Lock using Bakery Algorithm

Shankar

April 16, 2014

Overview

m Classical mutual exclusion problem
= given program with “critical sections” and threads 0..N-1
= obtain “entry” and “exit” code for each critical section st
= at most one thread in a critical section

= thread in entry code eventually enters critical section
if no thread stays in critical section forever

= assume only atomic reads and writes

m Any solution provides a SimpleLockService(N) implementation
m We will obtain one using the Bakery algorithm

= hungry: ongoing request for the lock
= eating: holds the lock; in critical section // conventions
= thinking: neither hungry nor eating

The Bakery Approach

m Variables shared by threads 0..N-1

= numC0], ---, num[N-11, initially 0
// numlil > 0 iff i not thinking

m Lock acquire: thread i does two scans of nums

= sl: set numli] to a value higher than other nums
m s2: wait at each j while 0 < numLj] < num[i]

m Lock release: thread i zeroes num[i]

m Refer to the above as simplified bakery

= works if sl is atomic but not with read-write atomicity
m Classical bakery handles r/w atomicity but nums unbounded
m Black-white bakery handles r/w atomicity with nums bounded

Outline

Simplified Bakery
Classical Bakery
Black-white Bakery

Program LockSimp1ifiedBakery(N) -

m Main
numf0..N-11 <« O

m mysid.acq():

sl: enumCmyid]l < max(numCOl, ---, num[N-11) + 1
for (p in 0..N-1)
s2: do ex < numlp]

while (0 < x < numCmyidl)

m mysid.rel():
numCmyid] < O

m mysid.end():
numCmyid]l < 0

m atomicity assumption: the ‘e’s
m progress assumption: weak fairness

Analysis -1 simplified bakery

m Goal: show simplified bakery implements simple lock service

m Define closed program of

= LockSimplifiedBakery(N) system, 1ck, and
m SimplelLockServicelnverse(N) system, 1si

m Assertions to establish

Yy : Inv (thrd at doAcq(i).ic) = (no thrd eating)

Y5 : thrd i in Tck.rel returns

Y3 : thrd i in Tck.end returns

Y, . every hungry thrd becomes eating if eating is bounded

m Y) and Y3 hold trivially // 1ck.rel, 1ck.end non-blocking
m Proofs of Y; and Y, follow

Analysis - 2 simplified bakery

m Instructive to define a hypothetical queue of contenders

m Q: sequence of ids of non-thinking threads in increasing num order

= i joins / leaves Q when it executes s1 / rel
= nums in @ are distinct // sl is atomic
= arrival joins at tail /"

m i ahead-of j: 0 < numl[i] < numCj]
m i passed j: 1iiseating or 1isin s2 with i.p > j
m If i ahead-of j then j cannot pass i

= so only the thread at the head of Q can eat /] Y

m If i at head of @ then i passes every j

m so i eats and then leaves @
= at which point every jin Q gets closer to the head /] Ya

Simplified Bakery

Simplified bakery: fails with only read-write atomicity
Classical Bakery
Black-white Bakery

Flaws with r/w atomicity - 1 r/w atomicity simplified bakery

m Simplified bakery fails if only reads and writes are atomic
= problem arises when threads execute sl simultaneously

m Flaw 1
= threads i and j overlapping in sl can get equal nums
= e.g., each reads the other’s num before either updates its num

= each thread passes the other: both acquire the lock
// or each thread waits for the other: deadlock

m Fixing flaw 1
m use thread ids to break ties in s2

m let [numlil,i] < [numCjl, j1 denote
numCil < numCjl or (numlil = num[j] and i < j)

Flaws with r/w atomicity - 2 r/w atomicity simplified bakery

m Flaw 2

threads i and j overlap in sl
= i leaves sl before j, passes jin s2 because numlj] still 0
= j leaves sl later with num[j1 < numLi], so j passes i in s2
i and j both acquire the lock

m Fixing flaw 2

= booleans choosingl0], -- -, choosing[N-11], initially false
m i sets choosingli] before sl and resets it after sl
= in s2, thrd i reads numLj] only after finding choosingl j1 false

m Thus i reads an “unstable” numl j1 only if
Jj started choosing after i finished choosing

