CMSC 712
Distributed Algorithms and Verification
(Writing correct distributed programs)

Shankar

May 24, 2014
Introduction

Overview

Assertional reasoning
Rigorous and practical method to write correct distributed algorithms and programs

Correctness: Can prove that algorithm/program satisfies desired properties for all possible variations of thread speeds

Compositionality: Define the external behavior, or service, of a program A such that the service suffices for writing programs that use A.

Accessible to programmers

Apply the method to various distributed systems problems
 - locks, producer-consumer, termination detection, shared memory, network protocols, database concurrency control, ...
Algorithm vs Program?

- Early CS: there was no difference between them
 - Knuth (MIX), sorting (Algol, Pascal), locks (asm, C), ···

- Later on: algorithms were written in pseudo-code, accurately
 - could obtain program without understanding the algorithm

- Currently, dist algs are written in pseudo-code, but vaguely
 - obtaining program requires understanding algorithm
 - making design decisions about the algorithm

- We will bridge the gap between distributed algorithms and distributed programs
 - algorithms are programs written in high-level syntax
Approach

- Programs written in high-level syntax (e.g., Java/Python)
 - threads and inter-process communication are explicit

- Services are written as programs with special structure
 - employ non-determinism and powerful atomicity
 - service programs meant to be easily understood, not efficient

- Define “program implements service” such that in any program C that uses B, replacing B by any program that implements B preserves correctness properties of C.

- Proving “A implements B” reduces to proving properties of $A|B$
 - use assertional reasoning: old-fashioned, but works
 - requires mental effort (just like programming)
 - automated tools (perhaps) useful for low-level steps of a proof
Introduction
Overview
Assertional reasoning
Programs and Systems

- **Program**: instructions organized in main code and functions
- **Threads**: active agents that execute instructions
- Instructions, in addition to the usual, can
 - create threads to execute functions
 - instantiate programs
- **System**: instantiation of a program // e.g., process in OS
 - instantiating thread executes main code and returns
 - system exists until it is explicitly terminated
- Systems interact via function calls and returns
- Thread in system A calls a function of system B
 - call is an output of A, an input of B
 - return is an input of A, an output of B
External behaviour of program P is given by the set of all its possible input-output sequences, say $io(P)$
- infinite: due to parameters, non-terminating threads
- non-deterministic: many sequences for same input subsequence

$io(P)$ is sufficient for using P in other programs
But not helpful: P is likely the only way to express $io(P)$

We really want the set of acceptable io sequences, say $xio(P)$
- $io(P) \neq xio(P)$ due to efficiency issues or errors in P

We want a convenient expression, say Q, that generates $xio(P)$
- Q would be the service of P
- use Q, instead of P, when writing programs
- replace Q by P when executing those programs
Approach

- Services expressed by service programs
 - programs with a special structure, non-determinism, powerful atomicity

- Define "P implements Q" to achieve compositionality
 - candidate: $io(P) \subseteq xio(P)$ // doesn’t quite work

- Develop a program-level version of "P implements Q"
 - reduces to proving properties of a program $P | Q$

- Assertional reasoning to prove properties of programs
Outline

Introduction
Overview
Example programs
Assertional reasoning
 Example: Bounded counter
 Example: Distributed termination detection
Program Z

- Program Z
- inputs: instantiation call, mod(p,q) call
- outputs: instantiation return, mod(p,q) return
- \textit{xio}(Z): sequences of call-return pairs s.t.
 - return of \textit{mod}(p,q) call has value equal to remainder\((p/q)\)
 - every call is eventually followed by a return
- \textit{xio}(Z) places constraints on Z and its environment
- Evolution is Y-evolution and Z-evolution “stitched together”
- Distributed system consists of one or more “basic” systems
- $\text{xio}(Y)$: similar in structure to $\text{xio}(Z)$
Lock system can have more than 1 thread active simultaneously

- inputs: instantiation call, acq call, rel call
- outputs: instantiation return, acq return, rel return
$xio(\text{Lock})$: io sequences such that

1. for each user, interactions cycle through
 acqu call, acqu return, rel call, and rel return
 \hspace{2em} // request only if not holding lock, release only if holding lock

2. between every two acqu returns, there is a rel call.
 \hspace{2em} // at most one user has the lock at any time.

