1. Introduction

This is a condensed extract from section 6.10 (Proof rules) of the text. Hopefully, it will serve as a convenient reference while doing assertional proofs. It also introduces some terminology (in boxes) used in homeworks.

2. Hoare-triples

Hoare-triples express properties of program statements when they execute without interference from the environment. A Hoare-triple has the form \(\{P\} S \{Q\} \), where \(P \) and \(Q \) are predicates and \(S \) is a program statement. \(P \) and \(Q \) are referred to as the \textbf{precondition} and the \textbf{postcondition}, respectively, of the Hoare-triple.

- For \(S \) that is \textit{non-blocking} and not preceded by an input assumption/condition:
 \[\{P\} S \{Q\} \]
 means that the execution of \(S \) starting from any state satisfying \(P \) always terminates (i.e., no infinite loop, no fault) in a state that satisfies \(Q \), assuming that \(S \)'s environment does not affect intermediate states of \(S \)'s execution.

- For \(S \) that is \textit{blocking} with guard \(B \) and action \(C \) (e.g., “\texttt{await (B) C}” or “\texttt{oc (B) C}”):
 \[\{P\} S \{Q\} \]
 means \[\{P \text{ and } B\} C \{Q\}. \]

- For \(S \) that is preceded by input assumption/condition \(B \):
 \[\{P\} S \{Q\} \]
 means \[\{P \text{ and } B\} S \{Q\}. \]

Here are some examples of Hoare-triples. Next to each we indicate whether or not it is valid.

- \((\text{true}) \text{ if } x \neq y \text{ then } x \leftarrow y+1 \{(x = y+1) \text{ or } (x = y)\}\) \hspace{1cm} (valid)
- \((x = n) \text{ for } (i \text{ in } 0..10) \text{ do } x \leftarrow x+i \{(x = n+55)\}\) \hspace{1cm} (valid)
- \((x = 3) \text{ x } \leftarrow y+1 \{(x = 4)\}\) \hspace{1cm} (invalid; e.g., if \(y = 1 \) holds at start)

We say “\(S \) unconditionally establishes \(Q \) from \(P \)” to mean that \(\{P\} S \{Q\} \) holds.

We say “\(S \) unconditionally establishes \(Q \)” to mean that \(\{\text{true}\} S \{Q\} \) holds.

We say “\(S \) unconditionally preserves \(P \)” to mean that \(\{P\} S \{P\} \) holds.
3. Proof rules for safety assertions

Invariance induction rule

Inv \(P \) holds for program \(\mathcal{M} \) if the following hold:
- for the initial atomic step \(e \) of \(\mathcal{M} \): \{true\} \(e \) \(\{P\} \)
- for every non-initial atomic step \(e \) of \(\mathcal{M} \): \{\(P \)\} \(e \) \{\(P \)\}

We say “\(P \) satisfies the invariance induction rule” to mean it satisfies the above conditions.

Invariance induction rule

Inv \(P \) holds for program \(\mathcal{M} \) if the following hold for some predicate \(R \):
- *Inv* \(R \)
- for the initial atomic step \(e \) of \(\mathcal{M} \): \{true\} \(e \) \(\{R \Rightarrow P\} \)
- for every non-initial atomic step \(e \) of \(\mathcal{M} \): \{\(P \) and \(R \)\} \(e \) \{\(R \Rightarrow P\)\}

We say “\(P \) satisfies the invariance induction rule assuming *Inv* \(R \)” to mean it satisfies the above conditions.

Unless rule

\(P \) unless \(Q \) holds for program \(\mathcal{M} \) if the following hold:
- for every non-initial atomic step \(e \) of \(\mathcal{M} \): \{\(P \) and not \(Q \)\} \(e \) \{\(P \) or \(Q \)\}

We say “\(P \) and \(Q \) follows from the unless rule” to mean it satisfies the above conditions.

Closure rules

Inv \(P \) holds if \(P \) holds.

Inv \(P \) holds if the following hold:
- *Inv* \(Q \)
- *Inv* \((Q \Rightarrow P)\)

\(P \) unless \(Q \) holds if *Inv* \((P \Rightarrow Q)\) holds.

\(P \) unless \(Q \) holds if the following hold:
- \(R \) unless \(S \)
- *Inv* \((P \Rightarrow R)\)
- *Inv* \((S \Rightarrow Q)\)

We say an assertion holds via closure of assertions \(Q_1, \ldots, Q_n \)” to mean that the former follows by applying closure rules to the latter.
4. Proof rules for progress assertions

For an atomic step \(e \), let the predicate \(e\.\text{enabled} \) mean that a thread is at \(e \) and \(e \) is unblocked (if it has a guard). Formally,

\[
e\.\text{enabled} = \begin{cases}
\text{thread at } e & \text{if } e \text{ is nonblocking} \\
(\text{thread at } e) \text{ and } B & \text{if } e \text{ has guard } B \quad (\text{e.g., } \text{oc}(B)S)
\end{cases}
\]

Weak-fair rule

\(P \) leads-to \(Q \) holds for program \(M \) if the following hold, where \(e \) is an atomic step of \(M \) subject to weak fairness:

- \((P \text{ and not } Q) \Rightarrow e\.\text{enabled} \)
- \((P \text{ and not } Q) \text{ e } (Q) \)
- for every non-initial atomic step \(f \) of \(M \): \((P \text{ and not } Q) \text{ f } (P \text{ or } Q) \)

We say “\(P \) leads-to \(Q \) via weak-fair rule” to mean that \(P \) and \(Q \) satisfies the above conditions.

Strong-fair rule

\(P \) leads-to \(Q \) holds for program \(M \) if the following hold, where \(e \) is an atomic step of \(M \) subject to strong fairness:

- \((P \text{ and not } Q \text{ and not } e\.\text{enabled}) \text{ leads-to } (Q \text{ or } e\.\text{enabled}) \)
- \((P \text{ and not } Q) \text{ e } (Q) \)
- for every non-initial atomic step \(f \) of \(M \): \((P \text{ and not } Q) \text{ f } (P \text{ or } Q) \)

We say “\(P \) leads-to \(Q \) via strong-fair rule” to mean that \(P \) and \(Q \) satisfies the above conditions.

Closure rules

- \(P \) leads-to \((Q_1 \text{ or } Q_2) \) holds if the following hold:
 - \(P \) leads-to \(P_1 \text{ or } Q_2 \)
 - \(P_1 \) leads-to \(Q_1 \)

- \(P \) leads-to \(Q \) holds if the following hold for some predicate \(R \):
 - Inv \(R \)
 - \((P \text{ and } R) \text{ leads-to } (R \Rightarrow Q) \)

- \((P_1 \text{ and } P_2) \) leads-to \(Q_2 \) holds if the following hold for some predicate \(Q_1 \):
 - \(P_1 \) leads-to \(Q_1 \)
 - \(P_2 \) unless \(Q_2 \)
 - Inv \((Q_1 \Rightarrow (\text{not } P_2)) \)

- \(P \) leads-to \(Q \) holds if, for some function \(F \) on a lower-bounded partial order \((Z, \prec)\), the following hold:
 - \(P \) leads-to \((Q \text{ or } \text{forsome}(x \in Z : F(x))) \)
 - \(\forall x \in Z : F(x) \text{ leads-to } (Q \text{ or } \text{forsome}(w \in Z : w \prec x \text{ and } F(w)))) \)

[This is just induction over a well-founded order.]

We say “\(P \) leads-to \(Q \) via closure of assertions \(L_1, \cdots, L_n \)” to mean that the former follows by applying closure rules to the latter.