
Distributed Solutions using Timestamps

Shankar

April 25, 2014

Event ordering in a distributed system

fifo channel

sys 1 sys n

Let x and y be two statement executions (aka events)

De�ne x causally precedes y if

x and y happened in that order in the same system, or
x sent a message that y received, or
transitive closure of above

Causal precedence is a partial order

if x and y not causally related, no system can determine which
happened �rst (without other interaction or real-time clocks)

Timestamp mechanism extends partial order to total order
for a speci�ed set of events

Outline ts mechanism

Timestamp mechanism

Distributed ordering of con�icting requests

Distributed lock program: algorithm level

Distributed lock program: overview

Cyclic timestamps

Timestamp mechanism without acks ts mechanism

Each system j has

integer �clock� clk , initially 0

When j does an event x to be ordered:

increment clk , broadcast [x , clk , j]

clk value: timestamp (ts) of x

[clk value, id]: extended timestamp (ets) of x

When j receives msg [y , t, k]:

clk ← max(t, clk) + 1

x .ets< y .ets: (x .ts< y .ts) or (x .ts= y .ts and x .id< y .id)

Event x ordered before event y if x .ets < y .ets

For most applications, need acks to timestamps

Timestamp mechanism (with acks) ts mechanism

Each system j has

integer clock clk , initially 0
rtsk , k 6= j , initially 0 // last ts rcvd from k

let αRts: min([rtsk , k] : k 6= j) // no new ets < αRts

When j does an event x to be ordered:

increment clk , broadcast [x , clk , j]

When j receives msg [y , t, k]:

clk ← max(t, clk) + 1
rtsk ← t, send [ack, clk , j] to k

When j receives msg [ack, t, k]:

clk ← max(t, clk), rtsk ← t

Properties ts mechanism

De�ne auxiliary quantities

hst: seq of all ets's in ets-order // initially [[0, 0]]

j .hst: seq of ets's seen by j in ets-order // initially [[0, 0]]

j .αhst: pre�x of j .hst of ets's ≤ j .αRts

Safety properties

Inv j .hst subsequence-of hst

Inv j .αhst pre�x-of hst

Progress properties (assuming no system stops rcving)

j .αRts = z < hst.last leads-to j .αRts > z

j .αhst.size = z < hst.size leads-to j .αhst.size > z

Outline request ordering

Timestamp mechanism

Distributed ordering of con�icting requests

Distributed lock program: algorithm level

Distributed lock program: overview

Cyclic timestamps

Request ordering problem request ordering

Collection of systems attached to a �fo channel

Users issue con�ictable requests to the systems

Each system should serve its requests so that con�icting requests
are not served simultaneously (even by di�erent systems)

Some special cases of the problem

distributed lock

every two requests con�ict

distributed readers-writers lock

classify requests into reads and writes
write con�icts with every other request

Solution overview request ordering

System j augments the ts mechanism as follows

Maintain variable req: set of �ongoing� req-ets tuples

Upon local request x: assign ts, add [x,ts,j] to req

Upon rcving [y,t,k]: process ts, add [y,t,k] to req

Serve [x,t,j] in req when:

[t,j] < αRts and
[t,j] < [u,k] for every con�icting [y,u,k] in req

After serving [x,t,j]: remove it from req, bcast [REL,x,t,j]

Upon rcving [REL,y,t,k]: remove [y,t,k] from req

Solution: variables and messages request ordering

System j variables

clk: initially 0 // clock

rtsk: initially 0 // highest ts rcvd from k
αRts: min(rtsk, k]: k 6= j) // min ets induced by rts

req: initially empty // set of outstanding requests-ets

Messages

[REQ,x,t,k] // request msg
[ACK,t,k] // ack msg
[REL,x,t,k] // release msg

Solution: system j rules � 1 request ordering

User isues request x
clk + +
send [REQ,x,clk,j] to every system
add [x,clk,j] to req

Receive [REQ,x,t,k]:
clk ← max(clk, t+1)
rts[k] ← t
send [ACK,clk,j] to k // omit if ets > [t,k] already sent to k
add [x,t,k] to req

Start serving request [x,t,j] in req when

[t,j] ≤ αRts
for every [y,s,k] in req st x con�icts with y: [t,j] ≤ [s,k]

Solution: system j rules � 2 request ordering

Finish serving request [x,t,j]:
remove [x,t,j] from req;
send [REL,x,t,j] to every other system.

