Distributed Solutions using Timestamps

Shankar

April 25, 2014

Event ordering in a distributed system

Let x and y be two statement executions (aka events)

Define x causally precedes y if

- x and y happened in that order in the same system, or
- x sent a message that y received, or
- transitive closure of above
- Causal precedence is a partial order
 - if x and y not causally related, no system can determine which happened first (without other interaction or real-time clocks)
- Timestamp mechanism extends partial order to total order for a specified set of events

Outline

Timestamp mechanism Distributed ordering of conflicting requests Distributed lock program: algorithm level Distributed lock program: overview Cyclic timestamps

- Each system j has
 - integer "clock" clk, initially 0
- When j does an event x to be ordered:
 - increment clk, broadcast [x, clk, j]

■ *clk value*: timestamp (ts) of *x*

[clk value, id]: extended timestamp (ets) of x

When j receives msg
$$[y, t, k]$$
:
clk $\leftarrow \max(t, clk) + 1$

x.ets < y.ets: (x.ts < y.ts) or (x.ts = y.ts and x.id < y.id)
Event x ordered before event y if x.ets < y.ets

For most applications, need acks to timestamps

- Each system j has
 - integer clock *clk*, initially 0
 - rts_k , $k \neq j$, initially 0

// last ts rcvd from k

■ let αRts : min([rts_k, k] : $k \neq j$) // no new ets < αRts

- When *j* does an event *x* to be ordered:
 - increment clk, broadcast [x, clk, j]
- When j receives msg [y, t, k]:
 - $clk \leftarrow max(t, clk) + 1$
 - $rts_k \leftarrow t$, send [ack, clk, j] to k
- When *j* receives msg [ack, *t*, *k*]:
 - $clk \leftarrow max(t, clk), rts_k \leftarrow t$

Properties

- Define auxiliary quantities
 - *hst*: seq of all ets's in ets-order
 - *j*.*hst*: seq of ets's seen by *j* in ets-order // initially [[0,0]]
 - $j.\alpha \overline{hst}$: prefix of $j.\overline{hst}$ of ets's $\leq j.\alpha Rts$

Safety properties

- $Inv j.\overline{hst}$ subsequence-of \overline{hst}
- $Inv j.\alpha \overline{hst}$ prefix-of \overline{hst}

Progress properties (assuming no system stops rcving)

• $j.\alpha Rts = z < \overline{hst}.last$ leads-to $j.\alpha Rts > z$

• $j.\alpha \overline{hst}.size = z < \overline{hst}.size$ leads-to $j.\alpha \overline{hst}.size > z$

// initially [[0,0]]// initially [[0,0]]

Outline

Timestamp mechanism Distributed ordering of conflicting requests Distributed lock program: algorithm level Distributed lock program: overview Cyclic timestamps

- Collection of systems attached to a fifo channel
- Users issue conflictable requests to the systems
- Each system should serve its requests so that conflicting requests are not served simultaneously (even by different systems)
- Some special cases of the problem
 - distributed lock
 - every two requests conflict
 - distributed readers-writers lock
 - classify requests into reads and writes
 - write conflicts with every other request

- System j augments the ts mechanism as follows
- Maintain variable req: set of "ongoing" req-ets tuples
- Upon local request x: assign ts, add [x,ts,j] to req
- Upon reving [y,t,k]: process ts, add [y,t,k] to req
- Serve [x,t,j] in req when:
 - [t,j] < α Rts and
 - [t,j] < [u,k] for every conflicting [y,u,k] in req</pre>
- After serving [x,t,j]: remove it from req, bcast [REL,x,t,j]
- Upon rcving [REL,y,t,k]: remove [y,t,k] from req

- System j variables
 - clk: initially 0
 - rts_k: initially 0 αRts: min(rts_k, k]: k ≠ j)
 - req: initially empty

// clock // highest ts rcvd from k // min ets induced by rts // set of outstanding requests-ets

- Messages
 - EREQ,x,t,k]
 - [ACK,t,k]
 - [REL,x,t,k]

// request msg
 // ack msg
 // release msg

- User isues request x
 - clk++
 - send [REQ,x,clk,j] to every system
 - add [x,c]k,j] to req
- Receive [REQ,x,t,k]
 - $clk \leftarrow max(clk, t+1)$
 - rts[k] \leftarrow t
 - send [ACK,c1k,j] to k // omit if ets > [t,k] already sent to k
 - add [x,t,k] to req
- Start serving request [x,t,j] in req when
 - [t,j] $\leq \alpha \mathsf{Rts}$
 - for every [y,s,k] in req st x conflicts with y: [t,j] \leq [s,k]

Finish serving request [x,t,j]:

