Object Transfer using Path Reversal:
Distributed Path-Reversal Algorithm

Shankar

September 18, 2014
Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis
Path reversal: serializability analysis
Path reversal algorithm

- Systems attached to a fifo channel; obj initially at a0

- Messages
 - [REQ, j]: request msg // j is issuer (not forwarder)
 - [OBJ]: object-carrying msg // ignore value for now

- System j: eating (has obj), hungry (wants obj), thinking (o/w)

- System j has a “last” pointer
 - addr in the last req msg rcvd by j after last becoming hungry.
 - nil if no such msg
 - initially nil at a0, and a0 elsewhere

- System j has a “next” pointer
 - nil if j thinking or not rcvd req since non-thinking
 - o/w equals addr in the first req msg rcvd since non-thinking
 - initially nil
System j rules

- become hungry only if thinking: \[H(j) \]
 send [REQ,j] to lst
 set lst to nil

- rcv [OBJ]: \[E(j) \]
 become eating

- become thinking only if eating and nxt non-nil: \[T(j) \]
 send object to nxt
 set nxt to nil

- rcv [REQ,k]: \[R(j,k) \]
 if lst not nil
 send [REQ,k] to lst
 set lst to k
 else set nxt and lst to k
Conventions

- j–k is a **last edge**: j.lst is not nil and equals k
- j–k is a **next edge**: j.nxt is not nil and equals k
- j–k is a **request edge**: message [REQ, j] is in transit to k

- **digraph**: directed multi-graph
- **LNR**: digraph [addresses; last/next/request edges]
- **L**: digraph [addresses; last edges]
- **LR**: digraph [addresses; last/request edges]

Drawing conventions
- last edges: ————
- next edges: - - - - -
- request edges: · · · · ·
Serial evolution: at most 1 hungry at a time

Initially:
1 eating
4 turns hungry, sends \([\text{REQ}, 4]\) to 2
2 forwards \([\text{REQ}, 4]\) to 1
1 \text{rcvs} [\text{REQ}, 4]
1 turns thinking
sends \text{obj} to 4
4 \text{rcvs} \text{object}, turns eating

- \(L\) is an in-tree when no req msg in transit
- each request effects a \textbf{path reversal}
 - \(j\)’s req travels from \(j\) to root
 - all nodes on path now point to \(j\)
- amortized cost of \(\log N\)
Serial evolution: more than 1 hungry at a time

- Initially 1 eating
- 3 turns hungry, sends [REQ,3]
- 1 rcvs [REQ,3]. 1 turns thinking, 3 turns hungry, sends object.
- 1 frwrds [REQ,2].
- 3 rcvs [REQ,2]
- 1 turns thinking sends object. 3 turns eating

- L evolves as before, so amortized cost same
- next ptrs form queue
Non-serial evolution

- \(L \) may never be an in-tree
- can be several next-ptr queues
- progress?
- amortized cost?
Does hungry j eventually eat?

- Possibilities when j’s request msg dies

(a)
(b)
(c)
(d)
(e)

Above has implicit assumptions
- L remains acyclic
- j.nxt never points to j
- ...

Now to make argument rigorous
Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis
Path reversal: serializability analysis
Basic safety properties

- \textit{Inv} A_1--A_3 holds \hspace{1cm} // via inv rule

 A_1: forone (j: either (j eating) or (obj in transit to j))

 A_2: j.nxt \neq nil \Rightarrow (j.lst \neq nil and (j not thinking))

 A_3: (j thinking) \Rightarrow j.lst \neq nil

- \textit{Inv} B_1--B_2 holds \hspace{1cm} // via inv rule assuming \textit{Inv} A_1--A_3

 B_1: LR has exactly 1 undirected path between every two nodes

 B_2: for all (j: j.lst \neq j)
- $Inv \ B_3 - B_5$ holds \quad // via inv rule assuming $Inv \ A_1 - A_3, B_1 - B_3$

$B_3 :$ forall j: exactly 1 of the following holds
 - j thinking or
 - $[\text{REQ}, j]$ in transit or
 - forsome (k: $k.nxt = j$) or
 - $[\text{OBJ}]$ in transit to j or
 - j eating

$B_4 :$ forall (j: at most one $[\text{REQ}, j]$ in transit)

$B_5 :$ forall (j: $j.nxt \neq j$ and $\text{num}(k: k.nxt = j) \leq 1$)
Want a digraph Pr that captures relative priorities of nodes

