Distributed Solutions using Timestamps

Shankar

April 25, 2014

Event ordering in a distributed system

o o o sysn

(fifo channel)

m Let x and y be two statement executions (aka events)

m Define x causally precedes y if
= x and y happened in that order in the same system, or
= x sent a message that y received, or
= transitive closure of above

m Causal precedence is a partial order

» if x and y not causally related, no system can determine which
happened first (without other interaction or real-time clocks)

m Timestamp mechanism extends partial order to total order
for a specified set of events

Outline

Timestamp mechanism

Distributed ordering of conflicting requests
Distributed lock program: algorithm level
Distributed lock program: overview

Cyclic timestamps

Timestamp mechanism without acks ts mechanism

m Each system j has
= integer “clock” clk, initially 0

m When j does an event x to be ordered:
= increment clk, broadcast [x, clk, j]

m clk value: timestamp (ts) of x
m [clk value, id]: extended timestamp (ets) of x

m When | receives msg [y, t, k|:
w clk < max(t, clk) +1

m x.ets<y.ets: (xts<y.ts) or (x.ts=y.ts and x.id < y.id)

m Event x ordered before event y if x.ets < y.ets

m For most applications, need acks to timestamps

Timestamp mechanism (with acks) -

m Each system j has

= integer clock clk, initially 0
m rtse, k # J, initially 0 // last ts rcvd from k

m let aRts: min([rtsy, k] : k # J) // no new ets < aRts

m When j does an event x to be ordered:
= increment clk, broadcast [x, clk, j]

m When | receives msg [y, t, k|:

n clk < max(t, clk) +1
w rts, < t, send [ack, c/k, j] to k

m When j receives msg [ack, t, k]:
w clk < max(t, clk), rts, «t

Properties ts mechanism

m Define auxiliary quantities
w hst: seq of all ets’s in ets-order // initially [[0,0]]
w j.hst: seq of ets’s seen by j in ets-order // initially [[0, 0]]
w j.ahst: prefix of j.hst of ets's < j.aRts

m Safety properties
» Inv j.hst subsequence-of hst

w Inv j.ahst prefix-of hst

m Progress properties (assuming no system stops rcving)

w j.aRts = z < hst.last leads-to j.aRts > z

w j.ahst.size = z < hst.size leads-to j.chst.size > z

Outline

Timestamp mechanism

Distributed ordering of conflicting requests
Distributed lock program: algorithm level
Distributed lock program: overview

Cyclic timestamps

Request ordering problem request ordering

m Collection of systems attached to a fifo channel
m Users issue conflictable requests to the systems

m Each system should serve its requests so that conflicting requests
are not served simultaneously (even by different systems)

m Some special cases of the problem
= distributed lock
= every two requests conflict

m distributed readers-writers lock

= classify requests into reads and writes
= write conflicts with every other request

Solution overview request ordering

m System j augments the ts mechanism as follows

m Maintain variable req: set of “ongoing” req-ets tuples
m Upon local request x: assign ts, add [x,ts, j] to req
m Upon rcving Ly, t,k]: process ts, add [y,t,k] to req

m Serve [x,t, j] in req when:

s [t,j] < aRts and
» [t,j1 < Lu,k] for every conflicting Ly,u,k] in req

m After serving [x,t, jl: remove it from req, bcast [REL,x,t, j]

m Upon rcving [REL,y,t,k]1: remove Ly, t,k1 from req

Solution: variables and messages request ordering

m System j variables

= c1k: initially 0 // clock
= rtsy: initially 0 // highest ts rcvd from k
aRts: min(rts,, k1: k # j) // min ets induced by rts
= req: initially empty // set of outstanding requests-ets

m Messages
= [REQ,x,t,k] // request msg
» [ACK,t,k] // ack msg

= [REL,X,t,k] // release msg

Solution: system j rules - 1 request ordering

m User isues request x
m Clk++
= send [REQ,x,clk, j] to every system
= add [x,clk, j] to req

m Receive [REQ,X,t,k]:
» clk «+ max(clk, t+1)
m rtsfk]l «+ t
= send [ACK,c1k,j] to k // omit if ets > [t,k] already sent to k
= add [x,t,k] to req

m Start serving request [x,t,j] in req when

m[t,j] < oRts
 for every Ly,s,k] in req st x conflicts with y: [t,j] < [s,k]

Solution: system j rules — 2 request ordering

m Finish serving request [x,t, j1:
= remove [x,t,j] from req;
» send [REL,x,t,j] to every other system.