Receive [ACK,t,k]:
clk ← max(clk, t); rts[k] ← t

Receive [REL,x,t,k]:
remove [x,t,k] from req

atomicity assumption: rules are atomic

progress assumption: weak fairness

Outline dist lock: alg-level

Timestamp mechanism

Distributed ordering of con�icting requests

Distributed lock program: algorithm level

Distributed lock program: overview

Cyclic timestamps

Distributed lock: algorithm level dist lock: alg-level

Distributed program that implements a distributed lock

Collection of systems attached to a �fo channel

Specialize the request-ordering solution for a lock

At most one ongoing request per system

so each system is thinking, hungry, or eating
no need for ts in release msg

Later, re�ne to await program implementing dist lock service

Solution: variables, functions, messages dist lock: alg-level

System j variables

clk, {rtsk} // as in req-ordering
req ← [] // map indexed by address

// entry [j,t] ↔ ets [t,j]

System j functions

αRts // min ets in {rtsk}
αReq: min([req[k], k]: k in req.keys) // min ets in req

Messages

[REQ,t,k], [ACK,t,k], [REL,k] // as in req-ordering
// note: no �x� �eld

Solution: system j rules � 1 dist lock: alg-level

Become hungry only if thinking

clk + +
send [REQ,clk,j] to every system
req[j] ← clk

Become eating only if hungry and [reqj, j] = αReq ≤ αRts

Become thinking only if eating:

remove entry for j from req
send [REL,j] to every system

Solution: system j rules � 2 dist lock: alg-level

Receive [REQ,t,k]:
clk ← max(clk, t+1)
rts[k] ← t
req[k] ← t
send [ACK,clk,j] to k

Receive [ACK,t,k]:
clk ← max(clk, t); rts[k] ← t

Receive [REL,k]:
remove entry for k from req

atomicity assumption: rules are atomic

progress assumption: weak fairness

Analysis: safety dist lock: alg-level

Goal: Inv at most one system is eating

Inv A1�A4 holds, where

A1 : (([j,s] in k.req) and j 6= k) ⇒
([j,s] in j.req) or ([REL,j] in transit to k)

A2 : (j eating) ⇒ [j.req[j], j] = j.αReq ≤ j.αRts

A3 : ((j eating) and (k eating)) ⇒ j = k

A4 : ((j hungry) and [j.req[j], j] = j.αReq ≤ j.αRts)
⇒ (no one eating)

Inv A3 implies desired property

Analysis: progress dist lock: alg-level

Goal: (wfair, bounded eating, ongoing rx, channel progress)
⇒ j hungry leads-to j eating

De�ne

hst: seq of all ets's in ets-order // initially [[0,0]]

ne: # requests that have �nished eating

Proof

if [j,s] is in j.req, eventually [s,j] ≤ j.αRts holds
after this point

[j,s]'s index in hst is �xed, at say n
entries in hst[ne + 1..n] eat in order

[entry ne's release msg is incoming to entry ne+1's system.
when it arrives, the latter eventually becomes eating]

Outline dist lock: await program

Timestamp mechanism

Distributed ordering of con�icting requests

Distributed lock program: algorithm level

Distributed lock program: overview

Cyclic timestamps

Distributed lock: await-based dist lock: await program

Distributed program: implements distributed lock service

starts a �fo channel
starts a LockTs system at each address

LockTs: await program, re�nes algorithm-level system

input functions acq and rel // called by lock users
output calls to tx and rx of channel access system
one local thread to execute rx
multiple acq calls can be ongoing
but only one participates in ts mechanism

Program LockTsDist dist lock: await program

program LockTsDist(ADDR)

{cj} ← start(FifoChannel(ADDR))

for j in ADDR

vj ← start(LockTs(ADDR, j, cj))

return {vj}

Program LockTs (ADDR, j, cj) � 1 dist lock: await program

Main

clk ← 0
rtsk ← 0, k in ADDR−{j}}
req
startThread (doRx())

input mysid.acq()

await (not (j in req.keys) // a1

clk + + ; reqj ← clk
for k in ADDR−{j}
cj.tx(k, [REQ, clk, j])

await ([reqj, j] ≤ αReq and // a2

(ADDR.size= 1 or [reqj, j] ≤ αRts))
return

Program LockTs (ADDR, j, cj) � 2 dist lock: await program

input mysid.rel()
await (true)
req.remove(j)
for k in ADDR−{j}
cj.tx(k, [REL, j])

function doRx() // executed by a local thread
while true
msg ← cj.rx()
ia {msg is [REQ, t, k], [ACK, t, k], or [REL,k]}
await true
do appropriate rx-msg action

atomicity assumption {awaits}

progress assumption {wfair threads, sfair await a1}

Analysis dist lock: await program

Map alg-level state to await-program state

alg-level await-program
j hungry ↔ thread in j.acq.a2
j eating ↔ [j,.] in j.req, no thread in j.acq.a2
j thinking ↔ no [j,.] in j.req

Show that alg-level properties are preserved (?)

