
Termination Detection for Di�using

Computations

Shankar

April 26, 2018

Overview

Di�using computation

distributed computation where each user is active or inactive

active: send/rcv msgs, become inactive
inactive: become active upon rcving a msg

starts with one active user, say a0

Alg-level program of Dijkstra-Scholten algorithm for
termination detection of di�using computation

Re�ne to await program that implements TdChannel

for case where only the sink is active initially

Outline alg-level

Termination detection: algorithm level

Termination detection: await-based program

Termination detection algorithm: overview alg-level

Distributed program TdDiffusingDist

starts a �fo channel and a system at each addr j

Maintains a distributed out-tree rooted at a0 over active users

exactly one directed path from a0 to every active user
path may go via non-leaf inactive users
no other edges, ie, no undirected cycle

Creates [j,k] when non-tree k rcvs a j-msg

Deletes [j,k] when k is a leaf and inactive

a0 detects termination when it is inactive and a leaf

User �nds out it is a leaf via acks to user msgs

Termination detection algorithm alg-level

Systems, each with a user, attached to a �fo channel

Users exchange msgs, which systems relay over �fo channel

System messages

data msg [DAT, sender addr, user msg]
ack msg [ACK]

System j vars

active: initially true for a0, o/w false

engager: initially a0 for a0, o/w null

// �up-stream� neigbor if j in the tree, o/w null

unAcked: initially 0

// # of unacked outgoing data msgs

System j rules � 1 alg-level

only if active = true:

active ← false

only if active

send [DAT,j,umsg] to k
unAcked + +

receive [DAT,k,dmsg]:

active ← true
if engager = null

engager ← k
else

send [ACK] to k

System j rules � 2 alg-level

receive [ACK]

unAcked--

Disengage

only if (not active and unAcked = 0 and engager 6= null)

if j = a0
signal termination

else
send [ACK] to engager
engager ← null

Assumptions

rules are atomic
weak fairness for disengage

Analysis auxiliary quantities alg-level

numDAT(j): # data msgs in transit outgoing from j

numACK(j): # ack msgs in transit incoming to j

termination: forall(j: not j.active and numDAT(j)= 0)

eNodes: set(j: j.engager 6= null) // engaged nodes

eEdges: bag([k.engager, k]: k 6= a0, k.engager 6= null)
// engagement edges

eGraph: [eNodes, eEdges] // engagement digraph

Assertions to be proved alg-level

Safety

A1 : Inv (a0.unAcked= 0 and not a0.active) ⇒
termination

Progress

A2 : termination leads-to

(a0.unAcked = 0 and not a0.active)

Proof of A1 alg-level

Intermediate predicates

B1 : eGraph is an out-tree rooted at a0

B2 : j.unAcked = numDAT(j) + numACK(j)
+ sum([j,k]: [j,k] in eEdges)

B3 : j.engager= []
⇒ (not j.active and j.unAcked= 0)

Inv B1�B3: B1�B3 satis�es invariance rule

B1�B3 implies A1's predicate

hence A1 holds

Proof of A2 alg-level

A2 : termination leads-to

(a0.unAcked= 0 and not a0.active)

Assume termination // all inactive, no data msgs in transit

Assume eEdges is not empty

so there is a leaf node j
j has no outgoing data msgs or incoming edges
j's incoming acks are eventually rcvd
so j.unAcked becomes 0 and stays so
so j sends an ack to its engager and leaves the tree

Eventually eEdges is empty and a0.unAcked is 0

Outline await program

Termination detection: algorithm level

Termination detection: await-based program

Termination detection program await program

Distributed program TdDiffusingDist (ADDR, a0)

// implements TdChannel for only a0 initially active

{cj} ← start FifoChannel(ADDR)

for j in ADDR
vj ← start TdDiffusing (ADDR, j, a0, cj)

return {vj}

TdDiffusing: await program, re�nes alg-level system

input fns: tx, rx, inactive, isTerminated (only at a0)
output calls: tx, rx of channel access system

Program TdDiffusing: overview await program

Parameters

ADDR, local addr j, sink addr a0, channel access system cj

Input fns (called by user)

tx(k,msg)
rx()
inactive() // indicates user inactive
isTerminated() (only at a0) // return only if termination

Local fn doRx(), executed by local thread

rcvs msg from channel, update td state

add user msg (if any) to a bu�er // user rcvs from bu�er
// it's part of user wrt td state

Program TdDiffusing � 1 await program

Main

active ← (j= a0)
engager ← if (j= a0) a0 else null
unAcked ← 0
rxq ← [] // bu�er for rcvd user msgs
startThread (doRx()) // rcvs msgs from channel

input mysid.tx(k, msg)

await (true)

unAcked + +
cj.tx(k, [DAT, j, msg])

return

Program TdDiffusing � 2 await program

input mysid.rx()

await (rxq.size > 0)

msg ← rxq[0]
rxq.remove()

return msg
// return [msg,k]

input mysid.inactive()

await (true)

if rxq= []
active ← false
if (j 6= a0 and unAcked= 0)
cj.tx(engager, [ACK]) // disengage
engager ← null

Program TdDiffusing � 3 await program

function doRx() // executed by a local thread
while true
msg ← cj.rx() // ia {msg is [DAT, k, msg], [ACK]}
await true

if msg = [DAT, k, msg]

rxq.append(msg)
active ← true
if (engager= null) engager← k
else cj.tx(k, [ACK])

else if msg = [ACK]

unAcked --
if (j 6= a0 and unAcked= 0 and not active)

cj.tx(engager, [ACK]) // disengage
engager ← null

Program TdDiffusing � 4 await program

input mysid.isTerminated()

ia {j= a0} // only at a0
await not active and unAcked= 0
return

atomicity assumption {awaits}

progress assumption {wfair threads}

Analysis: overview await program

To prove: TdDiffusingDist (ADDR, a0)
implements TdChannel (ADDR, a0, a0)

Usual steps

de�ne program of implementation {vj} and service inverse si

identify e�ective atomicity breakpoints
obtain assertions
prove program satis�es assertions // easy given ?

Assertions deal with two issues

�fo channel
termination detection

Analysis: �fo channel assertions await program

[msg,k] returned by j.rx next in �fo order from k

recall �fo channel rx has internal param sender-addr k
so augment j.rx return (and j.rxq entries) with k

Proof: si.rxhk,j ◦ (rxq k-entries) = (chan.rxhk,j data
entries)

msg in transit is eventually rcvd if j.rx ongoing

Proof: msg enters j.rxq (channel prog), then user (await
fairness)

ongoing j.tx eventually returns

Proof: j.tx is non-blocking, await fairness

Analysis: termination detection assertions await program

a0.unAcked= 0 and not a0.active implies termination

termination leads-to a0.unAcked= 0 and not a0.active

Proof: Follow from (similar) alg-level A1�A2 subject to

j.active ⇔ (si.active[j] or j.rxq 6= [])

	Termination detection: algorithm level
	Termination detection: await-based program