- Want $j \rightarrow k$ in Pr to mean j has lower priority than k
 - $j \rightarrow k$ is a **pr-next** edge: $k \rightarrow j$ is a next edge
 - $j \rightarrow k$ is a **pr-last** edge: $j \rightarrow k$ is a last edge and j thinking
 - $j \rightarrow k$ is a **pr-request** edge: $j \rightarrow k$ is a request edge

Pr: digraph [addresses; req/pr-next/pr-last edges]

Define

- **pr-path**: directed path in Pr
- **j pr-reachable from** k: pr-path from k to j
- **lr-path**: undirected path in LR
Some safety properties of Pr

- $Inv \ C_1-C_3$
 // via inv rule assuming $Inv \ A_1-A_3, B_1-B_5$

 C_1 : (Pr in-tree) and
 (Pr's root eating or obj in transit to it)

 C_2 : pr-path from k to $j \Rightarrow$
 forall x on the lr-path between j and k:
 pr-path from x to j

 C_3 : (j not thinking) and $j.lst=k \neq \text{nil} \Rightarrow$
 ((pr-path from k to j) and (k hungry))
Proof of Inv C_1 – 1

- Initially Pr is the same as LR, so C_1, C_2, C_3 hold.

- j starts eating: Pr not affected, so C_1 preserved

- j issues req when $j.lst = w$:
 - $j-w$ goes from pr-last edge to pr-req edge. C_1 preserved

- j rcvs req k when thinking:
 - $j-w, k-j \rightarrow k-w, j-k$. C_1 preserved (# edges, connectivity preserved)

- j rcvs req k when not thinking, $j.lst = \text{nil}$:
 - $k-j$ goes from pr-req edge to pr-next edge. C_1 is preserved
Proof of Inv $C_1 \rightarrow 2$

- j rcvs req k when not thinking, $j.1st = w \neq \text{nil}$:
 - k–j replaced by k–w.
 - (j–w, j–k are not in Pr)

- # edges preserved, so suff to show connectivity preserved

- old Pr has pr-path(w,j)
 - suff if old Pr has no pr-path(w,k)

- assume old Pr has pr-path(w,k)
 - all nodes on lr-path(k,w) have pr-path to k
 - so lr-path(k,w) avoids lr-edges k–j and j–w
 - so undirected cycle in old LR
Proof of Inv C_1 – 3

- j stops eating when $j.nxt=x$, $j.lst=w$:
 - $x-j$ replaced by $j-w$
 - old Pr in-tree/root j; to show new Pr in-tree/root x
 - suff if old Pr has pr-path(w,x); assume not so
 - so old Pr has pr-path(w,y) and pr-edge $y-j$, where $y \neq x$
 - $y-j$ is also a lr-edge
 - if $y=w$, then old LR has cycle $[y,j,y]$ // negates B_1
 - if $y \neq w$, then lr-path(y,w) avoids j
 lr-path and lr-edges $y-j$, $j-w$ form lr-cycle // C_1, C_2
Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis
Path reversal: serializability analysis
Progress metric in Pr

- Pr can have several next-edge paths
- **next-queue**: a maximal next-edge path
 \[\text{tail} \oplus \cdots \leftarrow j \leftarrow \cdots \leftarrow \bullet \text{hd}_j\]

- hd_j: head of j’s next-queue
 - j if j has no incoming next edge

- Goal: fn $F(j)$ st
 - increases while req hd_j in transit
 - has upper bound at which hd_j has obj (and no req msg)
Consider α_j: set of nodes with pr-paths to hd_j

Following hold

$D_1: \alpha_j$ increases when req hd_j is rcvd by a system that is thinking or whose last pointer is nil

$D_2: \alpha_j$ does not decrease while j is hungry
Proof of D_1

- Let req hd_j be rcvd by k

- Prior to rcv, $k \notin \alpha_j$ // Pr in-tree, has req edge $[hd_j, k]$

- Different cases of k
 - k thinking:
 pr-req hd_j–k \rightarrow pr-last k–hd_j
 $\alpha_j \uparrow$ by k^+

 - k not thinking, k.lst nil:
 pr-req hd_j–k \rightarrow pr-next k–hd_j
 k becomes hd_j, $\alpha_j \uparrow$ by k^+ // as in above figure

 - k not thinking, k.lst = $x \neq$ nil:
 pr-req hd_j–k \rightarrow pr-req hd_j–x
 α_j no change
Proof of D_2