3. every rel call is followed eventually by its return.
 \hspace{2em} // not necessarily immediately

4. if every acqu return is followed eventually by a rel call,
 then every acqu call is followed eventually by its return.
 \hspace{2em} // if no user holds the lock indefinitely,
 \hspace{2em} // then every acquire request is satisfied
Program ProdCons

- **ProdCons** starts three systems: producer, consumer, lock
- Producer and consumer use lock to synchronize
Outline

Introduction
Overview
Assertional reasoning
Program Model

- Program is modeled as a state machine

- **State**
 - \(\langle \text{values of variables, locations of threads} \rangle \) of all its systems

- **Transition**
 - an atomic step, i.e., atomic execution of a code chunk
 - may involve interaction with environment (or inside program)
 - changes the state

- **Evolution**: path in state machine
 - \(\langle \text{initial state, [transition, next state]}^n \rangle, \quad n = 0, \ldots, \infty \)
 - evolution can be finite or infinite

- Undefined transition: evolution ends in a fault state
Program invariably has input assumptions, e.g.,
- input is an integer or a prime number
- lock release called only if lock is not free
- at most one call ongoing at any time

An input occurrence is allowed in an evolution if its input assumption holds at that point

Allowed evolution: one where all input occurrences are allowed

Typically interested only in the allowed evolutions of the program
Correctness Properties

- **Correctness** property:
 - true/false statement about an evolution
 - holds for a program iff holds for every allowed evolution

- Correctness properties are of two kinds: safety and progress
 - **Safety**: nothing bad happens
 - two users cannot hold lock at the same time
 - **Progress** (aka liveness): something good happens
 - every release call eventually returns
 - every acquire call eventually returns if every request return is eventually followed by release call

- We use assertions to express correctness properties
Assertions

- Predicates: formulas in variables and threads
 - true or false for each state
 - \(x = 2 \) or (thread \(t \) at \(a_1 \)) \(\Rightarrow (y \text{ prefixOf } z) \)

- Assertions: formulas in predicates and “temporal” operators
 - true or false for each evolution

- \(\text{Inv } P \), for predicate \(P \) // safety assertion
 - holds for an evolution if every state of the evolution satisfies \(P \)

- \(P \ leads-to Q \), for predicates \(P, Q \) // progress assertion
 - holds for an evolution if for every state that satisfies \(P \), that state or a later state satisfies \(Q \)

- Fault state does not satisfy any predicate (not even \(false \))

- Program satisfies assertion if every allowed evolution satisfies it
Proving an Assertion about a Program

- Assertional reasoning
 - generate a sequence of intermediate assertions A_1, \ldots, A_n leading to desired assertion
 - prove that each A_j follows from program and previous A_i's

- Proof of A_j can be operational or assertional

- Operational proof of A_j
 - natural to humans: if u does this then v did that and so \ldots
 - can give insight but is error-prone (implicit assumptions)
 - checkable only by humans

- Assertional proof of A_j
 - apply a proof rule to program and previous assertions
 - checkable without understanding the program or the assertions
 - mechanically checkable by theorem provers (but arduous)
Outline

Introduction

Overview
 Example programs

Assertional reasoning
 Example: Bounded counter
 Example: Distributed termination detection
Program U

```c
program U(int N) {
    // input assumption:
    // at most one thread
    // in program
    x ← na ← nr ← 0;
    function add() {
        if (x < N)
            x ← x+1;
        na ← na+1;
    }
    function rmv() {
        if (x > 0)
            x ← x−1;
        nr ← nr+1;
    }
}
```

- **Atomic code chunks**
 - main // memory isolation
 - add() // input assumption
 - rmv() // input assumption

- **Desired properties**
 - $\text{Inv } nr \leq na$
 - $\text{forall}(k:}$
 - $na = k$
 - $leads-to nr = k)$
Operational proof of $\text{Inv } \text{nr} \leq \text{na}$

Proof
- nr incremented only if x can be decremented, which is only if x has been incremented, which is only if na has been incremented.
- so nr incremented only if na has incremented.
- so $\text{Inv } \text{nr} \leq \text{na}$ holds.

Implicit assumption
- above proof does not mention initial values
- but $\text{Inv } \text{nr} \leq \text{na}$ does not hold if $x > 0$ initially
Rule 1

Program satisfies $Inv\ P$ if
- P holds after the initial atomic step
- every atomic step unconditionally preserves P (i.e., establishes P after assuming only P before)

Rule 2

Program satisfies $Inv\ R$ if
- program satisfies $Inv\ P$ and $Inv\ Q$
- $(P \text{ and } Q) \Rightarrow R$ holds

Does $nr \leq na$ satisfy rule 1?
No: not unconditionally preserved by rmv()
Proof
- key observation: \(nr + x \) equals \(na \)
- \(U \) satisfies \(Inv \; nr + x = na \) via rule 1
 - \(x, na \) and \(nr \) are initialized to zero
 - add increases both \(x \) and \(na \)
 - \(rmv \) decreases \(x \) and increases \(na \)
- \(U \) satisfies \(Inv \; x \geq 0 \) via rule 1 // similarly
- predicates \(nr + x = na \) and \(x \geq 0 \) imply \(nr \leq na \)
- hence \(U \) satisfies \(Inv \; nr \leq na \) via rule 2

