p-bit n-bit

Segment and Page Tables seg+paging

Each process has a segment table in memory

For each valid segment, there is a page table in memory

Segment table entry as before except base contains physical
address of associated page table

Page table as in demand-paging

CPU has STBR: points to segment table of running process

CPU has TLB: each entry has segment- and page-related �elds

valid segment # virtual page # phys page # access

• •
• •
• •

Outline Sparse Virtual Space

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

Sparse Virtual Space Sparse Virtual Space

Large virtual address size ⇒ infeasibly large page tables

32-bit virtual addr, 4KB page
⇒ 232/212 = 220 = 1M entries per page table

64-bit virtual address, 4KB pages
⇒ 264/212 = 252 = 1G × 1M entries in page table

64-bit virtual address, 4MB pages
⇒ 264/222 = 242 = 1G × 1K entries in page table

Solutions

Large or variable-size pages
Multi-level paging
Inverted page tables (Hashing)

Two-level Paging Sparse Virtual Space

Virtual addr: vpn1 # vpn2 # o�set

Physical addr: physical page # o�set

0 0

vpn2

physical pagelevel−2 page tablelevel−1 page table

0

vpn1
offset

In general, level j + 1 page table needed only for valid level j entry

Inverted Page Tables Sparse Virtual Space

Inverted page table

one table per kernel, not one per process
row for every physical page
row j identi�es the virtual page in physical page j
= [process id (pid); virtual page number (vpn); access; ...]

Saves space if virtual mem > physical mem or # processes > 1

Given virtual address v offset and process id p

search table for a row j with matching [p, v]
if found phys addr ← [j , offset] else exception

Typically use hashing for e�ciency

so let j be hash(p, vpn), then proceed as above

Di�cult to accomodate page sharing between processes

Outline IA-32: x86 � 32-bit

1. Overview

2. Segmentation

3. Non-demand Paging

4. Demand Paging

5. Paged-Segmentation

6. Sparse Virtual Space

7. IA-32: x86 � 32-bit

IA-32 Address Translation IA-32: x86 � 32-bit

Provides segmentation and optional two-level paging

Virtual address: [segment selector (16-bit), o�set (32 bit)]

Linear address generation

segment selector: points to segment descriptor
segment descriptor: contains 32-bit base addr

linear addr = base addr + o�set

Without paging: physical addr = linear addr

With paging: linear addr → phys addr via 2-level paging

level-1 page table: directory table
level-2 page table: page table
32-bit o�set = [dir (10-bit), vpn (10-bit), page offset (12-bit)]
dir : index into directory table; yields page table addr
vpn: index into page table; yields phys page addr
physical addr = z + page offset

	Overview
	Segmentation
	Non-demand Paging
	Demand Paging
	Paged-Segmentation
	Sparse Virtual Space
	IA-32: x86 – 32-bit