- Consider steps other than rx of req hd_j
- z starts eating: neither Pr nor α_j change
- z issues a request: pr-last $z \rightarrow$ pr-req $\quad // \alpha_j$ same
- z not in α_j: does not decrease α_j
- z in α_j sends object to y:
 - old Pr: z is hd_j, Pr-root
 - new Pr: y is hd_j, Pr-root $\quad // \alpha_j$ same (at max)
- z in α_j rcvs req k when $z.lst = x \neq$ nil:
 - pr-req $k-j \rightarrow$ pr-req $k-x,$
 - old Pr has pr-path(z,x) (from C_3) $\quad // \alpha(j)$ does not decrease
- z in α_j rcvs req k when $z.lst$ nil: <do it>
To compensate for α_j, want fn β_j that
- $X_1: \uparrow$ when req hd_j rcvd by non-thinking k with non-nil 1st
- $X_2: \downarrow$ only if $\alpha_j \uparrow$ simultaneously

Consider β_j: set of non-thinking nodes whose 1st equals hd_j

- β_j and α_j are disjoint // pr-path from hd_j to β_j (from C_2)

- X_1 holds because rcv adds k to β_j

- X_2 holds. x leaves β_j in only two ways:
 - x starts thinking: creates pr-last $x-hd_j$, so $\alpha_j \uparrow$ by x
 - x rcvs req k:
 - pr-req $k-x \rightarrow k-hd(j)$
 - so $\alpha_j \uparrow k$
 - ($k \notin$ old α_j (C_1-C_2))
So $F_j = [\alpha_j \text{size}, \beta_j \text{size}]$ under lexicographic ordering works.

We have established the following (D_5 used in serializability):

$D_3: (j \text{ eating} \text{ and } k \text{ hungry}) \text{ leads-to } j.\text{nxt} \neq \text{nil}$

$D_4: ((j \text{ eating} \text{ and } j.\text{nxt} \neq \text{nil}) \text{ leads-to } j.\text{nxt} = \text{nil})$

$\Rightarrow (k \text{ hungry} \text{ leads-to } k \text{ eating})$

$D_5: ((j \text{ and } k \text{ are hungry}) \text{ and } (j \text{ pr-reachable from } k))$

$\text{unless } ((j \text{ eating}) \text{ and } (k \text{ hungry}))$
Outline

Path reversal: algorithm
Path reversal: safety analysis
Path reversal: progress analysis
Path reversal: serializability analysis
Goal: Transform any finite evolution x via commutations to a serial evolution y with the same set of sends and rcvs

Let p do the ith eating step in x, and q do the preceding one. The ith eating step is the culmination of

- one $H(p)$ step (p becomes hungry)
- one or more $R(., p)$ steps (rcv req p)
- one $T(q)$ step (q starts thinking)
- one $E(p)$ step (p starts eating)

Let v_i be the sequence of the above steps

Let w be the sequence of x-steps not in any v_i

x is a merge of v_1, v_2, \ldots, w

Will show that y is $v_1 \circ v_2 \circ \cdots \circ w$ // hence same cost
Lemma 16.1: Let f and g be two successive steps in x st
- f belongs to v_i and
- g belongs to v_j, $j > i$, or to w

Then f and g commute wrt the msgs sent and rcvd

x can be transformed to y by repeatedly applying lemma 16.1

Proof of lemma follows
Proof of Lemma 16.1

Let \(g \) be \(H \) or \(R \) of \(v_i \), involving req \(p \).
Let \(f \) be \(H \) or \(R \) of \(v_j \), involving req \(q \).

- Let \(g \) rcv msg sent by \(f \). Then \(g \) in \(v_j \) // contradiction
- Let \(f \) and \(g \) be of same node \(x \).
 Then pr-path\((q, p)\) just after \(f \).
 So \(p \) eats before \(q \) (from \(D_5 \)). // contradiction

Hence \(f \) and \(g \) commute, preserving sends and rcvs

Let \(g \) be \(H \) or \(R \) of \(v_i \), involving req \(p \).
Let \(f \) be \(H \) or \(R \) of \(w \).

- same as above case
Let g be E of v_i, ie, rcv obj.
Let f be H or R of v_j or w, ie, rcv req.

- g rcvs obj and f sends req. So g does not rcv from f.
- Let f and g be at the same system.

 Req rcv step (f) is same whether hungry (f, g) or eating (g, f).

 So f and g can be interchanged.

Hence f and g commute, preserving sends and rcvs.
Let g be T of v_i, ie, send obj.
Let f be H or R of v_j or w.
- g, being a T, does not rcv from f
- Let f and g be at the same system, say x.
 Then f cannot be H (o/w g could not be T)
 Thus f is a R step.
- Suppose $x.1$st was nil prior to f.
 Then g would send obj in response to f, so f belongs to v_i; // contradicts $j > i$.
- Suppose $x.1$st was non-nil prior to f.
 Then f and g commute because req rcv (f) same whether eating (f, g) or thinking (g, f).