
CMSC 712

Distributed Algorithms and Veri�cation

(Writing correct distributed programs)

Shankar

May 24, 2014

Outline intro

Introduction

Overview

Assertional reasoning

Objective intro

Rigorous and practical method to write correct distributed
algorithms and programs

Correctness: Can prove that algorithm/program satis�es desired
properties for all possible variations of thread speeds

Compositionality: De�ne the external behavior, or service, of a
program A such that the service su�ces for writing programs that
use A.

Accessible to programmers

Apply the method to various distributed systems problems

locks, producer-consumer, termination detection, shared
memory, network protocols, database concurrency control, · · ·

Algorithm vs Program? intro

Early CS: there was no di�erence between them

Knuth (MIX), sorting (Algol, Pascal), locks (asm, C), · · ·

Later on: algorithms were written in pseudo-code, accurately

could obtain program without understanding the algorithm

Currently, dist algs are written in pseudo-code, but vaguely

obtaining program requires understanding algorithm
making design decisions about the algorithm

We will bridge the gap between distributed algorithms and
distributed programs

algorithms are programs written in high-level syntax

Approach intro

Programs written in high-level syntax (e.g., Java/Python)

threads and inter-process communication are explicit

Services are written as programs with special structure

employ non-determinism and powerful atomicity
service programs meant to be easily understood, not e�cient

De�ne �program implements service� such that in any program C
that uses B , replacing B by any program that implements B
preserves correctness properties of C .

Proving �A implements B� reduces to proving properties of A|B
use assertional reasoning: old-fashioned, but works
requires mental e�ort (just like programming)
automated tools (perhaps) useful for low-level steps of a proof

Outline overview

Introduction

Overview

Assertional reasoning

Programs and Systems overview

Program: instructions organized in main code and functions

Threads: active agents that execute instructions

Instructions, in addition to the usual, can

create threads to execute functions
instantiate programs

System: instantiation of a program // e.g., process in OS

instantiating thread executes main code and returns
system exists until it is explicitly terminated

Systems interact via function calls and returns

Thread in system A calls a function of system B

call is an output of A, an input of B
return is an input of A, an output of B

External Behavior of Programs overview

External behaviour of program P is given by the set of all its
possible input-output sequences, say io(P)

in�nite: due to parameters, non-terminating threads
non-deterministic: many sequences for same input subsequence

io(P) is su�cient for using P in other programs

But not helpful: P is likely the only way to express io(P)

We really want the set of acceptable io sequences, say xio(P)

io(P) 6= xio(P) due to e�ciency issues or errors in P

We want a convenient expression, say Q, that generates xio(P)

Q would be the service of P
use Q, instead of P , when writing programs
replace Q by P when executing those programs

Approach overview

Services expressed by service programs

programs with a special structure, non-determinism, powerful
atomicity

De�ne "P implements Q" to achieve compositionality

candidate: io(P) ⊆ xio(P) // doesn't quite work

Develop a program-level version of "P implements Q"

reduces to proving properties of a program P |Q

Assertional reasoning to prove properties of programs

Outline example program overview

Introduction
Overview

Example programs

Assertional reasoning
Example: Bounded counter

Example: Distributed termination detection

Program Z example program overview

instantiation

 return(r)
 }

 function mod(p,q) {

}

program Z() { instruction
execution

Z system

mod(9,7) return(2)

time

Program Z

inputs: instantiation call, mod(p,q) call
outputs: instantiation return, mod(p,q) return

xio(Z): sequences of call-return pairs s.t.

return of mod(p,q) call has value equal to remainder(p/q)
every call is eventually followed by a return

xio(Z) places constraints on Z and its environment

Program Y example program overview

��������

��������

��������

�������� ��������
mod(.)

distributed
system

Z system

Y system

mod(.)

gcd(57,18) return(3)

 instantiate Z()

program Y() {

 }

 function gcd(u.v) {

 function mod(p,q) {...}
}

program Z() {

time

}

 return(w)

 r mod(a,b)

Evolution is Y -evolution and Z -evolution �stitched together�

Distributed system consists of one or more �basic� systems

xio(Y): similar in structure to xio(Z)

Program Lock � 1 example program overview

program Lock() {

Lock

 function rel() {

 return
 }

 }
 return

 function acq() {

}

system

A

ret

B

rel

B B C C B

rel

C A

acqacq acq acqacq
ret
acq

ret
acq

time

Lock system can have more than 1 thread active simultaneously

inputs: instantiation call, acq call, rel call

outputs: instantiation return, acq return, rel return

Program Lock � 2 example program overview

xio(Lock): io sequences such that

1. for each user, interactions cycle through
acq call, acq return, rel call, and rel return

// request only if not holding lock, release only if holding lock

2. between every two acq returns, there is a rel call.