- remove [x,t,j] from req;
- send [REL,x,t,j] to every other system.
- Receive [ACK,t,k]
 - clk \leftarrow max(clk,t); rts[k] \leftarrow t
- Receive [REL,x,t,k]:
 - remove [x,t,k] from req

atomicity assumption: rules are atomic

progress assumption: weak fairness

Outline

Timestamp mechanism Distributed ordering of conflicting requests Distributed lock program: algorithm level Distributed lock program: overview Cyclic timestamps

- Distributed program that implements a distributed lock
- Collection of systems attached to a fifo channel
- Specialize the request-ordering solution for a lock
- At most one ongoing request per system
 - so each system is thinking, hungry, or eating
 - no need for ts in release msg

Later, refine to await program implementing dist lock service

Solution: variables, functions, messages

Become hungry only if thinking

- clk++
- send [REQ,c1k,j] to every system
- ∎ req[j] ← clk

Become eating only if hungry and $[\mathsf{req}_{\mathbf{j}},\mathbf{j}] = lpha\mathsf{Req} \leq lpha\mathsf{Rts}$

- Become thinking only if eating:
 - remove entry for j from req
 - send [REL, j] to every system

- Receive [REQ,t,k]
 - clk ← max(clk, t+1)
 - rts[k] \leftarrow t
 - req[k] \leftarrow t
 - send [ACK,c]k,j] to k
- Receive [ACK,t,k]:
 - clk \leftarrow max(clk,t); rts[k] \leftarrow t
- Receive [REL,k]:
 - remove entry for k from req
- atomicity assumption: rules are atomic
- progress assumption: weak fairness

Goal: Inv at most one system is eating

Inv $A_1 - A_4$ holds, where

 A_1 : (([j,s] in k.req) and $j \neq k$) \Rightarrow ([j,s] in j.req) or ([REL,j] in transit to k)

 A_2 : (j eating) \Rightarrow [j.req[j], j] = j. α Req \leq j. α Rts

 A_3 : ((j eating) and (k eating)) \Rightarrow j = k

 A_4 : ((j hungry) and [j.req[j], j] = j. α Req \leq j. α Rts) \Rightarrow (no one eating)

■ *Inv* A₃ implies desired property

Analysis: progress

Goal: (wfair, bounded eating, ongoing rx, channel progress) \Rightarrow j hungry *leads-to* j eating

- Define
 - hst: seq of all ets's in ets-order

// initially [[0,0]]

ne: # requests that have finished eating

Proof

- if [j,s] is in j.req, eventually [s,j] \leq j. α Rts holds
- after this point
 - [j,s]'s index in hst is fixed, at say n
 - entries in hst[ne+1..n] eat in order

[entry \overline{ne} 's release msg is incoming to entry $\overline{ne+1}$'s system. when it arrives, the latter eventually becomes eating] Timestamp mechanism Distributed ordering of conflicting requests Distributed lock program: algorithm level Distributed lock program: overview Cyclic timestamps Distributed program: implements distributed lock service

- starts a fifo channel
- starts a LockTs system at each address

LockTs: await program, refines algorithm-level system

- input functions acq and re1 // called by lock users
- output calls to tx and rx of channel access system
- one local thread to execute rx
- multiple acq calls can be ongoing but only one participates in ts mechanism

```
program LockTsDist(ADDR)
    {c<sub>j</sub>} ← start(FifoChannel(ADDR))
    for j in ADDR
        v<sub>j</sub> ← start(LockTs(ADDR, j, c<sub>j</sub>))
    return {v<sub>j</sub>}
```

Program LockTs (ADDR, j, c_j) – 1

Main

- clk \leftarrow 0
- $rts_k \leftarrow 0$, k in ADDR-{j}}

req

- startThread(doRx())
- input mysid.acq()

```
• await (not (j in req.keys) // a1

• clk++; req_j \leftarrow clk

• for k in ADDR-{j}

c_j.tx(k, [REQ, clk, j])

• await ([req_j, j] \le \alpha Req and // a2

(ADDR.size=1 or [req_j, j] \le \alpha Rts))

• return
```

Program LockTs (ADDR, j, c_i) - 2

- input mysid.rel()
 - await (true)
 - req.remove(j)
 - for k in ADDR-{j}
 cj.tx(k,[REL,j])
- function doRx()
 while true

 $//\ensuremath{\left/\right.}$ executed by a local thread

• msg \leftarrow c_j.rx() ia {msg is [REQ, t, k], [ACK, t, k], or [REL,k]}

await true

do appropriate rx-msg action

- atomicity assumption {awaits}
- progress assumption {wfair threads, sfair await a1}