m Receive [ACK,t,k]1:
m C1k < max(clk, t); rtsfk]l <« t

m Receive [REL,X,t,k]:
= remove [x,t,k] from req

m atomicity assumption: rules are atomic

m progress assumption: weak fairness

Outline

Timestamp mechanism

Distributed ordering of conflicting requests
Distributed lock program: algorithm level
Distributed lock program: overview

Cyclic timestamps

Distributed lock: algorithm level dist lock: alg-level

m Distributed program that implements a distributed lock
m Collection of systems attached to a fifo channel
m Specialize the request-ordering solution for a lock

m At most one ongoing request per system

= so each system is thinking, hungry, or eating
= no need for ts in release msg

m Later, refine to await program implementing dist lock service

Solution: variables, functions, messages dist lock: alg-level

m System j variables

= clk, {rtsy} // as in req-ordering
= req « [] // map indexed by address
// entry [j,t] <> ets [t, j]

m System j functions

= oRts // min ets in {rtsy}

= aReq: min(Lreqlkl, k1: k in req.keys) // min ets in req
m Messages

= [REQ,t,k], [ACK,t,k1, [REL,k] // as in reg-ordering

// note: no “x" field

Solution: system j rules - 1 dist lock: alg-level

m Become hungry only if thinking

m Clk++
= send [REQ,cTk, j1 to every system
m reqljl < clk

m Become eating only if hungry and [reqj, j] = aReq < aRts
m Become thinking only if eating:

= remove entry for j from req
= send [REL, j1 to every system

Solution: system j rules — 2 _

m Receive [REQ,t,k]:

m clk < max(clk, t+1)
m rtsfk] <« t
= reqlk] < t
» send [ACK,cTk, j] to k

m Receive [ACK,t,k]:
m c1k < max(clk, t); rtsfk]l «+ t

m Receive [REL,k]:
= remove entry for k from req

m atomicity assumption: rules are atomic

m progress assumption: weak fairness

Analysis: safety _

Goal: Inv at most one system is eating

m Inv A;-A, holds, where

Ay o ((Lj,s] in k.req) and j 2 k) =
(Lj,s] in j.req) or ([REL,j] in transit to k)

A, (j eating) = [j.reqljl, j1 = j.aReq < j.aRts
Az ((J eating) and (k eating)) = j =k

Az o ((J hungry) and [j.reqljl, j1 = j.aReq < j.aRts)
= (no one eating)

m Inv Az implies desired property

Analysis: progress dist lock: alg-level

Goal: (wfair, bounded eating, ongoing rx, channel progress)
= J hungry leads-to j eating

m Define
= hst: seq of all ets’s in ets-order // initially [[0,01]
= Ne: # requests that have finished eating

m Proof
m if [j,s]isin j.req, eventually [s,jl < j.aRts holds
= after this point

= [J,s's index in hst is fixed, at say n
= entries in hst[ne+1..n] eat in order

[entry Ne's release msg is incoming to entry ne+l's system.
when it arrives, the latter eventually becomes eating]

Outline

Timestamp mechanism

Distributed ordering of conflicting requests
Distributed lock program: algorithm level
Distributed lock program: overview

Cyclic timestamps

Distributed lock: await-based dist lock: await program

m Distributed program: implements distributed lock service

= starts a fifo channel
= starts a LockTs system at each address

m LockTs: await program, refines algorithm-level system
= input functions acq and rel // called by lock users
= output calls to tx and rx of channel access system
= one local thread to execute rx
= multiple acq calls can be ongoing
but only one participates in ts mechanism

Program LockTsDist

m program LockTsDist(ADDR)
{cj} ¢ start(FifoChannel(ADDR))
for j in ADDR
Vj < start(LockTs(ADDR, j, c5))
return {v;}

Program LockTs (ADDR, j, Cj) -1 _

m Main

mClk < 0

m rtsy <0, k in ADDR—{j}3
m 'eq

» startThread (doRx())

m input mysid.acq()
= await (not (J in req.keys) // al
s Clk++; reqj < clk
= for k in ADDR—{j}
cj.tx(k, [REQ, c1k, j1)
= await ([reqj,j] < aReq and // a2

(ADDR.size=1 or [reqj,j] < aRts))
m return

Program LockTs (ADDR, j, CJ') - 2

m input mysid.rel()
= await (true)

= req.remove(j)
» for k in ADDR—{j3
cj.tx(k,[REL,j])

m function doRx() // executed by a local thread
while true

m msg < C;.rx()
ia {msg is [REQ, t, k1, [ACK, t, k1, or [REL,k13}
= await true
do appropriate rx-msg action

m atomicity assumption {awaits}
m progress assumption {wfair threads, sfair await al3

