Object Transfer using Path Reversal: Distributed Path-Reversal Algorithm

Shankar

September 18, 2014

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

Path reversal algorithm

- Systems attached to a fifo channel; obj initially at a0
- Messages

```
 [REQ, j]: request msg // j is issuer (not forwarder) [OBJ]: object-carrying msg // ignore value for now
```

- System j: eating (has obj), hungry (wants obj), thinking (o/w)
- System j has a "last" pointer
 - addr in the last req msg rcvd by j after last becoming hungry.
 - nil if no such msg
 - initially nil at a0, and a0 elsewhere
- System j has a "next" pointer
 - nil if j thinking or not rcvd req since non-thinking
 o/w equals addr in the first req msg rcvd since non-thinking
 - initially nil

set 1st to k

else set nxt and 1st to k

```
//H(j)
become hungry only if thinking:
     send [REQ,j] to 1st
     set 1st to nil
                                                         //E(j)
■ rcv [OBJ]:
     become eating
become thinking only if eating and nxt non-nil:
                                                         //T(j)
    send object to nxt
     set nxt to nil
                                                       //R(j,k)
rcv [REQ,k]:
     if 1st not nil
        send [REQ.k] to 1st
```

- j-k is a last edge: j.lst is not nil and equals k
- j-k is a next edge: j.nxt is not nil and equals k
- j-k is a request edge: message [REQ,j] is in transit to k
- digraph: directed multi-graph
- LNR: digraph [addresses; last/next/request edges]
- L: digraph [addresses; last edges]
- *LR*: digraph [addresses; last/request edges]
- Drawing conventions
 - last edges: ———
 - next edges: - - -
 - request edges: ·······

- $lue{L}$ is an in-tree when no req msg in transit
- each request effects a path reversal
 - j's req travels from j to root
 - all nodes on path now point to j
- lacksquare amortized cost of log N

1 turns thinking

sends object.

3 turns eating

1 rcvs [REQ,3].

2 turns hungry,

sends [REQ,2]

1 frwrds [REQ,2].

3 rcvs [REQ,2]

L evolves as before, so amortized cost same

3 turns hungry,

sends [REQ,3].

next ptrs form queue

initially

1 eating

- L may never be an in-tree
- can be several next-ptr queues
- progress?
- amortized cost?

■ Possibilities when j's request msg dies

- Above has implicit assumptions
 - L remains acyclic
 - j.nxt never points to j
 - • •
- Now to make argument rigorous

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

■ $Inv A_1 - A_3$ holds

$$A_1$$
: forone(j: either (j eating) or (obj in transit to j))
 A_2 : j.nxt \neq nil \Rightarrow (j.1st \neq nil and (j not thinking))

$$A_3$$
: (j thinking) \Rightarrow j.1st \neq nil

■
$$Inv B_1 - B_2$$
 holds // via inv rule assuming $Inv A_1 - A_3$

 B_1 : LR has exactly 1 undirected path between every two nodes

$$B_2$$
: forall(j: j.1st \neq j)

■ $Inv B_3-B_5$ holds // via inv rule assuming $Inv A_1-A_3, B_1-B_3$

```
B_3: forall j: exactly 1 of the following holds
```

- j thinking or
- [REQ,j] in transit or
- forsome (k: k.nxt = j) or
- [OBJ] in transit to j or
- j eating

 B_4 : forall (j: at most one [REQ,j] in transit)

 \mathcal{B}_5 : forall $(j: j.nxt \neq j \text{ and } num(k: k.nxt = j) \leq 1)$

- Want a digraph *Pr* that captures relative priorities of nodes
- Want j-k in Pr to mean j has lower priority than k
 - j−k is a pr-next edge: k−j is a next edge
 - j−k is a pr-last edge: j−k is a last edge and j thinking
 - j−k is a pr-request edge: j−k is a request edge
- Pr: digraph [addresses; req/pr-next/pr-last edges]
- Define
 - pr-path: directed path in Pr
 - j pr-reachable from k: pr-path from k to j
 - Ir-path: undirected path in *LR*