Map alg-level state to await-program state

alg-level		await-program
j hungry	\leftrightarrow	thread in j.acq.a2
j eating	\leftrightarrow	[j,.] in j.req, no thread in j.acq.a2
j thinking	\leftrightarrow	no[j,.] in j.req

■ Show that alg-level properties are preserved (★)

- Prove: LockTsDist(ADDR) implements DistLockService(ADDR)
 - define program of implementation and service inverse
 - identify effective atomicity breakpoints
 - obtain assertions
 - prove program satisfies assertions

// easy given ★

Outline

Timestamp mechanism Distributed ordering of conflicting requests Distributed lock program: algorithm level Distributed lock program: overview Cyclic timestamps

Using cyclic timestamps

- Goal: cyclic timestamps in the distributed lock solution
- Easily achieved by modifying solution slightly
- Existing solution: request [t,j] eats when
 1. [t,j] = j.αReq
 2. [t,j] ≤ j.αRts
- Impose additional requirement:
 - 3. j eats only after rcving ack from every system
- Resulting simplification
 - ack's ts always higher than request's ts
 - so no need for ack's ts
 - no need for {rtsk}
 - sufficient to track # acks rcvd
 - no need for ack's sender id

Solution: variables, functions, messages

cyclic timestamps

- System j variables
 - ∎ clk, {rts_k}, req
 - na // # acks due
- System j functions
 - αRts , αReq
- Messages
 - [REQ,t,k], [ACK,t,k], [REL,k]

Become hungry only if thinking

- clk++
- req[j] \leftarrow clk
- send [REQ,c1k,j] to every system

```
∎ na ← 0
```

```
Become eating only if hungry and

[req_j, j] = \alpha Req and na = ADDR.size - 1
```

- Become thinking only if eating:
 - remove entry for j from req
 - send [REL, j] to every system

- Receive [REQ,t,k]
 - $clk \leftarrow max(clk, t+1)$
 - req[k] \leftarrow t
 - send [ACK] to k
- Receive [ACK]:
- Receive [REL,k]:
 - remove entry for k from req
- atomicity assumption: rules are atomic
- progress assumption: weak fairness

Analysis: conventions

Abbreviations for readability:

- hstj.ts to mean hst[j][0]
- N to mean ADDR.size

Define

- hst: seq of all ets's, initially [[0,0]]
- ne: # releases globally, initially 0
- j.ne: # releases seen by j
- tse: ts of last request to release
- j.tse: ts of last request released at j

// as before
// as before
// may lag ne
// hstne.ts
// hstj.ne.ts

- Prove: any ts in transit is in tse.. tse + 2N
- Prove: j.tse is in $\overline{\text{tse}} 2N..\overline{\text{tse}}$
- Hence: any ts in transit is in j.tse..j.tse + 4N
- Hence can use modulo-M ts, for M \geq 4N
- Modify system j to use cyclic ts
 - add variable tse, initially 0
 - when a request msg is sent, set its to mod(clk, M)
 - when a request msg [REQ, ct, j] is rcvd, treat ct as unbounded ts tse + mod(ct-tse, M)
 - when [k,t] is removed from req, set tse to t

Following are invariant

 C_1 : ([REQ,t,j] rcvable) $\Rightarrow \overline{\text{hst}}_{\overline{\text{ne}}}$.ts $\leq t \leq \overline{\text{hst}}$.last.ts

 C_2 : forsome(x in hst: x.ts \leq i.clk \leq x.ts+1)

$$C_3$$
: $\overline{hstp.ts} \le \overline{hst}_{p+1}.ts \le \overline{hstp.ts}+2$

$$\begin{array}{ll} C_4: ([REQ,t,j] \mbox{ rcvable}) & \Rightarrow \\ & \overline{\mbox{hst}}_{\overline{\mbox{ne}}}.\mbox{ts} \leq \mbox{t} \leq & \overline{\mbox{hst}}_{\overline{\mbox{ne}}}.\mbox{ts} + 2 \times \mbox{ADDR.size} \end{array}$$

- Inv C₁: [REQ,t,j] in transit implies req [t,j] hungry
- Inv C₂: C₂ satisfies invariance rule
- Inv C_3 : C_3 satisfies invariance rule assuming $Inv C_2$
- Inv C_4 : follows from Inv C_1 , C_3

Following are invariant

- C_5 : (# REL msgs incoming to j) < ADDR.size
- C_6 : $\overline{\text{ne}}$ j.ne = (# REL msgs incoming to j)
- Inv C_5 : [t,k] is acked only after k's previous REL msgs are rcvd
- Inv C_6 : C_6 satisfies invariance rule
- Inv C_7 : C_7 implied by C_6 , C_5 , C_3
- Inv C_8 : C_8 implied by C_7 , C_4