CMSC 712
Distributed Algorithms and Verification
(Writing correct distributed programs)

Shankar

May 24, 2014

Outline

Introduction
Overview

Assertional reasoning

Objective intro

m Rigorous and practical method to write correct distributed
algorithms and programs

m Correctness: Can prove that algorithm/program satisfies desired
properties for all possible variations of thread speeds

m Compositionality: Define the external behavior, or service, of a
program A such that the service suffices for writing programs that
use A.

m Accessible to programmers

m Apply the method to various distributed systems problems

= locks, producer-consumer, termination detection, shared
memory, network protocols, database concurrency control, - - -

Algorithm vs Program? intro

m Early CS: there was no difference between them
» Knuth (MIX), sorting (Algol, Pascal), locks (asm, C), - --

m Later on: algorithms were written in pseudo-code, accurately
= could obtain program without understanding the algorithm

m Currently, dist algs are written in pseudo-code, but vaguely

= obtaining program requires understanding algorithm
= making design decisions about the algorithm

m We will bridge the gap between distributed algorithms and
distributed programs

= algorithms are programs written in high-level syntax

Approach intro

m Programs written in high-level syntax (e.g., Java/Python)
= threads and inter-process communication are explicit

m Services are written as programs with special structure

= employ non-determinism and powerful atomicity
= service programs meant to be easily understood, not efficient

m Define “program implements service” such that in any program C
that uses B, replacing B by any program that implements B
preserves correctness properties of C.

m Proving “A implements B” reduces to proving properties of A|B
m use assertional reasoning: old-fashioned, but works
= requires mental effort (just like programming)
= automated tools (perhaps) useful for low-level steps of a proof

Outline

Introduction
Overview

Assertional reasoning

Programs and Systems overview

m Program: instructions organized in main code and functions
m Threads: active agents that execute instructions

m Instructions, in addition to the usual, can

m create threads to execute functions
» instantiate programs

m System: instantiation of a program // e.g., process in OS

= instantiating thread executes main code and returns
= system exists until it is explicitly terminated

m Systems interact via function calls and returns
m Thread in system A calls a function of system B

m call is an output of A, an input of B
= return is an input of A, an output of B

External Behavior of Programs overview

m External behaviour of program P is given by the set of all its
possible input-output sequences, say io(P)
= infinite: due to parameters, non-terminating threads
= non-deterministic: many sequences for same input subsequence

m jo(P) is sufficient for using P in other programs
m But not helpful: P is likely the only way to express io(P)

m We really want the set of acceptable io sequences, say xio(P)
= io(P) # xio(P) due to efficiency issues or errors in P

m We want a convenient expression, say Q, that generates xio(P)
s @ would be the service of P
» use @, instead of P, when writing programs
= replace @ by P when executing those programs

Approach overview

m Services expressed by service programs

= programs with a special structure, non-determinism, powerful
atomicity

m Define "P implements Q" to achieve compositionality
= candidate: io(P) C xio(P) // doesn’t quite work

m Develop a program-level version of "P implements Q"
= reduces to proving properties of a program P|Q

m Assertional reasoning to prove properties of programs

QOutline example program -

Introduction
Overview

Example programs
Assertional reasoning

Program Z example program overview

program Z() { instantiation mod(9,7) instruction return(2)
e execution
function mod(p,q) { HA l ? T
} retum(r) Z system | 0 ’L\ 0 0 0 e
} time
m Program Z

= inputs: instantiation call, mod(p,q) call
m outputs: instantiation return, mod(p,q) return

m xio(Z): sequences of call-return pairs s.t.

= return of mod(p,q) call has value equal to remainder(p/q)
= every call is eventually followed by a return

m xio(Z) places constraints on Z and its environment

Program Y

example program overview

program Y() {
instantiate Z()
function ged(u.v) { gcd(57,18) return(3)
distributed
r< mod(a,b) system ” l T
}return(W) YSyStem I e I [eee =] eee
}
mod(.) mod(.)
program Z{) Z system Meee [Meee @

function mod(p,q) {...} time

m Evolution is Y-evolution and Z-evolution “stitched together”
m Distributed system consists of one or more “basic” systems

m xio(Y): similar in structure to xio(Z)

Program Lock - 1

example program overview

program Lock() {

fuﬁction acq() {

return

function rel() {

return

}

}

A B B C B C B C A

H acq

ret ret

ret

acq a4| acq| rel|| 30| acq| rel vaT

Y QR 5 I 5 v o o o o o o o

system

time

m Lock system can have more than 1 thread active simultaneously

m inputs: instantiation call, acq call, rel call
® outputs: instantiation return, acq return, rel return

Program Lock - 2 example program overview

xio(Lock): io sequences such that

1. for each user, interactions cycle through
acqcall, acqreturn, rel call, and rel return

// request only if not holding lock, release only if holding lock

2. between every two acq returns, there is a rel call.
// at most one user has the lock at any time.

