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Program structure programs

Program

header: program name + program parameters
main code + functions + input functions
assumptions of inputs, atomicity, progress // for analysis only

startSystem (pname(params)): instantiates program
basic system is created with a unique system id (abbr sid)
instantiating thread executes main and returns
system remains

Special read-only variables available for code

mysid: sid of this system
mytid: tid of this thread

All parameters are read-only



Input functions programs

Input function:

retType mysid.fname (params) {body}
retType can be void or absent (for arbitrary type)

Thread in environment can call input functions of system

syntax: sid.fname (params)
thread enters system, executes function, returns

Above is the only way for systems to interact
(other than instantiating a program)



Thread creation programs

Can create a thread executing a local non-input function

startThread(func(params))
returns a unique thread id (abbr tid)
thread ends when it reaches end of func()

local threads: those created in the system

guest threads: those that came from the environment



System termination programs

Platform eventually terminates a system if

a thread in system has executed endSystem()
system is continuously in a endable state

System is endable

no guest threads in the system
no local thread of the system is in another system

Ensures that a thread is not left in limbo.

At termination, platform

terminates all local threads
cleans up system's state



Example: Evolution of Threads in a Basic System programs
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Assumptions of a Program programs

Analyzing a program requires three kinds of assumptions

input assumptions: about inputs from systems in environment
atomicity assumption: atomicity expected from platform
progress assumption: progress expected from platform

All are de�ned (explicitly or by default) in the program

They are only for analysis; program need not check them



Input assumptions programs

Placed at input function headers and output call returns
syntax: ia {predicate} // predicate in variables and input
default: ia {true}

Implicitly includes type constraints on call params and return vals

program xyz(int p) {
ia {p prime}
int x;
· · ·
function mysid.fn1(int q) {

ia {x + p > q}
int y;
· · ·
ret ← sid.fn2(.);
ia {predicate in p,x,q,y,ret}
· · ·

} }



Atomicity assumption programs

An execution α of a code chunk is atomic means that while α is
ongoing, no (other) thread can in�uence or observe α

thus α appears to be indivisble or �instantaneous�

Code chunk S is atomic if every execution of S is atomic

Every platform provides some atomicity

bare hardware: read word, write word, test-and-set, ...
OS: above + locks, condition variables, semaphores, ...

Atomicity assumption of a program identi�es the atomicity
assumed to be provided by the platform

Without them, (multi-threaded) program is not well-de�ned



E�ective Atomicity programs

Not all of a program need be covered by the atomicity assumption

Program can ensure that an execution α of a code chunk is
atomic by ensuring that there is no simultaneous con�icting
execution β

α and β con�ict if one writes to memory accessed by the other

Program does this by isolating con�icting code

in time, e.g., by thread synchronization
in memory, e.g., by duplicating data

E�ective atomicity can depend on program's input assumptions

e.g., at most one ongoing call of a non-reentrant function



Progress assumption programs

For a program to satisfy progress properties, the platform must
execute its threads with some progress.

Two kinds of minimal progress: weak fairness and strong fairness

Weak fairness for a thread

thread regularly gets processor cycles, i.e., non-zero speed

Ensures that it gets past a continuously-unblocked instruction

Strong fairness for a blocking instruction S

any thread at S eventually gets past if S is repeatedly (but not
necessarily continuously) unblocked

Progress assumption states the fairness expected of the platform



Aggregate Systems and Composite Systems programs

For a basic system x , the aggregate system x is x and all basic
systems created directly or indirectly by x

For a program Y, the aggregate system Y is the aggregate system
of Y's instantiation without renaming or constraining its params.

The evolutions and properties of program Y are those of aggregate
system Y

Aggregate system inputs: union of component systems' inputs,
except for inputs explicitly hidden from environment

Aggregate system outputs: union of component systems' outputs
that are directed to the environment of the aggregate system.

Composite system: an arbitrary collection of basic systems

inputs, outputs: same as in aggregate system
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ProdCons prod-cons programs

program ProdCons(J) { // J: max # of items produced

ia {J ≥ 1} // input assumption

lck ← startSystem(Lock());
cons ← startSystem(Cons(lck, J));
prod ← startSystem(Prod(lck, cons, J));
return [prod, cons]; // end main

atomicity assumption { } // none; single-threaded

progress assumption {weak fairness}
}

ProdCons may be a �make� program

ProdCons may be a �virtual� program,
e.g., humans at three computers, synchronizing over phone



Lock prod-cons programs

program Lock() {
ia {...}
...
return mysid;

input void mysid.acq()
ia {...}
return;

input void mysid.rel()
ia {...}
return;

input void mysid.end()
ia {...}
endSystem();
return;

atomicity assumption {
word read, word write

}

progress assumption {
weak fairness of threads

}
}



Producer and Consumer prod-cons programs

program Producer(lck,cons,J) {
ia {...}
t ← startThread(produce());
return mysid;

function void produce()
for (i in 1..J)

produce item;
lck.acq();
cons.put(item);
lck.rel();

endSystem();

atomicity & progress
assumptions

}

program Consumer(lck, J) {
ia {...}
t ← startThread(consume());
return mysid;

function void consume()
for (i in 1..J) {

lck.acq();
consume item;
lck.rel();

lck.end();
endSystem();

input void mysid.put(item)
ia {...}
return;

atomicity & progress assumps
}
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Service program structure service