■ $Inv C_1 - C_3$ // via inv rule assuming $Inv A_1 - A_3$, $B_1 - B_5$

 C_1 : (Pr in-tree) and (Pr's root eating or obj in transit to it)

 C_2 : pr-path from k to j \Rightarrow forall x on the lr-path between j and k: pr-path from x to j

 C_3 : (j not thinking) and j.lst= $k \neq nil \Rightarrow$ ((pr-path from k to j) and (k hungry))

- Initially Pr is the same as LR, so C_1 , C_2 , C_3 hold.
- **j** starts eating: Pr not affected, so C_1 preserved
- **j** issues req when j.lst=w: j-w goes from pr-last edge to pr-req edge. C_1 preserved
- j rcvs req k when thinking: j-w, k-j → k-w, j-k. C₁ preserved (# edges, connectivity preserved)

j rcvs req k when not thinking, j.1st = nil: k-j goes from pr-req edge to pr-next edge. C_1 is preserved

- **j** rcvs req k when not thinking, $j.1st = w \neq nil$:
 - k-j replaced by k-w.(j-w, j-k are not in Pr)

- # edges preserved, so suff to show connectivity preserved
- old Pr has pr-path(w,j)suff if old Pr has no pr-path(w,k)
- assume old Pr has pr-path(w,k)
 - all nodes on lr-path(k,w) have pr-path to k
 - so lr-path(k,w) avoids lr-edges k-j and j-w // from C_1 , C_2
 - so undirected cycle in old *LR*

// from C_2

// from C_3

// negates B_1

■ j stops eating when j.nxt=x, j.lst=w:

x-j replaced by j-w

- old *Pr* in-tree/root j; to show new *Pr* in-tree/root x
- suff if old Pr has pr-path(w,x); assume not so
- so old Pr has pr-path(w,y) and pr-edge y-j, where y \neq x
 - y-j is also a lr-edge
 - if y = w, then old LR has cycle [y,j,y] // negates B_1
 - if $y \neq w$, then lr-path(y,w) avoids j // C_1 , C_2 lr-path and lr-edges y-j, j-w form lr-cycle // negates B_1

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

- Pr can have several next-edge paths
- next-queue: a maximal next-edge path // wff coz Pr in-tree tail $\leftarrow \cdots \leftarrow j \leftarrow \cdots \leftarrow hd_i$
- hdj: head of j's next-queue
 - j if j has no incoming next edge
- Goal: fn F(j) st
 - increases while req hd_i in transit
 - has upper bound at which hd_j has obj (and no req msg)

- lacksquare Consider $lpha_{f j}$: set of nodes with pr-paths to $hd_{f j}$
- Following hold
 - $D_1: \alpha_j$ increases when req hd_j is rcvd by a system that is thinking or whose last pointer is nil
 - D_2 : α_j does not decrease while j is hungry

- Let req hdj be rcvd by k
- Prior to rcv, $k \notin \alpha_j$ // Pr in-tree, has req edge $[hd_j, k]$
- Different cases of k
 - k thinking: $pr-req hd_j-k \rightarrow pr-last k-hd_j$ $\alpha_i \uparrow by k^+$
 - k not thinking, k.1st nil: pr-req hd_j -k \rightarrow pr-next k- hd_j k becomes hd_j , $\alpha_j \uparrow$ by k⁺
 - k not thinking, k.1st=x \neq nil: pr-req hd_{j} -k \rightarrow pr-req hd_{j} -x α_{j} no change

// as in above figure

- Consider steps other than rx of req hd_j
- lacktriangle z starts eating: neither Pr nor $lpha_{f j}$ change
- \blacksquare z issues a request: pr-last z-. \rightarrow pr-req $\,$ // $\alpha_{\ensuremath{\mbox{\it j}}}$ same
- lacksquare z not in $lpha_{f j}$: does not decrease $lpha_{f j}$
- lacktriangleright z in $lpha_{f j}$ sends object to y: old Pr: z is $hd_{f j}$, Pr-root new Pr: y is $hd_{f j}$, Pr-root // $lpha_{f j}$ same (at max)
- z in $\alpha_{\mathbf{j}}$ rcvs req k when z.1st=x≠nil: pr-req k-j \rightarrow pr-req k-x, old Pr has pr-path(z,x) (from C_3) // α (j) does not decrease
- \blacksquare z in α_{i} rcvs req k when z.1st nil: <do it>