Analysis dist lock: await program

m Map alg-level state to await-program state

alg-level await-program

jhungry <« thread in j.acq.a?

j eating < [3j,.1in j.req, no thread in j.acq.a2
j thinking < no[j,.1in j.req

m Show that alg-level properties are preserved ()

m Prove: LockTsDist(ADDR) implements DistLockService(ADDR)
define program of implementation and service inverse

= identify effective atomicity breakpoints

= obtain assertions

prove program satisfies assertions // easy given x

Outline

Timestamp mechanism

Distributed ordering of conflicting requests
Distributed lock program: algorithm level
Distributed lock program: overview

Cyclic timestamps

Using cyclic timestamps cyclic timestamps

m Goal: cyclic timestamps in the distributed lock solution
m Easily achieved by modifying solution slightly

m Existing solution: request [t, j1 eats when
1. [t,j] = j.aReq
2. [t,j1 < j.oRts

m Impose additional requirement:
3. j eats only after rcving ack from every system

m Resulting simplification
= ack’s ts always higher than request’s ts

= so no need for ack’s ts
= no need for {rts; }

= sufficient to track # acks rcvd
= no need for ack’s sender id

Solution: variables, functions, messages -

m System j variables

= clk, {rEsg), req

= Na // #F acks due

m System j functions
m eRts-, aReq

m Messages
» [REQ,t,k]1, [ACK, t5k3, [REL,k]

Solution: system j rules - 1 cyclic timestamps

m Become hungry only if thinking
m Clk++
m reqljl < clk
= send [REQ,cTk, j1 to every system
mna <0

m Become eating only if hungry and
[req;, j] = aReq and na = ADDR.size -1

m Become thinking only if eating:

= remove entry for j from req
= send [REL, j1 to every system

Solution: system j rules — 2 -

m Receive [REQ,t,kI:

m c1k < max(clk, t+1)
s reqlk] < t
m send [ACK] to k

m Receive [ACKI:
m Na++

m Receive [REL,kI:
= remove entry for k from req

m atomicity assumption: rules are atomic

m progress assumption: weak fairness

Analysis: conventions cyclic timestamps

m Abbreviations for readability:
- ﬁj.ts to mean hst[j1[0]
s N to mean ADDR.size

m Define
= hst: seq of all ets’s, initially [[0,01] // as before
= ne: # releases globally, initially 0 /1 as before
= j.ne: # releases seen by j // may lag ne
= tse: ts of last request to release // ﬁm.ts

= j.tse: ts of last request released at j // h_stj_ne.ts

Analysis: overview cyclic timestamps

m Prove: any tsin transit is in tse..tse+2N
m Prove: j.tseisin tse—2N..tse
m Hence: any tsin transitis in j.tse.. j.tse + 4N

m Hence can use modulo-M ts, for M > 4N

m Modify system j to use cyclic ts
= add variable tse, initially 0
= when a request msg is sent, set its ts to mod(clk, M)
= when a request msg [REQ, ct, j] is rcvd,
treat ct as unbounded ts tse + mod(ct-tse, M)
= when [k,t] is removed from req, set tseto t

Analysis: bound ts wrt tse cyclic timestamps

m Following are invariant
G @ (IREQ,t,J] rcvable) = hstag.ts < t < hst.last.ts

G, : forsome(x in hst: x.ts < i.clk < x.ts+1)
Cs: hstp.ts < hstpyp.ts < hstp.ts+2

Cy - ([REQ,t, 3] rcvable) =
hstpg.ts < t < hstpg.ts + 2xADDR.size

m Inv C;: [REQ,t, j1 in transit implies req [t, j1 hungry
m Inv G,: G satisfies invariance rule

m Inv G: G satisfies invariance rule assuming Inv G,
m Inv G4 follows from Inv G, G

Analysis: bound ts wrt j.tse cyclic timestamps

m Following are invariant
Cs : (4 REL msgs incoming to j) < ADDR.size
Ce - ne — j.ne = (# REL msgs incoming to j)
C7 @ hstgg.ts — 2xADDR.size < hst; < hstgg.ts

j.ne
Cs : ([REQ,t,Jj] rcvable at i) =
hstj.ne.ts < t < hsty e.ts+4xADDR.size

m Inv Gs: [t,k] is acked only after k's previous REL msgs are rcvd
m Inv Gs: G satisfies invariance rule

m Inv G;: G implied by G, G, G

m Inv Gg: Gg implied by G, G4

	Timestamp mechanism
	Distributed ordering of conflicting requests
	Distributed lock program: algorithm level
	Distributed lock program: overview
	Cyclic timestamps

