
Object Transfer using Path Reversal:

Distributed Path-Reversal Algorithm

Shankar

September 18, 2014

Outline pr alg

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

Path reversal algorithm pr alg

Systems attached to a �fo channel; obj initially at a0

Messages

[REQ,j]: request msg // j is issuer (not forwarder)
[OBJ]: object-carrying msg // ignore value for now

System j: eating (has obj), hungry (wants obj), thinking (o/w)

System j has a �last� pointer

addr in the last req msg rcvd by j after last becoming hungry.
nil if no such msg
initially nil at a0, and a0 elsewhere

System j has a �next� pointer

nil if j thinking or not rcvd req since non-thinking
o/w equals addr in the �rst req msg rcvd since non-thinking
initially nil

System j rules pr alg

become hungry only if thinking: // H(j)
send [REQ,j] to lst
set lst to nil

rcv [OBJ]: // E (j)
become eating

become thinking only if eating and nxt non-nil: // T (j)
send object to nxt
set nxt to nil

rcv [REQ,k]: // R(j,k)
if lst not nil

send [REQ,k] to lst
set lst to k

else set nxt and lst to k

Conventions pr alg

j�k is a last edge: j.lst is not nil and equals k

j�k is a next edge: j.nxt is not nil and equals k

j�k is a request edge: message [REQ,j] is in transit to k

digraph: directed multi-graph

LNR : digraph [addresses; last/next/request edges]

L: digraph [addresses; last edges]

LR : digraph [addresses; last/request edges]

Drawing conventions

last edges: −−−−−
next edges: - - - - -
request edges: · · · · · ·

Serial evolution: at most 1 hungry at a time pr alg

3

1

2

4

6

3

1

2

6

3

1

4

6

2 3

4

6

2

4

1

sends [REQ,4] to 2

55 5 5

4 turns hungry, 1 rcvs2 forwards

3

1

4

6

2

5

turns eating

3

4

6

2

1

5

1 turns thinking
sends obj to 4

initially 4 rcvs object,
1 eating [REQ,4] to 1 [REQ,4]

L is an in-tree when no req msg in transit

each request e�ects a path reversal

j's req travels from j to root
all nodes on path now point to j

amortized cost of logN

Serial evolution: more than 1 hungry at a time pr alg

11

2

1

2

4 4 5

3

5

1

3 32 2 3

1

2 3

4 5 4 5 4 5

1 rcvs [REQ,3]. 1 turns thinking,3 turns hungry,
2 turns hungry, sends object.
sends [REQ,2] 3 turns eating

sends [REQ,3].
1 frwrds [REQ,2].
3 rcvs [REQ,2]

initially
1 eating

L evolves as before, so amortized cost same

next ptrs form queue

Non-serial evolution pr alg

1

2

111

2

4 5 4 4 5

3

5

3

1

4

33

5

2

2 rcvs

4

2 2
3

5

1 forwards

1

54

32

1 rcvs [REQ,3]
3 turns hungry.

1 turns thinking.
3 turns eating

3 rcvs [REQ,2].initially
1 eating

2, 4 turn
hungry [REQ,2].[REQ,4]

L may never be an in-tree

can be several next-ptr queues

progress?

amortized cost?

Does hungry j eventually eat? pr alg

Possibilities when j's request msg dies

(a)

j

(b)

j

(c)

j

(d)

j

k k

p

k

p

k

k

p

r

q

j

(e)

Above has implicit assumptions

L remains acyclic
j.nxt never points to j
· · ·

Now to make argument rigorous

Outline pr safety

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

Basic safety properties � 1 pr safety

Inv A1�A3 holds // via inv rule

A1 : forone(j: either (j eating) or (obj in transit to j))

A2 : j.nxt 6= nil ⇒ (j.lst 6= nil and (j not thinking))

A3 : (j thinking) ⇒ j.lst 6= nil

Inv B1�B2 holds // via inv rule assuming Inv A1�A3

B1 : LR has exactly 1 undirected path between every two nodes

B2 : forall(j: j.lst 6= j)

Basic safety properties � 2 pr safety

Inv B3�B5 holds // via inv rule assuming Inv A1�A3,B1�B3

B3 : forall j: exactly 1 of the following holds

j thinking or

[REQ,j] in transit or

forsome (k: k.nxt= j) or

[OBJ] in transit to j or

j eating

B4 : forall (j: at most one [REQ,j] in transit)

