Operating Systems:
Implementing synchronization
constructs

Shankar

May 3, 2022

Outline overview

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Implementing Locks: Overview overview

m Implementations for single-cpu system

= tch queues for waiting // tcb: thread control block
= interrupt-disabling for atomic access to queues

m Implementations for multi-cpu systems

= interrupt-disabling does not work
= busy waiting is necessary

m Spinlocks: all waiting is busy (ok for short waits)

= using atomic read-modify-write instructions
= using atomic read and write instructions

m “Long-wait” locks: tcb queues + spinlocks to guard queues

m Implementation in GeekOS (see GeekOS overview)

Outine e

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© 0o N o W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Lock: single-cpu, intrpt,tcb - 1 locks via intrpt-disable

m Lock 1lck:
lckFree «+ true // Ick free or not
1ckQueue <+ [1; // threads waiting to acquire Ick
m 1ck.acq(): // here on syscall with interrupts disabled
if lckFree
lckFree <« false
rti // return from interrupt

else // Ick not free
update my tcb [ra set to after acq call]
move my tcb to lckQueue
scheduler()

Note: scheduler() called with interrupts off

Lock: single-cpu, intrpt,tcb - 2 locks via intrpt-disable

m lck.rel(): // here on syscall with interrupts disabled
if lckQueue # []
move a tcb from lckQueue to ready queue
// IckFree stays false
else
lckFree < true
rti

m For deterministic progress
= fifo (or any fair) discipline for lock queue

m Alternative 1ck.rel(): move waiting tcb to run queue
= priority to waiting thread

Outine e v

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Atomic Read-Modify-Write Instructions spinlocks via rmw

m Spinlock data located in memory shared by all cpus

m Examples of atomic RMW instructions
= test&set(x): atomic {return x; x < true}
= swap(x): atomic {[x, reg] < [reg, x|}

m Expensive instructions: affect caches, memory bus, ...

SpinLock via test&set -

m Lock lck:
lckAcqd « false /! accessible by all processors

m lck.acq():
while (test&set(lckAcqd)) skip;
return

m lck.rel():
lckAcqd «+ false
return

m Probabilistic progress. Why?

Spinlock with deterministic progress — 1 spinlocks via rmw

m Approach
= associate ids with threads, say 0, ---, N—1

= notational convenience: assume ids passed in acq/rel calls
instead of taken from tcb

= introduce booleans w[@], - --, w[N—1]
where w[i] true iff thread i is waiting for the lock

= when a thread j does release

look for next (in modulo-N order) waiting thread,
if found “pass” the lock to it, else set lock free

m Lock 1lck:
acqd <« false
wl@], --- w[N—-1] « [false, ---, false]

Spinlock with deterministic progress — 2 -

m lck.acq(i):
key < true // local variable
wli] < true
while (w[i] and key)
key + test&set(acqd)
wli] <« false
return

m lck.rel(i):
j < (i+1) mod N
while (j # i and not w[jl)
j < (3+1) mod N

if (j = 1)
acqd < false
else

wlj] <« false
return

Outine o e

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Lock: spin, tcb, multi-cpu - 1 locks via spin+queue

m Spinlock is not ok if lock can be held for a long time
= excessive busy waiting

m For locks with potentially long hold times
= use TCB queues for waiting // like single-processor case
= use spinlocks to achieve atomic queue access
// takes the place of interrupt-disabling

m Lock lck:
lckFree « true // Ick free or not
1ckQueue + [] // processes waiting to acquire Ick
1ckSplock // spinlock for IckFree, IckQueue
m Assume

» rrSplock: spinlock to protect ready and run queues
» scheduler(): call with rrSplock not free; releases rrSplock

Lock: spin, tcb, multi-cpu - 2

m lck.acq():

lckSplock.acq()

if lckFree
lckFree < false
lckSplock.rel()

else // lck not free
rrSplock.acq()
update my tcb [ra set to after acq() calll]
move my tcb to lckQueue
lckSplock.rel()
// note: rrSplock is not free
scheduler()

Lock: spin, tcb, multi-cpu - 3 _

mlck.rel():

lckSplock.acq()
if lckQueue # []
rrSplock.acq()
move a tcb from lckQueue to ready queue
rrSplock.rel()
else
lckFree < true
lckSplock.rel()
return

m For deterministic progress:

= fifo (or any fair) discipline for lock queue
= spinlocks with deterministic progress

Outline cond vars

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© 0o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Implementing Conditions - 1 cond vars

m Approach: condition variable cv associated with lock 1ck

= cvQueue: for processes waiting on cv
» cv.wait(): atomic {release 1ck; wait on cvQueue}; acquire 1ck
= cv.signal(): wakeup on cvQueue
= spinlock: for atomic access to queues

= or interrupt-disabling if single-processor

m cv < Condition(lck):

cvQueue <+ [] // processes waiting on cv
cvSplock // lock to protect cvQueue
m Assume

