Queueing Systems

Shankar

March 31, 2022
Queueing Overview

- Queueing system
 - servers + waiting rooms
 - customers arrive, wait, get served, depart or go to next server
 - queueing disciplines
 - non-preemptive: fifo, priority, ...
 - preemptive: round-robin, multi-level feedback, ...

- Operating systems are examples of queueing systems
 - servers: hw/sw resources (cpu, disk, req handler, ...)
 - customers: PCBs, TCBs, ...

- Given: arrival rates, service times, queueing disciplines, ...
- Obtain: queue sizes, response times, fairness, bottlenecks, ...
Why do queues arise: bursty traffic

- Consider cars traveling on a road with a turn
 - each car takes 3 seconds to go through the turn
 - at most one car can be in the turn at any time
- \(N(t) \): \# cars in the turn and waiting to enter the turn

![Diagram](image)

- Arrival rate 1/4, load 3/4 (uniform)
- Arrival rate 1/4, load 3/4 (bursty)

Load \(< 1\): stable with waits depending on burstiness
Load \(> 1\): unstable, ever-increasing waits // not relevant
Single Queue

- **Customer i:**
 - arrival time // when it arrives
 - service time // duration of service needed
 - departure time // when it departs
 - response time // departure time – arrival time
 - wait time // response time – service time

- **Queue**
 - number of customers in queue at time t
 - unfinished work in queue at time t
Steady-state metrics

- Assume unending stream of customers
 - arrival rate \(\text{// # arrivals per second averaged over all time} \)
 - average service time \(\text{// averaged over all customers} \)
 - average response time \(\text{// averaged over all customers} \)
 - load \(\text{// work arriving per second averaged over all time} \)
 - throughput (aka departure rate): \(\text{// # departures per second averaged over all time} \)
 - average queue size \(\text{// averaged over all time} \)
 - utilization \(\text{// fraction of time server is busy} \)

- Typical goal
 - Given: arrival rate, average service time, queueing discipline
 - Obtain: average response time, average queue size
Some Steady-state Relationships

- Load = arrival_rate × average_service_time
- System is unstable if load > 1
 - avg queue size and avg response time are not defined
 - throughput = 1/service_time
 - utilization = 1
- System is stable if load ≤ 1
 - throughput = arrival_rate
 - utilization = load

- Little’s Law
 - avg_queue_size = avg_response_time × arrival_rate
 - holds for any queueing (sub)system: eg, a class of customers
Steady-state: Queue Size vs Load

- Avg queue size N increases “exponentially” as load ρ increases, becoming ∞ as $\rho \to 1$
- N increases as burstiness increases
Steady-state: Wait time vs Service time

- Queuing disciplines can discriminate based on service times
- \(W(S) \): avg wait time for customers with service time \(S \)
- Favor customers with small \(S \)
 - SJF-preemptive > SJF > RR > FIFO, LIFO
 - RR w quantum \(\rightarrow 0 \): linear discrimination // ignoring overhead

\[W(S) \]

\[0 \quad S \]

\(\text{SJF} \)

\(\text{RR (qs} \rightarrow 0) \)

\(\text{FIFO} \)
Server cycles between idle periods and busy periods

Work-conserving discipline: server not idle when customer present

For work-conserving disciplines:
the sequence of idle and busy periods, hence utilization, is independent of queueing discipline.

Proof: Consider the evolution of unfinished work $Y(t)$
- arrival increases $Y(t)$ by arrival’s service time
- while $Y(t) > 0$ holds, it decreases with slope -1
Evolution of unfinished work $Y(t)$