- To compensate for α_j, want fn β_j that X₁: ↑ when req hd_j revd by non-thinking k with non-nil 1st X₂: ↓ only if α_j↑ simultaneously
- Consider $\beta_{\mathbf{j}}$: set of non-thinking nodes whose 1st equals $hd_{\mathbf{j}}$
- lacksquare $eta_{f j}$ and $lpha_{f j}$ are disjoint // pr-path from $hd_{f j}$ to $eta_{f j}$ (from C_2)
- **•** X_1 holds because rcv adds k to β_j
- **X**₂ holds. x leaves β_j in only two ways:
 - x starts thinking: creates pr-last x-hd_j, so $\alpha_{j} \uparrow$ by x
 - x rcvs req k: pr-req k-x \rightarrow k-hd(j) so $\alpha_{j} \uparrow k$ (k \notin old $\alpha_{j} (C_{1}-C_{2})$)

- So $F_{j} = [\alpha_{j}.size, \beta_{j}.size]$ under lexicographic ordering works
- We have established the following (D_5 used in serializability):

```
D_3: (jeating and k hungry) leads-to j.nxt\neqnil D_4: ((jeating and j.nxt\neqnil)) leads-to j.nxt=nil) \Rightarrow (k hungry leads-to k eating)
```

 D_5 : ((j and k are hungry) and (j pr-reachable from k)) unless ((j eating) and (k hungry))

Path reversal: algorithm

Path reversal: safety analysis

Path reversal: progress analysis

Path reversal: serializability analysis

- Goal: Transform any finite evolution x via commutations to a serial evolution y with the same set of sends and rcvs
- Let p do the ith eating step in x, and q do the preceding one.

The ith eating step is the culmination of

- one H(p) step (p becomes hungry)
- one or more R(.,p) steps (rcv req p)
- one T(q) step (q starts thinking)
- one E(p) step (p starts eating)

Let v_i be the sequence of the above steps

- Let w be the sequence of x-steps not in any v_i
- $\blacksquare x$ is a merge of v_1, v_2, \dots, w
- Will show that y is $v_1 \circ v_2 \circ \cdots \circ w$ // hence same cost

- Lemma 16.1: Let f and g be two successive steps in x st
 - \bullet f belongs to v_i and
 - g belongs to v_i , j > i, or to w

Then f and g commute wrt the msgs sent and rcvd

- $lue{x}$ can be transformed to y by repeatedly applying lemma 16.1
- Proof of lemma follows

// contradiction

- Let g be H or R of v_i , involving req p. Let f be H or R of v_i , involving req q.
 - Let g rcv msg sent by f. Then g in v_j // contradiction
 - Let f and g be of same node x. Then pr-path(q,p) just after f. So p eats before q (from D₅).

Hence f and g commute, preserving sends and rcvs

- Let g be H or R of v_i, involving req p. Let f be H or R of w.
 - same as above case

- Let g be E of v_i , ie, rcv obj. Let f be H or R of v_i or w_i ie, rcv req.
 - g rcvs obj and f sends req. So g does not rcv from f.
 - Let f and g be at the same system. Req rcv step (f) is same whether hungry (f,g) or eating (g,f). So f and g can be interchanged.

Hence f and g commute, preserving sends and rcvs

- Let g be T of v_i , ie, send obj. Let f be H or R of v_i or w.
 - \blacksquare g, being a T, does not rcv from f
 - Let f and g be at the same system, say x. Then f cannot be H (o/w g could not be T) Thus f is a R step.
 - Suppose x.1st was nil prior to f. Then g would send obj in response to f, so f belongs to v_i // contradicts j > i.
 - Suppose x.1st was non-nil prior to f. Then f and g commute because req rcv (f) same whether eating (f,g) or thinking (g,f).