Prove: LockTsDist(ADDR) implements DistLockService(ADDR)
de�ne program of implementation and service inverse
identify e�ective atomicity breakpoints
obtain assertions
prove program satis�es assertions // easy given ?

Outline cyclic timestamps

Timestamp mechanism

Distributed ordering of con�icting requests

Distributed lock program: algorithm level

Distributed lock program: overview

Cyclic timestamps

Using cyclic timestamps cyclic timestamps

Goal: cyclic timestamps in the distributed lock solution

Easily achieved by modifying solution slightly

Existing solution: request [t,j] eats when
1. [t,j] = j.αReq
2. [t,j] ≤ j.αRts

Impose additional requirement:
3. j eats only after rcving ack from every system

Resulting simpli�cation

ack's ts always higher than request's ts

so no need for ack's ts
no need for {rtsk}

su�cient to track # acks rcvd

no need for ack's sender id

Solution: variables, functions, messages cyclic timestamps

System j variables

clk, {rtsk}, req

na // # acks due

System j functions

αRts , αReq

Messages

[REQ,t,k], [ACK, t,k], [REL,k]

Solution: system j rules � 1 cyclic timestamps

Become hungry only if thinking

clk + +
req[j] ← clk
send [REQ,clk,j] to every system
na ← 0

Become eating only if hungry and
[reqj, j] = αReq and na = ADDR.size − 1

Become thinking only if eating:

remove entry for j from req
send [REL,j] to every system

Solution: system j rules � 2 cyclic timestamps

Receive [REQ,t,k]:
clk ← max(clk, t+1)
req[k] ← t
send [ACK] to k

Receive [ACK]:
na + +

Receive [REL,k]:
remove entry for k from req

atomicity assumption: rules are atomic

progress assumption: weak fairness

Analysis: conventions cyclic timestamps

Abbreviations for readability:

hstj.ts to mean hst[j][0]

N to mean ADDR.size

De�ne

hst: seq of all ets's, initially [[0,0]] // as before

ne: # releases globally, initially 0 // as before

j.ne: # releases seen by j // may lag ne

tse: ts of last request to release // hstne.ts

j.tse: ts of last request released at j // hstj.ne.ts

Analysis: overview cyclic timestamps

Prove: any ts in transit is in tse .. tse + 2 N

Prove: j.tse is in tse− 2 N.. tse

Hence: any ts in transit is in j.tse .. j.tse + 4 N

Hence can use modulo-M ts, for M ≥ 4 N

Modify system j to use cyclic ts

add variable tse, initially 0
when a request msg is sent, set its ts to mod(clk, M)
when a request msg [REQ, ct, j] is rcvd,
treat ct as unbounded ts tse + mod(ct−tse, M)
when [k,t] is removed from req, set tse to t

Analysis: bound ts wrt tse cyclic timestamps

Following are invariant

C1 : ([REQ,t,j] rcvable) ⇒ hstne.ts ≤ t ≤ hst.last.ts

C2 : forsome(x in hst: x.ts ≤ i.clk ≤ x.ts + 1)

C3 : hstp.ts ≤ hstp+1.ts ≤ hstp.ts + 2

C4 : ([REQ,t,j] rcvable) ⇒
hstne.ts ≤ t ≤ hstne.ts + 2×ADDR.size

Inv C1: [REQ,t,j] in transit implies req [t,j] hungry

Inv C2: C2 satis�es invariance rule

Inv C3: C3 satis�es invariance rule assuming Inv C2

Inv C4: follows from Inv C1,C3

Analysis: bound ts wrt j.tse cyclic timestamps

Following are invariant

C5 : (# REL msgs incoming to j) < ADDR.size

C6 : ne − j.ne = (# REL msgs incoming to j)

C7 : hstne.ts − 2×ADDR.size ≤ hstj.ne ≤ hstne.ts

C8 : ([REQ,t,j] rcvable at i) ⇒
hstj.ne.ts ≤ t ≤ hsti.ne.ts + 4×ADDR.size

Inv C5: [t,k] is acked only after k's previous REL msgs are rcvd

Inv C6: C6 satis�es invariance rule

Inv C7: C7 implied by C6, C5, C3

Inv C8: C8 implied by C7, C4

	Timestamp mechanism
	Distributed ordering of conflicting requests
	Distributed lock program: algorithm level
	Distributed lock program: overview
	Cyclic timestamps

