
Lock using Bakery Algorithm

Shankar

April 16, 2014



Overview

Classical mutual exclusion problem

given program with �critical sections� and threads 0..N−1

obtain �entry� and �exit� code for each critical section st

at most one thread in a critical section

thread in entry code eventually enters critical section
if no thread stays in critical section forever

assume only atomic reads and writes

Any solution provides a SimpleLockService(N) implementation

We will obtain one using the Bakery algorithm

hungry: ongoing request for the lock
eating: holds the lock; in critical section
thinking: neither hungry nor eating

// conventions



The Bakery Approach

Variables shared by threads 0..N−1
num[0], · · · , num[N − 1], initially 0
// num[i] > 0 i� i not thinking

Lock acquire: thread i does two scans of nums

s1: set num[i] to a value higher than other nums

s2: wait at each j while 0 < num[j] < num[i]

Lock release: thread i zeroes num[i]

Refer to the above as simpli�ed bakery

works if s1 is atomic but not with read-write atomicity

Classical bakery handles r/w atomicity but nums unbounded

Black-white bakery handles r/w atomicity with nums bounded



Outline simpli�ed bakery

Simpli�ed Bakery

Classical Bakery

Black-white Bakery



Program LockSimplifiedBakery(N) simpli�ed bakery

Main
num[0 .. N−1] ← 0

mysid.acq():
s1: • num[myid] ← max(num[0], · · · , num[N−1]) + 1

for (p in 0..N−1)
s2: do •x ← num[p]

while (0 < x < num[myid])

mysid.rel():
num[myid] ← 0

mysid.end():
num[myid] ← 0

atomicity assumption: the `•'s
progress assumption: weak fairness



Analysis � 1 simpli�ed bakery

Goal: show simpli�ed bakery implements simple lock service

De�ne closed program of

LockSimplifiedBakery(N) system, lck, and
SimpleLockServiceInverse(N) system, lsi

Assertions to establish

Y1 : Inv (thrd at doAcq(i).ic) ⇒ (no thrd eating)
Y2 : thrd i in lck.rel returns
Y3 : thrd i in lck.end returns
Y4 : every hungry thrd becomes eating if eating is bounded

Y2 and Y3 hold trivially // lck.rel, lck.end non-blocking

Proofs of Y1 and Y4 follow



Analysis � 2 simpli�ed bakery

Instructive to de�ne a hypothetical queue of contenders

Q: sequence of ids of non-thinking threads in increasing num order

i joins / leaves Q when it executes s1 / rel
nums in Q are distinct // s1 is atomic
arrival joins at tail // " "

i ahead-of j: 0 < num[i] < num[j]

i passed j: i is eating or i is in s2 with i.p > j

If i ahead-of j then j cannot pass i
so only the thread at the head of Q can eat // Y1

If i at head of Q then i passes every j
so i eats and then leaves Q
at which point every j in Q gets closer to the head // Y4



Outline r/w atomicity simpli�ed bakery

Simpli�ed Bakery
Simpli�ed bakery: fails with only read-write atomicity

Classical Bakery
Black-white Bakery



Flaws with r/w atomicity � 1 r/w atomicity simpli�ed bakery

Simpli�ed bakery fails if only reads and writes are atomic

problem arises when threads execute s1 simultaneously

Flaw 1

threads i and j overlapping in s1 can get equal nums

e.g., each reads the other's num before either updates its num
each thread passes the other: both acquire the lock
// or each thread waits for the other: deadlock

Fixing �aw 1

use thread ids to break ties in s2

let [num[i],i] < [num[j],j] denote
num[i] < num[j] or (num[i] = num[j] and i < j)



Flaws with r/w atomicity � 2 r/w atomicity simpli�ed bakery

Flaw 2

threads i and j overlap in s1
i leaves s1 before j, passes j in s2 because num[j] still 0
j leaves s1 later with num[j] < num[i], so j passes i in s2
i and j both acquire the lock

Fixing �aw 2

booleans choosing[0], · · · , choosing[N − 1], initially false
i sets choosing[i] before s1 and resets it after s1
in s2, thrd i reads num[j] only after �nding choosing[j] false