// at most one user has the lock at any time.

3. every rel call is followed eventually by its return.

// not necessarily immediately

4. if every acq return is followed eventually by a rel call,
then every acq call is followed eventually by its return.

// if no user holds the lock inde�nitely,
// then every acquire request is satis�ed

Program ProdCons example program overview

ProdCons

 Consumer() {

 Lock() {

 Producer() {

}

program

}

program

}

program

 ProdCons() {
program

}

system

system

system

system

distributed
system

Consumer

Producer

Lock

����
����
����

����
����
����

�
�
�

�
�
�

���
���
���

���
���
���

����
����
����
����

����
����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

acq acq

acq

put put

relacq

rel

ret
acq

ret
acq

ret
acq

rel

consume

acq

time

ProdCons starts three systems: producer, consumer, lock

Producer and consumer use lock to synchronize

Outline assertional

Introduction

Overview

Assertional reasoning

Program Model assertional

Program is modeled as a state machine

State

<values of variables, locations of threads> of all its systems

Transition

an atomic step, i.e., atomic execution of a code chunk
may involve interaction with environment (or inside program)
changes the state

Evolution: path in state machine

<initial state, [transition, next state]n>, n = 0, · · · ,∞
evolution can be �nite or in�nite

Unde�ned transition: evolution ends in a fault state

Input Assumptions of a Program assertional

Program invariably has input assumptions, e.g.,

input is an integer or a prime number
lock release called only if lock is not free
at most one call ongoing at any time

An input occurence is allowed in an evolution if its input
assumption holds at that point

Allowed evolution: one where all input occurrences are allowed

Typically interested only in the allowed evolutions of the program

Correctness Properties assertional

Correctness property:

true/false statement about an evolution
holds for a program i� holds for every allowed evolution

Correctness properties are of two kinds: safety and progress

Safety: nothing bad happens

two users cannot hold lock at the same time

Progress (aka liveness): something good happens

every release call eventually returns
every acquire call eventually returns if
every request return is eventually followed by release call

We use assertions to express correctness properties

Assertions assertional

Predicates: formulas in variables and threads

true or false for each state
x= 2 or (thread t at a1) ⇒ (y prefixOf z)

Assertions: formulas in predicates and �temporal� operators

true or false for each evolution

Inv P , for predicate P // safety assertion

holds for an evolution if every state of the evolution satis�es P

P leads-to Q, for predicates P , Q // progress assertion

holds for an evolution if for every state that satis�es P ,
that state or a later state satis�es Q

Fault state does not satisfy any predicate (not even false)

Program satis�es assertion if every allowed evolution satis�es it

Proving an Assertion about a Program assertional

Assertional reasoning

generate a sequence of intermediate assertions A1, · · · , An

leading to desired assertion
prove that each Aj follows from program and previous Ai 's

Proof of Aj can be operational or assertional

Operational proof of Aj

natural to humans: if u does this then v did that and so · · ·
can give insight but is error-prone (implicit assumptions)
checkable only by humans

Assertional proof of Aj

apply a proof rule to program and previous assertions
checkable without understanding the program or the assertions
mechanically checkable by theorem provers (but arduous)

Outline bnd counter assertional

Introduction
Overview

Example programs

Assertional reasoning
Example: Bounded counter

Example: Distributed termination detection

Program U bnd counter assertional

program U(int N) {
// input assumption:
// at most one thread
// in program

x ← na ← nr ← 0;

function add() {
if (x < N)

x ← x+1;
na ← na+1;

}

function rmv() {
if (x > 0)

x ← x−1;
nr ← nr+1;

}}

Atomic code chunks

main // memory isolation
add() // input assumption
rmv() // input assumption

Desired properties

Inv nr ≤ na

forall(k:
na = k

leads-to nr = k)

Operational proof of Inv nr ≤ na bnd counter assertional

Proof

nr incremented only if x can be decremented,
which is only if x has been incremented,
which is only if na has been incremented.
so nr incremented only if na has incremented.
so Inv nr ≤ na holds.