= so numlj] will be higher than numLi] and j will not pass i

Outline

Simplified Bakery
Classical Bakery
Black-white Bakery

Program LockBakery(N) classical bakery

m Main:
choosing[0..N-1] <« false
numf0..N-1]1 < O

m mysid.acq():
tl: choosinglmyid]l < true
t2: e numCmyid] < max(e numCO01,---, e num[N-11) + 1
t3: e choosinglmyid] <« false
for (p in 0..N-1)
t4: while (e choosinglpl) skip
th: do e X < numlpl
while (x # 0 and [x,p] < CnumCmyidl, myidl)

m mysid.rel():
numCmyid]l < O

m mysid.end()
endSystem()

Analysis: overview classical bakery

m Goal: show bakery implements simple lock service

m Proceeding as usual

= closed program of lock and service inverse
m assertions Y;—Ys to establish

m Yo—Y; hold trivially

m Establish Y;, Ys next

Analysis: auxiliary quantities classical bakery

m Proof similar to that of simplified bakery

m Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num, id] order

m i ahead-of j: [0,-1 < [numCil, i1 < C[numCj], j3
m passed(i,j): 1iiseating or iisin t4..t5 with i.p > j

m jis a peer of 1 if:
= i and j are non-thinking
= their choosing intervals overlapped
= j is still choosing // so not commutative

m peers[il: set of peers of i // auxiliary var

Analysis: safety proof classical bakery

Co(i): ((ions2) and i.p =N-1 and
(numCpl = 0 or CnumCi.pl,i.pl > [numl(il,il)) =
forall(j in 0..N-1: not acqd[jl)

Gi(i,3): (i #Jj and passed(i,j)) =
((not j in peers[il) and
(not acqdljl or (jon sl..t2) or
(numCjl > 0 and CnumCjl,jl > CnumCil,i1)))

Go(i,3): (i#j and (ions2) and i.p=j and choosing[jl) =
(j not in peers[il)

m Inv Gy(1) equivalent to Y] given effective atomicity
] C2(1 ,J)
m Ci(1,]) satisfies invariance rule assuming Inv C(1,J)
m G (i,.J) and G (J,1) imply Gy

satisfies invariance rule
s

Analysis: progress proof classical bakery

«j: Ff entries ahead-of i [;: peerslil.size
Dy : [B;, @31 = [k1,k2]1 > [0,0]1 unless ([f3;, a;] < [k1,k2]1)
D, : B; = k1 > 0 leads-to f35 < kl // choosing bounded
Ds: [B;, a;1 = [0,01 leads-to acqdli] // 1 never blocked
Dy, : [B4, a31 = [0,0] leads-to not acqdlil // Ds, eating ends

S [B;, a3] = k1, k21 > [0,0] leads-to [f;, a31 < [k1, k2]

m D; holds coz 8 non-increasing, « increases only if 5 decreases
m Ds: from D,, D; for k1>0; from D,.head for k1 =0, k2>0
m D5 and Ds imply Y}

The beautiful and the undesirable classical bakery

m Beautiful: r/w atomicity not needed
= no overlapping writes to the same location
= read that overlaps with a write can return any value
= i reads unstable var of j only if jis choosing
= so numljJ1 will end up higher than num[i]
= so 1 will never make a wrong decision

m Undesirable: nums are not bounded

Outline

Simplified Bakery
Classical Bakery
Black-white Bakery

Black-white bakery algorithm black-white bakery

m Bounds nums but requires r/w atomicity for a binary flag
m Two hypothetical queues: one black, one white
m Flag, either black or white // indicates the open queue

m Each user has a color (its queue) and the usual (num, id)
m gets the flag’s color, sets its num based on users in its queue

m Priority: (num, id), except open-queue defers to closed-queue
m When a user eats, it sets the flag to the opposite of its color

m So open<>closed happens when an open user starts eating

= at which point the other queue, which was closed, is empty
= 50 the next arrival sets its num starting from 0

	Simplified Bakery
	Simplified bakery: fails with only read-write atomicity

	Classical Bakery
	Black-white Bakery

