Object Transfer using Path Reversal:
Distributed Path-Reversal Algorithm

Shankar

September 18, 2014

Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis

Path reversal: serializability analysis

Path reversal algorithm pr alg

m Systems attached to a fifo channel; obj initially at a0

m Messages
= [REQ, j1: request msg // Jis issuer (not forwarder)
= [0BJ]: object-carrying msg // ignore value for now

m System j: eating (has obj), hungry (wants obj), thinking (o/w)

m System j has a “last” pointer

= addr in the last req msg rcvd by j after last becoming hungry.
= nil if no such msg
= initially ni1 at a0, and a0 elsewhere

m System j has a “next” pointer
= nil if j thinking or not rcvd req since non-thinking
= 0/w equals addr in the first req msg rcvd since non-thinking
= initially nil

System J rules

m become hungry only if thinking:
send [REQ, j] to 1st
set Tst to nil

m rcv [OBJI:
become eating

m become thinking only if eating and nxt non-nil:

send object to nxt
set nxt to nil

m rcv [REQ,KI:
if 1st not nil
send [REQ,k] to st
set 1st to k
else set nxt and Tst to k

pr alg

/] HQ)

/] EQ)

/1 TQ)

/] R(3.k)

Conventions pr alg

m j—kis a last edge: j.1st is not nil and equals k
m j—k is a next edge: j.nxt is not nil and equals k

m j—k is a request edge: message [REQ, j1 is in transit to k

m digraph: directed multi-graph

m LNR: digraph [addresses; last/next/request edges]
m L: digraph [addresses; last edges]

m LR: digraph [addresses; last/request edges]|

m Drawing conventions

= last edges:
= next edges: - - - - -
= request edges: ---- -

Serial evolution: at most 1 hungry at a time

NN AN N L9
2/ N i/ 3 2 8 o2/ Ng27 N
I\ ; i \ }1\ i/l i 5
4 5 5 S
NN TN TN TN
initially 4 turns hungry, 2forwards 1rovs 1 turns thinking
Teating sends[REQ4]to2 [REQ4]to1 [REQ4] sends obj to 4

m L is an in-tree when no req msg in transit
m each request effects a path reversal

= j's req travels from j to root
= all nodes on path now point to j

m amortized cost of log N

4 rcvs object,
turns eating

Serial evolution: more than 1 hungry at a time pr alg

@ @ Q D !

/ S SN S

2 3 2 ' 2 3 . __N S

AN N S A

4 5 4 5 4 5 4 5 4 S

initially 3 turns hungry, 1 revs [REQ,3]. 1 frwrds [REQ,2]. 1 turns thinking

1 eating sends [REQ,3]. 2 turns hungry, 3revs [REQ,2] sends object.
sends [REQ,2] 3 turns eating

m L evolves as before, so amortized cost same

m next ptrs form queue

Non-serial evolution

0 @ @ ® @

o/ \3 %,f" \3 ?.v'ﬂ \3 ?.."'ﬂ \3 2/ 2

5 5 5 5 4 5
initially 2,4turn 2 rcvs 3turns hungry. 1 forwards
1 eating hungry [REQ,4] 1revs [REQ,3] [REQ.2).

m L may never be an in-tree

m can be several next-ptr queues
m progress’?

m amortized cost?

pr alg

3revs [REQ,2].
1 turns thinking.
3 turns eating

Does hungry j eventually eat? pr alg

m Possibilities when j's request msg dies

® / ; / / /
7 5 4 e 2 ki \
j
(a) (b) (c) (d) (e)

m Above has implicit assumptions

= L remains acyclic
= j.nxt never points to j

m Now to make argument rigorous

Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis

Path reversal: serializability analysis

Basic safety properties — 1 pr safety

m Inv A;—-A3 holds // via inv rule

A; @ forone(j: either (j eating) or (obj in transit to j))
Ayt Jonxt #nil = (j.1st#nil and (J not thinking))
Az : (J thinking) = j.Tst#nil

m Inv B;—B; holds // via inv rule assuming Inv A;—A;

B; : LR has exactly 1 undirected path between every two nodes
B, : forall(j: j.1st # j)

Basic safety properties — 2 pr safety

m Inv B;—Bs holds // via inv rule assuming Inv A;—As, Bi—Bs

Bs : forall j: exactly 1 of the following holds
= j thinking or
= [REQ, j] in transit or
u forsome (k: k.nxt=j) or
m [OBJ] in transit to j or
» Jj eating