Implicit assumption

above proof does not mention initial values
but Inv nr ≤ na does not hold if x > 0 initially

Assertional proof of Inv nr ≤ na � 1 bnd counter assertional

Rule 1

Program satis�es Inv P if

P holds after the initial atomic step

every atomic step unconditionally preserves P
(i.e., establishes P after assuming only P before)

Rule 2

Program satis�es Inv R if

program satis�es Inv P and Inv Q

(P and Q)⇒R holds

Does nr ≤ na satisfy rule 1?
No: not unconditionally preserved by rmv()

Assertional proof of Inv nr ≤ na � 2 bnd counter assertional

Proof

key observation: nr+x equals na

U satis�es Inv nr+x = na via rule 1

x, na and nr are initialized to zero
add increases both x and na
rmv decreases x and increases na

U satis�es Inv x ≥ 0 via rule 1 // similarly

predicates nr+x = na and x ≥ 0 imply nr ≤ na

hence U satis�es Inv nr ≤ na via rule 2

Coming up with intermediate assertions requires invention

Checking the proof does not

Outline termin detctn assertional

Introduction
Overview

Example programs

Assertional reasoning
Example: Bounded counter

Example: Distributed termination detection

Distributed Di�using Computation termin detctn assertional

Systems a0, · · · , aN connected by �fo channel

A system can be active or inactive

active: send data messages, do computation, become inactive
inactive: become active upon receiving a data message

Initially only system a0 is active and no messages in transit

Activity spreads out from system a0

Any system can switch between active and inactive many times

De�ne termination: all systems inactive, no messages in transit

Computation may never terminate

Distributed Termination Detection termin detctn assertional

Augment the di�using computation to detect termination

Maintain a distributed dynamic out-tree

rooted at system a0
includes all active systems
each system tracks number of incoming tree edges
so system a0 detects termination when it has no incoming edges

System j responds to every data msg with an �ack� message

if the data message causes j to join the tree,
j sends the ack only when it next leaves the tree
otherwise, j sends the ack immediately

Variables at system j termin detctn assertional

active: initially true i� j = a0

engager: initially a0 if j = a0 otherwise null
// points to its �down-stream� system if j is in the tree
// null otherwise

unAcked: initially 0
// # of unacked outgoing data messages

Rules at system j (atomically executed) termin detctn assertional

only if active = true:
active ← false;

only if active:
send [j,dmsg] to k; unAcked++;

receive [k,dmsg]:
active ← true;
if (engager = null) engager← k;
else send ack to k;

receive ack:
unAcked−−;

only if (not active and unAcked = 0 and engager 6= null):
if (j = a0) signal termination;
else send ack to engager; engager ← null;

Analysis Helper Quantities termin detctn assertional

termination: forall(j: not j.active and numDAT(j) = 0)

numDAT(j): number of data messages in transit outgoing from j

numACK(j): number of ack messages in transit incoming to j

eNodes: set(j: j.engager 6= null) // set of �engaged� nodes

eEdges: bag([k.engager, k]: k 6= a0, k.engager 6= null)
// set of �engagement� edges

eGraph: [eNodes, eEdges] // �engagement� digraph

Assertions to be proved termin detctn assertional

Safety

A1 : Inv ((a0.unAcked = 0 and not a0.active)
⇒ termination)

Progress

A2 : termination
leads-to (a0.unAcked = 0 and not a0.active)

Proof of A1 termin detctn assertional

Intermediate predicates

B1 : outTree(eGraph) and root(eGraph) = a0

B2 : j.unAcked = numDAT(j) + numACK(j)
+ sum([j,k]: [j,k] in eEdges)

B3 : j.engager = [] ⇒ (not j.active and j.unAcked = 0)

1. Inv B1�B2 holds // because B1�B3 satis�es rule 1; do details

2. B1�B3 implies A1's predicate // do details

3. A1 holds // from 1, 2 and rule 2

Proof of A2 termin detctn assertional

A2 : termination
leads-to (a0.unAcked = 0 and not a0.active)

Assume termination holds: all inactive, no data msgs in transit

need to show that a0.unAcked becomes 0

Assume eEdges is not empty; so there is a leaf node, say j.
j has no outgoing data msgs or incoming edges
j's incoming acks are eventually received
so j.unAcked becomes 0 eventually
so j sends an ack to its engager and leaves the tree

Eventually eEdges is empty and a0.unAcked is 0

Assertional proof of A2 termin detctn assertional

Rule 3

Program satis�es P leads-to Q if
from any state satis�ying (P and notQ):

every atomic step that can execute establishes (P orQ)

there is an atomic step of non-zero speed that establishes Q

If Inv R holds, then P can be replaced by (P andR)

1. De�ne α = [|eEdges|, # acks in transit] // lexicographic order
De�ne H = (terminated and B1�B3)

2. (H and α = k > 0) leads-to (H and α < k)
// via rule 3, helper {receive ack, send ack to engager}

3. H leads-to (H and α = 0) // induction on 2
4. 3's rhs implies A2's rhs

	Introduction
	Overview
	Example programs

	Assertional reasoning
	Example: Bounded counter
	Example: Distributed termination detection