Thus i reads an �unstable� num[j] only if
j started choosing after i �nished choosing

so num[j] will be higher than num[i] and j will not pass i



Outline classical bakery

Simpli�ed Bakery

Classical Bakery

Black-white Bakery



Program LockBakery(N) classical bakery

Main:
choosing[ 0.. N−1] ← false
num[0 .. N−1] ← 0

mysid.acq():
t1: choosing[myid] ← true
t2: • num[myid] ← max( • num[0],· · · , • num[N−1]) + 1
t3: • choosing[myid] ← false

for (p in 0..N−1)
t4: while ( • choosing[p]) skip
t5: do • x ← num[p]

while (x 6= 0 and [x,p] < [num[myid], myid])

mysid.rel():
num[myid] ← 0

mysid.end()
endSystem()



Analysis: overview classical bakery

Goal: show bakery implements simple lock service

Proceeding as usual

closed program of lock and service inverse
assertions Y1�Y4 to establish

Y2�Y3 hold trivially

Establish Y1, Y4 next



Analysis: auxiliary quantities classical bakery

Proof similar to that of simpli�ed bakery

Q: hypothetical queue of ids of non-thinking non-choosing
threads in increasing [num,id] order

i ahead-of j: [0,·] < [num[i], i] < [num[j], j]

passed(i,j): i is eating or i is in t4..t5 with i.p > j

j is a peer of i if:

i and j are non-thinking
their choosing intervals overlapped
j is still choosing // so not commutative

peers[i]: set of peers of i // auxiliary var



Analysis: safety proof classical bakery

C0(i) : ((i on s2) and i.p = N − 1 and
(num[p] = 0 or [num[i.p],i.p] > [num[i],i])) ⇒

forall(j in 0..N − 1: not acqd[j])

C1(i,j) : (i 6= j and passed(i,j)) ⇒
((not j in peers[i]) and
(not acqd[j] or (j on s1..t2) or
(num[j] > 0 and [num[j],j] > [num[i],i])))

C2(i,j) : (i 6=j and (i on s2) and i.p=j and choosing[j]) ⇒
(j not in peers[i])

Inv C0(i) equivalent to Y1 given e�ective atomicity

C2(i,j) satis�es invariance rule

C1(i,j) satis�es invariance rule assuming Inv C2(i,j)

C1(i,j) and C1(j,i) imply C0



Analysis: progress proof classical bakery

αi: # entries ahead-of i βi: peers[i].size

D1 : [βi, αi] = [k1, k2] > [0, 0] unless ([βi, αi] < [k1, k2])

D2 : βi = k1 > 0 leads-to βi < k1 // choosing bounded

D3 : [βi, αi] = [0, 0] leads-to acqd[i] // i never blocked

D4 : [βi, αi] = [0, 0] leads-to not acqd[i] // D3, eating ends

D5 : [βi, αi] = [k1, k2] > [0, 0] leads-to [βi, αi] < [k1, k2]

D1 holds coz β non-increasing, α increases only if β decreases

D5: from D2, D1 for k1 > 0; from D4.head for k1=0, k2 > 0

D5 and D3 imply Y4



The beautiful and the undesirable classical bakery

Beautiful: r/w atomicity not needed

no overlapping writes to the same location
read that overlaps with a write can return any value

i reads unstable var of j only if j is choosing
so num[j] will end up higher than num[i]
so i will never make a wrong decision

Undesirable: nums are not bounded



Outline black-white bakery

Simpli�ed Bakery

Classical Bakery

Black-white Bakery



Black-white bakery algorithm black-white bakery

Bounds nums but requires r/w atomicity for a binary �ag

Two hypothetical queues: one black, one white

Flag, either black or white // indicates the open queue

Each user has a color (its queue) and the usual 〈num, id〉
gets the �ag's color, sets its num based on users in its queue

Priority: 〈num, id〉, except open-queue defers to closed-queue

When a user eats, it sets the �ag to the opposite of its color

So open↔closed happens when an open user starts eating

at which point the other queue, which was closed, is empty
so the next arrival sets its num starting from 0


	Simplified Bakery
	Simplified bakery: fails with only read-write atomicity

	Classical Bakery
	Black-white Bakery