B, : forall (j: at most one [REQ, j1 in transit)
Bs : forall (j: j.nxt#J and num(k: k.nxt=j) < 1)

Priority digraph Pr pr safety

m Want a digraph Pr that captures relative priorities of nodes

m Want j—k in Pr to mean j has lower priority than k
= j—k is a pr-next edge: k—jis a next edge
= j—k is a pr-last edge: j—k is a last edge and j thinking
= j—k is a pr-request edge: j—k is a request edge

m Pr: digraph [addresses; req/pr-next/pr-last edges]

m Define

= pr-path: directed path in Pr
= j pr-reachable from k: pr-path from k to j

m Ir-path: undirected path in LR

Some safety properties of Pr pr safety

m Inv G—-C3 // via inv rule assuming Inv A;—As, B;—Bs

C; : (Pr in-tree) and
(Pr's root eating or obj in transit to it)

C, : pr-path from k to j =
forall x on the Ir-path between j and k:
pr-path from x to j

Cs : (J not thinking) and j.1st=k#nil =
((pr-path from k to j) and (k hungry))

Proof of Inv Cl -1 pr safety

m Initially Pr is the same as LR, so C;, G, G hold.
m j starts eating: Pr not affected, so C; preserved

m jissues req when j.Tst=w:
j—w goes from pr-last edge to pr-req edge. C; preserved

m j rcvs req k when thinking: j thinking j thinking
j-w, k=j — k—-w, j—k. /\ > /
G preserved (# edges, y W K2
w

connectivity preserved)

m j rcvs req k when not thinking, j.1st=nil:
k—J goes from pr-req edge to pr-next edge. C; is preserved

Proof of Inv Cl - 2 pr safety

m j rcvs req k when not thinking, j.1st=w# nil:

= k—J replaced by k-w. not thinking, Ist=w not thinking, Ist = k

(j—w, j—k are not in Pr) J j
k w K——w

= 7F edges preserved, so suff to show connectivity preserved

= old Pr has pr-path(w, j) // from G
n suff if old Pr has no pr-path(w,k)

» assume old Pr has pr-path(w,k)

= all nodes on Ir-path(k,w) have pr-path to k // from G,
= so Ir-path(k,w) avoids Ir-edges k—j and j-w // from C;, G
= so undirected cycle in old LR // negates B;

Proof of Inv Cl - 3 pr safety

m

stops eating when j.nxt=x, j.1st=w:

eating, Ist =w thinking, Ist = w
nxt = X i

x—J replaced by j—w /J —> : y
X \W X \?

old Pr in-tree/root j; to show new Pr in-tree/root x

suff if old Pr has pr-path(w,x); assume not so

so old Pr has pr-path(w,y) and pr-edge y—j, where y#x

= y—Jis also a Ir-edge

= if y=w, then old LR has cycle Ly, j,y] // negates B;

= if y#w, then Ir-path(y,w) avoids j /1 G, G
Ir-path and Ir-edges y—j, j—w form Ir-cycle // negates B;

Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis

Path reversal: serializability analysis

Progress metric in Pr pr progress

m Pr can have several next-edge paths

m next-queue: a maximal next-edge path /1 wiff coz Pr in-tree

tal|.<_<_J%%.hdJ

m hdJ-: head of j's next-queue

m j if j has no incoming next edge

m Goal: fn F(j) st
= increases while req hdJ- in transit
= has upper bound at which hd; has obj (and no req msg)

Progress: « j pr progress

m Consider aji set of nodes with pr-paths to hd

= Following hold

D : aj increases when req hd; is rcvd by a system
that is thinking or whose last pointer is nil

D>+ aj does not decrease while j is hungry

Proof of D1 pr progress

m Let req hdj be rcvd by k
m Prior to rev, k ¢ oj // Pr in-tree, has req edge [hdj, k]

m Different cases of k
= k thinking: k /k
pr-req hdj—k — pr-last k—hdj ha / —> hd
aj T by k+ J J