= rrSplock: spinlock to protect ready and run queues
= scheduler(): call with rrSplock not free; releases rrSplock

Implementing Conditions - 2 cond vars

m cv.wait():

rrSplock.acq()
cvSplock.acq()
update my tcb [ra set to al]
move my tcb to cvQueue
cvSplock.rel()
lck.rel()
scheduler()

al: lck.acq()

m cv.signal():
rrSplock.acq()
cvSplock.acq()
move a tcb from cvQueue to ready queue
cvSplock.rel()
rrSplock.rel()

Outline semaphores

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Semaphores — 1 semaphores

m Approach: semaphore sem
= semVal: value of sem
= semQueue: for processes waiting on sem
» P: if semVal >0 then decrement it else join semQueue
= V: if semQueue not empty then move a tcb to ready queue
else increment semval
= spinlocks for atomic access to queues

= or interrupt-disabling if single processor

m sem < Semaphore(N):
semVal < N // value of sem
semQueue <+ [] // for waiting on sem
semSplock // spinlock to protect semVal and semQueue
m Assume
= rrSplock: spinlock to protect ready and run queues
» scheduler(): call with rrSplock not free; releases rrSplock

Implementing Semaphores — 2 semaphores

m sem.P():

semSplock.acq()

if (sem.val > 0)
sem.val < sem.val — 1
semSplock.rel()

else // sem.val = @
rrSplock.acq()
update my tcb [ra set to after P() call]
move my tcb to semQueue
semSplock.rel()
scheduler()

Implementing Semaphores — 3

msem.V():

semSplock.acq()

if (semQueue = [])
sem.val < sem.val+1

else
rrSplock.acq()
move a tcb from semQueue to ready queue
rrSplock.rel()

semSplock.rel()

return

Outine ke v v i

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Critical-Section Problem spinlocks via rw: overview

m Given program with

= threads @, ---, N—1 that execute concurrently
m parts of the program designated as critical sections (CSs)

m To obtain entry and exit code around each CS so that

= at any time there is at most one thread in all of the CSs

= any thread in entry code eventually enters its CS
provided no thread stays in a CS forever

= code requires only read-write atomicity

m Peterson algorithm solution: N =2
m Bakery algorithm solution: arbitrary N

m Terminology
m thread is eating if it holds the lock

. " hungry if it is acquiring the lock

= " "thinking otherwise

Outine Petron s

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Peterson Lock Peterson spinlock

m Threads 0 and 1 // id passed instead of taken from tcb
m Shared variables
= flag[0] <« false // true iff thread 0 is non-thinking
= flag[1] « false // true iff thread 1 is non-thinking
= turn < Qor 1 // identifies winner in case of conflict
m acq(i):
j«— 1-1 // j is other thread's id

s1: flagl[i] < true
s2: turn < j
s3: while (flag[j] and turn = j) skip

mrel(i):

flagli] « false

Peterson Lock: Safety

Peterson spinlock

Suppose thread i leaves s3 at time tg.
Need to show that thread j is not eating at t.

m Only two ways that i leaves s3.

m Case 1: i leaves s3 because flag[j] is false.

Then at t, j is thinking and so does not hold the lock.

m Case 2: i leaves s3 because flag[j] is true and turnis i.

Thread i executed s2 at some t; (< ty), setting turn to j.
Because turn is i at ty, j executed s2 at some t, in [ty, to].
Hence flag[i] is true and turn is i during [t, to].

Hence j is stuck in s3.

Peterson Lock: Progress Peterson spinlock

Suppose i calls acq(i) and is in s3 at time t,.
Need to show that i eventually leaves s3.

Cy: Suppose turn is i at tp.
It remains so. Hence i eventually leaves s3.

C,>: Suppose flagl[j] is false at t.
Eventually i leaves s3 or j does s1;s2 (— G).

C3: Suppose flag[j] is true and turn is j at t,.
So j is eating or hungry.

Gza: If j is eating, it eventually stops eating (— G, — ()
Gsp: If jis at s2, it eventually does s2 (— ;).
Cse: If jisin s3, then turn remains j, so j eventually eats
(—> C3a — C2 — Cl)

So eventually C; holds, which leads to i eating.