3. every rel call is followed eventually by its return.
// not necessarily immediately

4. if every acq return is followed eventually by a rel call,
then every acq call is followed eventually by its return.

// if no user holds the lock indefinitely,
// then every acquire request is satisfied

Program ProdCons example program overview

program distributed H
ProdCons() {| System
ProdCons H==-H
} system
program l T
Producer() { Producer = i i e s s 5 o e s R 5 5
system T
}
program
Lock() { Lock .
b system
r
program acq ?gtq acq
Consumer() {
Consumer U v gconsume v \L
} system DED 8@ INmE B BEEmE °°°
S T l time

m ProdCons starts three systems: producer, consumer, lock
m Producer and consumer use lock to synchronize

Outline

Introduction
Overview

Assertional reasoning

Program Model assertional

m Program is modeled as a state machine

m State
= <values of variables, locations of threads> of all its systems

m Transition

= an atomic step, i.e., atomic execution of a code chunk
= may involve interaction with environment (or inside program)
= changes the state

m Evolution: path in state machine

w <initial state, [transition, next state]">, n=0,--- 00
= evolution can be finite or infinite

m Undefined transition: evolution ends in a fault state

Input Assumptions of a Program assertional

m Program invariably has input assumptions, e.g.,

= input is an integer or a prime number
= lock release called only if lock is not free
= at most one call ongoing at any time

m An input occurence is allowed in an evolution if its input
assumption holds at that point

m Allowed evolution: one where all input occurrences are allowed

m Typically interested only in the allowed evolutions of the program

Correctness Properties assertional

m Correctness property:

= true/false statement about an evolution
= holds for a program iff holds for every allowed evolution

m Correctness properties are of two kinds: safety and progress

m Safety: nothing bad happens
m two users cannot hold lock at the same time

m Progress (aka liveness): something good happens

= every release call eventually returns
= every acquire call eventually returns if
every request return is eventually followed by release call

m We use assertions to express correctness properties

Assertions assertional

m Predicates: formulas in variables and threads

m true or false for each state
s Xx=2 or (thread t at al) = (y prefix0f z)

m Assertions: formulas in predicates and “temporal” operators
= true or false for each evolution

m Inv P, for predicate P // safety assertion
= holds for an evolution if every state of the evolution satisfies P

m P leads-to Q, for predicates P, Q // progress assertion

= holds for an evolution if for every state that satisfies P,
that state or a later state satisfies @

m Fault state does not satisfy any predicate (not even false)

m Program satisfies assertion if every allowed evolution satisfies it

Proving an Assertion about a Program assertional

m Assertional reasoning

= generate a sequence of intermediate assertions Ay, -+, A,
leading to desired assertion
= prove that each A; follows from program and previous A;’s

m Proof of A; can be operational or assertional

m Operational proof of A;
= natural to humans: if v does this then v did that and so - - -
= can give insight but is error-prone (implicit assumptions)
= checkable only by humans

m Assertional proof of A;
= apply a proof rule to program and previous assertions
= checkable without understanding the program or the assertions
= mechanically checkable by theorem provers (but arduous)

Outline bnd counter -

Introduction
Overview

Assertional reasoning
Example: Bounded counter

Program U

program U(int N) {
// input assumption:

// at most one thread

// in program
X 4= na < nr « 0;

function add() {
if (x < N)
X — x+1;

na < natl;
]

function rmv() {
if (x> 0)
X — x—1;
nr < nr+l;
33

bnd counter 'assertional

m Atomic code chunks

= main // memory isolation
= add() // input assumption
w rmv() // input assumption

m Desired properties
m Inv nr <na
s forall(k:
na =k
leads-to nr = k)

Operational proof of Invnr < na bnd counter assertional

m Proof
= nr incremented only if X can be decremented,
which is only if x has been incremented,
which is only if na has been incremented.
= so nr incremented only if na has incremented.
= 50 Inv nr < na holds.

m Implicit assumption

= above proof does not mention initial values
= but Inv nr < na does not hold if x> 0 initially

Assertional proof of Invnr <na — 1 bnd counter assertional

Rule 1

Program satisfies Inv P if
= P holds after the initial atomic step

= every atomic step unconditionally preserves P
(i.e., establishes P after assuming only P before)

Rule 2

Program satisfies Inv R if
= program satisfies Inv P and Inv Q
= (Pand Q)= R holds

m Does nr < na satisfy rule 17
No: not unconditionally preserved by rmv()

