Distributed Lock Service

Shankar

April 18, 2014



Overview: Distributed Lock Service

-acq()
U1 \\;:.?ecl?) U i U n = address

e w e (60, a6, P U
,,,,, . 0 access system

m Parameter: set of addresses

m Access system at each address
= sid returned at instantiation

m Functions at address j, assuming access system Vj

= input vj.acq(): acquire lock
= input v .rel(): release lock

m Termination function(s): can be added

)



Service DistLockService(ADDR) - 1

= Main
= ic {ADDR not empty 1
m eating < null // user with lock if not null
m users; <[] // users at addr j
m Vj ¢ sidO) // sid of access system at j
= return {v;} // map of sids

m atomicity assumption: input and output parts

B progress assumptions
m thread u in vJ-.r‘e1 leads-to not u in vj.re1

m (eating # null leads-to eating = null) =
(u in users leads-to u = eating)



Service DistLockService(ADDR) - 2

m v[jl.acq()
m ic {eating # mytid}
add mytid to users

m oc {eating = null3l
eating <« mytid

m input v[jl.rel()
m ic {eating = mytid and
mytid in users;l // caller acquired lock at j
remove mytid from users ;
m oc {true}



Inverse of distributed lock service

m DistlLockServicelInverse(ADDR, v)

= main: cee ¥

= output doAcq(j) mpu%%faeq@
steoc (...} ... vj.acq()
wmoeic{...]

s output doRel(j) fFr[frU{'—Vj—Fe:H—)

mtcoc{...} ... vj.re1()
moeic{...}

= atomicity assumption: ...

m progress assumption condition {...]



Some naive implementations over fifo channel

m Centralized solution

= fixed access system, say vq controls lock
= acq and rel calls send msgs to v
m Vg serves acg-call msgs in fifo order

m Token-circulating solution
= “token” msg cycles through access systems
= when an access system gets token
= if local hungry user
return an acq call; wait for rel call
= forward token to next access system

m ldeal solution

= request disturbs only non-thinking access systems
= distributed path-reversal solution // chapter 16