B5 : forall (j: j.nxt 6= j and num(k: k.nxt= j) ≤ 1)

Priority digraph Pr pr safety

Want a digraph Pr that captures relative priorities of nodes

Want j�k in Pr to mean j has lower priority than k

j�k is a pr-next edge: k�j is a next edge

j�k is a pr-last edge: j�k is a last edge and j thinking

j�k is a pr-request edge: j�k is a request edge

Pr : digraph [addresses; req/pr-next/pr-last edges]

De�ne

pr-path: directed path in Pr
j pr-reachable from k: pr-path from k to j

lr-path: undirected path in LR

Some safety properties of Pr pr safety

Inv C1�C3 // via inv rule assuming Inv A1�A3,B1�B5

C1 : (Pr in-tree) and
(Pr 's root eating or obj in transit to it)

C2 : pr-path from k to j ⇒
forall x on the lr-path between j and k:
pr-path from x to j

C3 : (j not thinking) and j.lst= k 6= nil ⇒
((pr-path from k to j) and (k hungry))

Proof of Inv C1 � 1 pr safety

Initially Pr is the same as LR , so C1, C2, C3 hold.

j starts eating: Pr not a�ected, so C1 preserved

j issues req when j.lst= w:
j�w goes from pr-last edge to pr-req edge. C1 preserved

j rcvs req k when thinking:
j�w, k�j −→ k�w, j�k.
C1 preserved (# edges,
connectivity preserved)

j thinking

w w

j thinking

k k

j rcvs req k when not thinking, j.lst= nil:
k�j goes from pr-req edge to pr-next edge. C1 is preserved

Proof of Inv C1 � 2 pr safety

j rcvs req k when not thinking, j.lst= w 6= nil:

k�j replaced by k�w.

(j�w, j�k are not in Pr)

w wk k

not thinking, lst = w not thinking, lst = k

j j

edges preserved, so su� to show connectivity preserved

old Pr has pr-path(w,j) // from C3

su� if old Pr has no pr-path(w,k)

assume old Pr has pr-path(w,k)

all nodes on lr-path(k,w) have pr-path to k // from C2

so lr-path(k,w) avoids lr-edges k�j and j�w // from C1, C2

so undirected cycle in old LR // negates B1

Proof of Inv C1 � 3 pr safety

j stops eating when j.nxt=x, j.lst=w:

x�j replaced by j�w

w wx x

thinking, lst = w

j j y

eating, lst = w
nxt = x

old Pr in-tree/root j; to show new Pr in-tree/root x

su� if old Pr has pr-path(w,x); assume not so

so old Pr has pr-path(w,y) and pr-edge y�j, where y 6= x
y�j is also a lr-edge

if y= w, then old LR has cycle [y,j,y] // negates B1

if y 6= w, then lr-path(y,w) avoids j // C1,C2

lr-path and lr-edges y�j, j�w form lr-cycle // negates B1

Outline pr progress

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

Progress metric in Pr pr progress

Pr can have several next-edge paths

next-queue: a maximal next-edge path // w� coz Pr in-tree

tail • ← · · · ← j← · · · ← • hdj
hdj: head of j's next-queue

j if j has no incoming next edge

Goal: fn F (j) st
increases while req hdj in transit

has upper bound at which hdj has obj (and no req msg)

Progress: αj pr progress

Consider αj: set of nodes with pr-paths to hdj

Following hold

D1 : αj increases when req hdj is rcvd by a system

that is thinking or whose last pointer is nil

D2 : αj does not decrease while j is hungry

Proof of D1 pr progress

Let req hdj be rcvd by k

Prior to rcv, k /∈ αj // Pr in-tree, has req edge [hdj, k]