Outline N from 2

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

N-user lock from 2-user locks N from 2

m Define a binary tree of (at least) N leaf nodes.
m Associate a distinct 2-user lock with every non-leaf node.
m Associate the N users with distinct leaf nodes.

m A thread acquires the N-user lock by acquiring in order
the 2-user locks on the path from my leaf to root

m A thread releases the N-user lock by releasing
the acquired 2-user locks (in any order)

4-user lock example 2-user----

. locks Se s
- thread 0 acquires x1, x0 X

- thread 2 acquires x2, x0

users 0

m But there are better ways to implement N-user locks

Outline bakery spinlock

Implementing Locks: Overview

Locks via Interrupt-Disabling (single-cpu only)

Spinlocks via Read-Modify-Write Instructions (multi-cpu)
Lock with Spin Waiting + Queue Waiting (multi-cpu)
Condition Variables

Semaphores

Spinlocks via Read and Write Instructions (multi-cpu)

SpinLock via RW: Peterson solution

© o N s W=

Obtaining N-user locks from 2-user locks

10. Spinlock via RW: Bakery solution

Bakery Solution: Initial version bakery spinlock

m Threads 0, ---, N-1

m Shared non-negative integer variables
m num[@], ---, num[N-1] «<— @, ---, @
= num[i] is O iff i thinking; in conflict, smaller num wins

m acq(i):
s1: num[i] < max(num[@], ---, num[N-1]) + 1
for p in @..N-1:
s2: while (@ < num[p] < num[il]):
noop

mrel(i):
num[i] + ©

m This works if s1 is atomic.
m It does not work if only reads and writes are atomic.

Analysis assuming sl atomic bakery spinlock

m Define

= Q: hypothetical queue of ids of non-thinking threads
in increasing num order
= i joins @ when thread i executes sl
» 1 leaves @ when thread i executes rel

m iisahead of j: @ < num[i] < num[j] holds
m i has passed j: 1iiseating or iisins2withi.p > j.

m Properties

= arrival to @ joins at tail // coz sl is atomic, right?
threads in @ have distinct nums . " . .

if i is ahead of j then j cannot pass i

so only the thread at the head of @ can eat

if i is ahead of j then i eventually passes j

= so the thread at the head of Q will eventually eat

Assuming only read-write atomicity bakery spinlock

m Flaw 1: threads i and j leave s1 with the same num

= i and j enter sl simltaneously

= each reads the other’s num before either updates its num
» each updates its num and enters s2

» each passes the other, so both acquire the lock

m Flaw 2: j reads unstable num[i] and wrongly passes i

» i does sl except for updating num[i], to say x

= k does s1, setting num[k] to x

= j does sl, setting num[j] to x + 1

= j and k enter s2 and pass i (because num[i] is 0)

= i completes s1, setting num[i] to x

= i enters s2 and passes j (because num[j] > num[i])
= i and j can now both acquire the lock

Fix assuming only read-write atomicity bakery spinlock

m Fixing flaw 1
= use thread ids to break ties // lexicographic ordering
m let [num[i],i] < [num[j],j] denote
num(i] < num[j] or (num[i] = num[j] and i < j)
m Fixing flaw 2
» introduce booleans choosing[@], ---, choosing[N-1]
m i sets choosing[i] true while i in s1
= in s2, thread j reads num[i] only after finding choosing[i]
false
= so if num[i] changes after j reads it, then i executed sl after
j left sl.
= so num[i] will be higher than num[j], so i cannot pass j

Bakery Lock -

m Shared variables:
choosing[@..N-1] « false
numf@..N-1] «+ 0

m acq(i):
t1: choosingl[i] <« true
t2: num[i] < max(num[@],---,num[N-1]) + 1

t3: choosing[i] « false

for p in @..N-1:

t4: while choosing[p]:
noop
t5: while [0, .1 < [num[pl], p] < [num[il], i]:
noop
m rel(i):

num[i] < ©

Bakery Lock Analysis: Definitions bakery spinlock

m Define

w iis choosing. choosing[i] is true (ie, i on t2,t3)

= jis a peerof i:
= i and j are non-thinking
= their choosing intervals overlapped
= j is still choosing

= Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num, id] order

// “non-choosing” simply makes the argument cleaner: once a
// thread enters @, it is nobody's peer (but it can have peers)

m i isahead of j: [0,-1 < [num[i], i] < [num[j], j1 holds
m i has passed j: 1iiseating or iisint4.t5 withi.p > j

Bakery Lock Analysis: Properties bakery spinlock

m While thread i isin Q
= set of its peers keeps decreasing // choosing is non-blocking
= only a peer can join Q ahead of i
= 5o at most N-1 threads can join Q ahead of i

m When thread i reads num[j] in tb
= j is not currently a peer of i
// j not choosing, or started choosing after i finished choosing
m SO i may pass j based on an unstable num[j]
but j will not pass i // coz num[j] will exceed num[i]

m only the head eats // coz i passes j only if i is ahead of j

m every hungry i eventually eats
= eventually i has no peers // coz choosing is non-blocking
= after this, no thread joins ahead of i, the head eventually eats,
so i eventually becomes the head and eats

	Implementing Locks: Overview
	Locks via Interrupt-Disabling (single-cpu only)
	Spinlocks via Read-Modify-Write Instructions (multi-cpu)
	Lock with Spin Waiting + Queue Waiting (multi-cpu)
	Condition Variables
	Semaphores
	Spinlocks via Read and Write Instructions (multi-cpu)
	SpinLock via RW: Peterson solution
	Obtaining N-user locks from 2-user locks
	Spinlock via RW: Bakery solution

