
Object Transfer Service

Shankar

September 18, 2014

Overview: Object Transfer Service

Object: id and mutable value // eg, page # and contents

Service allows systems to share objects

acquire an object, change its value, release it
acquired value equals last-released value

Objects �at rest� reside with users, not service // unlike lock

object's owner: user that currently holds it
object is unowned if it currently has no owner
objects have initial owners
user can acquire an object // blocking
service can request user for an object
user releases object only when requested

Object transfer service � 1

Parameters

ADDR: set of addresses

OID: set of object ids (oids)

OVAL: possible values of an object

{initObjsj}: oids of objects with user at j

Main

objsj ← initObjsj // objects at user j

reqsj ← set() // objects requested by user j

valoid, for unowned oid // value of obj at last release

return {vj ← sid()} // access system at j

Object transfer service � 2

vj.acq(oid) // acquire object and its value

ic { no ongoing vj.acq(oid) and oid not in objsj }

output rval
oc { valoid exists and rval= valoid }

move oid from val to objsj
return rval

vj.rel(oid, oval) // release object and its value

ic { oid in objsj and in reqsj }

remove oid from objsj and from reqsj
valoid ← oval

oc { true }
return

Object transfer service � 3

vj.rxReq() // rcv request for object

ic { no ongoing vj.rxReq() }

output oid
oc { (oid not in reqsj) and

(oid in objsj or ongoing vj.acq(oid)) }

add oid to reqsj
return oid

atomicity assumption: input parts and output parts

Object transfer service: progress assumption

every rel call returns

ongoing j.rel(x,v) leads-to no ongoing j.rel(x,v)

if a user wants an object then the owner is informed,
provided the owner maintains an ongoing rxReq call

(objsj not empty leads-to ongoing j.rxReq) ⇒
(x in objsj and ongoing k.acq(x)) leads-to x in reqsj

if a user wants an object then it gets it
provided the owner rcvs a request and then releases the object

(x in objsi and ongoing k.acq(x) leads-to x in reqsi)

and (x in reqsi leads-to x not in reqsi)

⇒ (ongoing j.acq(x) leads-to no ongoing j.acq(x))