Di�erent cases of k

k thinking:
pr-req hdj�k → pr-last k�hdj
αj ↑ by k+ jhd jhd

k k

k not thinking, k.lst nil:
pr-req hdj�k → pr-next k�hdj // as in above �gure

k becomes hdj, αj ↑ by k+

k not thinking, k.lst= x 6= nil:
pr-req hdj�k → pr-req hdj�x
αj no change

jhd jhd

k k

x x

Proof of D2 pr progress

Consider steps other than rx of req hdj

z starts eating: neither Pr nor αj change

z issues a request: pr-last z�. → pr-req // αj same

z not in αj: does not decrease αj

z in αj sends object to y:
old Pr : z is hdj, Pr -root
new Pr : y is hdj, Pr -root // αj same (at max)

z in αj rcvs req k when z.lst= x 6=nil:
pr-req k�j → pr-req k�x,
old Pr has pr-path(z,x) (from C3) // α(j) does not decrease

z in αj rcvs req k when z.lst nil: <do it>

Progress: βj pr progress

To compensate for αj, want fn βj that

X1 : ↑ when req hdj rcvd by non-thinking k with non-nil lst

X2 : ↓ only if αj ↑ simultaneously

Consider βj: set of non-thinking nodes whose lst equals hdj

βj and αj are disjoint // pr-path from hdj to βj (from C2)

X1 holds because rcv adds k to βj

X2 holds. x leaves βj in only two ways:

x starts thinking: creates pr-last x�hdj, so αj ↑ by x

x rcvs req k:
pr-req k�x → k�hd(j)
so αj ↑ k
(k /∈ old αj (C1�C2))

jhd jhd
k k

x x

Progress pr progress

So Fj = [αj.size, βj.size] under lexicographic ordering works

We have established the following (D5 used in serializability):

D3 : (j eating and k hungry) leads-to j.nxt 6= nil

D4 : ((j eating and j.nxt 6= nil)) leads-to j.nxt= nil)
⇒ (k hungry leads-to k eating)

D5 : ((j and k are hungry) and (j pr-reachable from k))
unless ((j eating) and (k hungry))

Outline pr serializabilty

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

Serializability � 1 pr serializabilty

Goal: Transform any �nite evolution x via commutations
to a serial evolution y with the same set of sends and rcvs

Let p do the ith eating step in x , and q do the preceding one.

The i th eating step is the culmination of

one H(p) step (p becomes hungry)
one or more R(., p) steps (rcv req p)
one T (q) step (q starts thinking)
one E (p) step (p starts eating)

Let vi be the sequence of the above steps

Let w be the sequence of x-steps not in any vi

x is a merge of v1, v2, · · · , w

Will show that y is v1 ◦ v2 ◦ · · · ◦ w // hence same cost

Serializability � 2 pr serializabilty

Lemma 16.1: Let f and g be two successive steps in x st

f belongs to vi and
g belongs to vj , j > i , or to w

Then f and g commute wrt the msgs sent and rcvd

x can be transformed to y by repeatedly applying lemma 16.1

Proof of lemma follows

Proof of Lemma 16.1 � 1 pr serializabilty

Let g be H or R of vi , involving req p.
Let f be H or R of vj , involving req q.
Let g rcv msg sent by f . Then g in vj // contradiction
Let f and g be of same node x.
Then pr-path(q,p) just after f .
So p eats before q (from D5). // contradiction

Hence f and g commute, preserving sends and rcvs

Let g be H or R of vi , involving req p.
Let f be H or R of w .

same as above case

Proof of Lemma 16.1 � 2 pr serializabilty

Let g be E of vi , ie, rcv obj.
Let f be H or R of vj or w , ie, rcv req.

g rcvs obj and f sends req. So g does not rcv from f .
Let f and g be at the same system.
Req rcv step (f) is same whether hungry (f , g) or eating (g , f).
So f and g can be interchanged.

Hence f and g commute, preserving sends and rcvs

Proof of Lemma 16.1 � 3 pr serializabilty

Let g be T of vi , ie, send obj.
Let f be H or R of vj or w .

g , being a T , does not rcv from f
Let f and g be at the same system, say x.
Then f cannot be H (o/w g could not be T)
Thus f is a R step.

Suppose x.lst was nil prior to f .
Then g would send obj in response to f ,
so f belongs to vi // contradicts j > i .
Suppose x.lst was non-nil prior to f .
Then f and g commute because req rcv (f)
same whether eating (f , g) or thinking (g , f).

	Path reversal: algorithm
	Path reversal: safety analysis
	Path reversal: progress analysis
	Path reversal: serializability analysis