= k not thinking, k.1st nil:
pr-req hdj—k — pr-next k—hd} // as in above figure

k becomes hdj, aj 1 by k™

= k not thinking, k.1st=x # nil: k k
pr-req hd;—k — pr-req hd;—x /x —> /

aj no change

Proof of D2 pr progress

m Consider steps other than rx of req hd

m z starts eating: neither Pr nor oj change

m 7 issues a request: pr-last z—. — pr-req // (rj same
m z not in aj: does not decrease aj

EZin j sends object to y:
old Pr: zis hdj, Pr-root
new Pr: yis hdj, Pr-root /1 aj same (at max)

mZin (vj revs req k when z.1st=x#nil:
pr-req k—j — pr-req k—Xx,
old Pr has pr-path(z,x) (from G) // «(J) does not decrease

m zin aj revs req K when z.Tst nil: <do it>

Progress: [j pr progress

m To compensate for vy, want fn ﬁj that
X1 : T when req hd rcvd by non-thinking k with non-nil 1st

X, o | only if ajt simultaneously
m Consider By set of non-thinking nodes whose 1st equals hd
= 3 and aj are disjoint // pr-path from hd; to BJ- (from G)
m X; holds because rcv adds k to ﬁj

m X, holds. x leaves By in only two ways:
= X starts thinking: creates pr-last x—hdj, so aj T by x

m X rcvs req k: X X
pr-req k—x — k—hd(j) / :
so oy Tk hd \k hdj<—,

(k ¢ old O{J' (Cl—Cz))

Progress pr progress

m So Fj = [aj.size, Bj.s1ze] under lexicographic ordering works
m We have established the following (Ds used in serializability):

D;: (jeating and k hungry) leads-to j.nxt#nil
D, : ((jeating and Jj.nxt#nil)) leads-to j.nxt=nil)
= (k hungry leads-to k eating)

Ds : ((j and k are hungry) and (j pr-reachable from k))
unless ((j eating) and (k hungry))

Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis

Path reversal: serializability analysis

Serializability - 1 pr serializabilty

m Goal: Transform any finite evolution x via commutations
to a serial evolution y with the same set of sends and rcvs

m Let p do the ith eating step in x, and q do the preceding one.
The i th eating step is the culmination of

one H(p) step (p becomes hungry)

one or more R(., p) steps (rcv req p)

one T(q) step (q starts thinking)

one E(p) step (p starts eating)

Let v; be the sequence of the above steps
m Let w be the sequence of x-steps not in any v;
m xisamergeof vi, vp, -+, w

m Will show that yis vyowv,o---ow // hence same cost

Serializability - 2 pr serializabilty

m Lemma 16.1: Let f and g be two successive steps in x st
= f belongs to v; and

= g belongs to v;, j > i, or to w
Then f and g commute wrt the msgs sent and rcvd

m x can be transformed to y by repeatedly applying lemma 16.1

m Proof of lemma follows

Proof of Lemma 16.1 - 1 pr serializabilty

m Let g be H or R of v;, involving req p.
Let f be H or R of v;, involving req q.
= Let g rcv msg sent by f. Then g in v; // contradiction
= Let f and g be of same node x.
Then pr-path(q,p) just after f.
So p eats before q (from Ds). // contradiction

Hence f and g commute, preserving sends and rcvs

m Let g be H or R of v;, involving req p.
Let f be H or R of w.

= same as above case

Proof of Lemma 16.1 - 2 pr serializabilty

m Let g be E of v;, ie, rcv obj.
Let f be H or R of v; or w, ie, rcv req.
= g rcvs obj and f sends req. So g does not rcv from f.
m Let f and g be at the same system.
Req rcv step (f) is same whether hungry (f, g) or eating (g, f).
So f and g can be interchanged.

Hence f and g commute, preserving sends and rcvs

Proof of Lemma 16.1 - 3 pr serializabilty

m Let g be T of v;, ie, send obj.
Let f be H or R of v; or w.

m g, being a T, does not rcv from f

m Let 7 and g be at the same system, say Xx.
Then f cannot be H (o/w g could not be T)
Thus f is a R step.

= Suppose x.1st was nil prior to f.

Then g would send obj in response to f,

so f belongs to v; // contradicts j > i.
= Suppose x.1st was non-nil prior to f.

Then f and g commute because req rcv ()

same whether eating (f, g) or thinking (g, f).

	Path reversal: algorithm
	Path reversal: safety analysis
	Path reversal: progress analysis
	Path reversal: serializability analysis