Coming up with intermediate assertions requires invention
Checking the proof does not
Outline

Introduction
Overview
Example programs

Assertional reasoning
Example: Bounded counter
Example: Distributed termination detection
Distributed Diffusing Computation

- Systems a_0, \cdots, a_N connected by fifo channel
- A system can be active or inactive
 - active: send data messages, do computation, become inactive
 - inactive: become active upon receiving a data message
- Initially only system a_0 is active and no messages in transit
- Activity spreads out from system a_0
- Any system can switch between active and inactive many times
- Define **termination**: all systems inactive, no messages in transit
- Computation may never terminate
Augment the diffusing computation to detect termination

Maintain a distributed dynamic out-tree
- rooted at system a0
- includes all active systems
- each system tracks number of incoming tree edges
- so system a0 detects termination when it has no incoming edges

System j responds to every data msg with an “ack” message
- if the data message causes j to join the tree,
 j sends the ack only when it next leaves the tree
- otherwise, j sends the ack immediately
Variables at system j

- **active**: initially true iff \(j = a_0 \)
- **engager**: initially \(a_0 \) if \(j = a_0 \) otherwise null

 // points to its “down-stream” system if \(j \) is in the tree
 // null otherwise

- **unAimed**: initially 0

 // # of unacked outgoing data messages
- only if active = true:
 active ← false;

- only if active:
 send [j,dmsg] to k; unAced++;

- receive [k,dmsg]:
 active ← true;
 if (engager = null) engager ← k;
 else send ack to k;

- receive ack:
 unAced --;

- only if (not active and unAced = 0 and engager ≠ null):
 if (j = a0) signal termination;
 else send ack to engager; engager ← null;
Analysis Helper Quantities

- **termination**: $\forall j: \text{not } j.\text{active} \text{ and } \text{numDAT}(j) = 0$
- **numDAT(j)**: number of data messages in transit outgoing from j
- **numACK(j)**: number of ack messages in transit incoming to j
- **eNodes**: set($j: j.\text{engager} \neq \text{null}$) // set of “engaged” nodes
- **eEdges**: bag([k.\text{engager}, k]: k \neq a0, k.\text{engager} \neq \text{null}) // set of “engagement” edges
- **eGraph**: [eNodes, eEdges] // “engagement” digraph
Safety

$A_1: Inv ((a0.unAced = 0 \text{ and not } a0.active) \Rightarrow \text{termination})$

Progress

$A_2: \text{termination leads-to } (a0.unAced = 0 \text{ and not } a0.active)$
Proof of A_1

Intermediate predicates

$B_1: \text{outTree(eGraph)} \text{ and root(eGraph)} = a0$

$B_2: j.\text{unAcked} = \text{numDAT}(j) + \text{numACK}(j) + \sum([j,k]: [j,k] \text{ in } eEdges)$

$B_3: j.\text{engager} = [] \Rightarrow (\text{not } j.\text{active} \text{ and } j.\text{unAcked} = 0)$

1. Inv B_1-B_2 holds // because B_1-B_3 satisfies rule 1; do details
2. B_1-B_3 implies A_1's predicate // do details
3. A_1 holds // from 1, 2 and rule 2
Proof of A_2

A_2: termination
leads-to (a0.unAcked = 0 and not a0.active)

- Assume termination holds: all inactive, no data msgs in transit
 - need to show that a0.unAcked becomes 0
- Assume eEdges is not empty; so there is a leaf node, say j.
 - j has no outgoing data msgs or incoming edges
 - j’s incoming acks are eventually received
 - so j.unAcked becomes 0 eventually
 - so j sends an ack to its engager and leaves the tree
- Eventually eEdges is empty and a0.unAcked is 0
Assertional proof of A_2

Rule 3

Program satisfies $P \text{ leads-to } Q$ if
from any state satisfying $(P \text{ and not } Q)$:
- every atomic step that can execute establishes $(P \text{ or } Q)$
- there is an atomic step of non-zero speed that establishes Q

If $Inv \: R$ holds, then P can be replaced by $(P \text{ and } R)$

1. Define $\alpha = [|e\text{Edges}|, \# \text{ acks in transit}]$ // lexicographic order
 Define $H = (\text{terminated and } B_1\!-\!B_3)$
2. $(H \text{ and } \alpha = k > 0) \text{ leads-to } (H \text{ and } \alpha < k)$
 // via rule 3, helper \{receive ack, send ack to engager\}
3. $H \text{ leads-to } (H \text{ and } \alpha = 0)$ // induction on 2
4. 3’s rhs implies A_2’s rhs