Assertional proof of Invnr <na — 2 bnd counter assertional

m Proof
= key observation: nr+x equals na

» U satisfies Invnr+x =na viarule 1

= X, na and nr are initialized to zero
» add increases both x and na
» rmv decreases X and increases na

w U satisfies Invx >0 via rule 1 // similarly

= predicates nr+x = na and x > 0 imply nr < na

m hence U satisfies Invnr < na via rule 2

m Coming up with intermediate assertions requires invention
m Checking the proof does not

Outline termin detctn -

Introduction
Overview

Assertional reasoning

Example: Distributed termination detection

Distributed Diffusing Computation termin detctn assertional

m Systems a0, - - -, aN connected by fifo channel

m A system can be active or inactive

= active: send data messages, do computation, become inactive
= inactive: become active upon receiving a data message

m Initially only system a0 is active and no messages in transit

m Activity spreads out from system a0
m Any system can switch between active and inactive many times

m Define termination: all systems inactive, no messages in transit

m Computation may never terminate

Distributed Termination Detection termin detctn assertional

m Augment the diffusing computation to detect termination

m Maintain a distributed dynamic out-tree
» rooted at system a0
» includes all active systems
= each system tracks number of incoming tree edges
= so system a0 detects termination when it has no incoming edges

m System j responds to every data msg with an “ack” message
n if the data message causes j to join the tree,
j sends the ack only when it next leaves the tree
» otherwise, j sends the ack immediately

Variables at system j termin detctn assertional

m active: initially true iff j = a0

m engager: initially a0 if j = a0 otherwise null

// points to its “down-stream” system if j is in the tree
// null otherwise

m unAcked: initially 0
// # of unacked outgoing data messages

Rules at system j (atomically executed) termin detctn assertional

m only if active = true:
active « false;

m only if active:
send [j,dmsg] to k; unAcked++

m receive [k,dmsgl:
active « true;
if (engager = null) engager < k;
else send ack to k;

m receive ack:
unAcked — —;

m only if (not active and unAcked = 0 and engager # null):
if (j = a0) signal termination;
else send ack to engager; engager < null;

Analysis Helper Quantities termin detctn assertional

termination: forall(j: not j.active and numDAT(j) = 0)

numDAT (j): number of data messages in transit outgoing from j

numACK(j): number of ack messages in transit incoming to j

eNodes: set(j: j.engager # null) // set of “engaged” nodes

eEdges: bag([k.engager, k1: k # a0, k.engager # null)
// set of “engagement” edges

eGraph: [eNodes, eEdges] // “engagement” digraph

Assertions to be proved termin detctn -

Safety

A; - Inv ((a0.unAcked = 0 and not a0.active)
= termination)

Progress

A, termination
leads-to (a0.unAcked = 0 and not a0.active)

Proof of A1 termin detctn 'assertional

m Intermediate predicates

By : outTree(eGraph) and root(eGraph) = a0

B> : j.unAcked = numDAT(J) + numACK(j)
+ sum([j,kJ: [j,k1 in eEdges)

Bs; : j.engager = [1 = (not j.active and j.unAcked = 0)

1. Inv B;—B, holds // because B;—B; satisfies rule 1; do details
2. Bi—Bs; implies A;’s predicate // do details
3. A; holds // from 1, 2 and rule 2

Proof of A2 termin detctn 'assertional

A, 1 termination
leads-to (a0.unAcked = 0 and not a0.active)

m Assume termination holds: all inactive, no data msgs in transit
= need to show that a0.unAcked becomes 0
m Assume eEdges is not empty; so there is a leaf node, say j.

= j has no outgoing data msgs or incoming edges

= j's incoming acks are eventually received

= so j.unAcked becomes 0 eventually

= so j sends an ack to its engager and leaves the tree

m Eventually eEdges is empty and a0.unAcked is 0

Assertional proof of A, termin detctn assertional

Rule 3

Program satisfies P leads-to Q if
from any state satisfiying (P and not Q):

m every atomic step that can execute establishes (Por Q)

= there is an atomic step of non-zero speed that establishes Q

If Inv R holds, then P can be replaced by (P and R)

1. Define o = [|eEdges|, # acks in transit] // lexicographic order
Define H = (terminated and B;—Bs)

2. (Hand a = k > 0) leads-to (H and o < k)
// via rule 3, helper {receive ack, send ack to engager}

3. H leads-to (H and o = 0) // induction on 2
4. 3's rhs implies A,'s rhs

	Introduction
	Overview
	Example programs

	Assertional reasoning
	Example: Bounded counter
	Example: Distributed termination detection