A service program is essentially a state machine
organized into �input� and �output� functions

service prog name(params) {
ic {predicate in params}
<main> // define and initialize variables
<input functions>
<output functions>
<atomicity and progress assumptions>

}

Does not create any other system

so only one basic system, even for a distributed service

Creates threads only to execute output functions (if any)

Maximal atomicity: every atomic step does input or output
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Input function input function service

Consists of

input part: executed atomically when function is called
output part: executed atomically when function returns

Input part consists of

input condition: predicate in vars and params, no side-e�ect
body: non-blocking deterministic update to main's vars

Body is executed if input condition holds, o/w fault

Output part consists of

output condition and body, as in input part

Body is executed only if output condition holds, o/w block

Note: input function never calls the environment



Example: Bounded Counter � 1 input function service

service Cntr1(N) {
ic {N in 0..100}
int x ← 0;
return mysid;

input mysid.add(int d) {
ic {d in −2..2}
oc {x + d in 0..N}
x ← x + d;
return;

} }

Allows multiple add calls
ongoing simultaneously

Possible evolution

u does
s ← startSystem(Cntr(3))

u calls s.add(2)

u returns

v calls s.add(2) // blocks

w calls s.add(−1)

w returns

v returns



Example: Bounded Counter � 2 input function service

service Cntr2(N) {
...

input mysid.add(int d) {
ic {d in −2..2}

output(rval) {
oc {(x + d in 0..N)

and (rval in x..x + d)}
x ← x + d;
return rval;

} } }

Like Cntr1 except add()
returns a value between
old x and new x

Note that rval is set not in body but in output condition

add() has external non-determinism

external: choice is immediately visible to environment



Example: Bounded Counter � 3 input function service

service Cntr3(N) {
...

input mysid.add(int d) {
ic {d in −2..2}

output(δ) {
oc {(x + δ in 0..N) and

((d < 0 and δ in d..0) or
(d≥0 and δ in 0..d))

}

x ← x + δ;
return;

} } }

Like Cntr1 except
add(d) updates x by
some value between d
and 0

add() has internal non-determinism

internal: choice is not immediately visible to environment



Input function: general case input function service

input retType sid.fname(param)
ic {predicate}
body

input part

output(rval, internalParam)
oc {pred}
body
return rval;

output part

output(.): introduces additional parameters for output part

rval: return value; allows external nondeterminism
internalParam: allows internal nondeterminism
parameters can have any value allowed by the output condition
parameters not updated in output body

The sid �eld in the header can di�er from mysid (Why?)
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Output function output function service

Output function: �reverse� of an input function

Consists of an output part followed by an input part

Output part: output condition and body

body ends in call to environment, say sid.fn(param)
atomically create thread and execute body (including call)
only if output condition holds, o/w block

Input part: input condition and body

body starts with the call's return value (if any)
when call returns, atomically execute body and terminate
thread if input condition holds, o/w fault

Never called by environment.

Program has no other call to sid.fn(.)
so all its sid.fn(.) calls are caputed by the output condition



Output function: general case output function service

output fname ( extParam, intParam) {
oc {oc predicate}
output body

rval ← sid.fn(args);
ic {ic predicate}
input body

}

output part,
ends at sid.fn(.)

input part,
begins at rval

extParam: sid and args of the call

intParam: parameters to achieve internal nondeterminism



Example: Tick Generator � 1 output function service

service Tkr1(Sid s, int K) {
ic {K > 0}
int ongoing ← 0;
return;

output doTick(int n) {
oc {ongoing < K and n > 0}
ongoing + +;

s.tick(n);

ic {true}
ongoing − −;

} }

Issues s.tick(n) calls,
where n is positive int

At most K calls
ongoing at any time



Example: Tick Generator � 2 output function service

service Tkr2(Sid s, int K) {
ic {K > 0}
int ongoing ← 0;
bool active ← true;
return;

output doTick(int n) {
oc {active and

ongoing < K and n > 0}
ongoing + +;

bool rval ← s.tick(n);

ic {true}
if (not rval)

active ← false;
ongoing − −;

} }

Like Tkr1 except

tick() returns a
boolean
false return stops
the service



Example: Tick Generator � 3 output function service

service Tkr3(Sid s, int K) {
ic {K > 0}
int ongoing ← 0;
bool lowMode ← false;
return;

out-
put doTick(int n, bool chm) {

oc {(lowMode and n = 1) or
(not lowMode and n > 0)}

ongoing + +;

if (chm) lowMode ← true;

s.tick(n);

ic {true}
ongoing − −;

} }

Like Tkr1 except

has a �low� mode:
tick(1) calls only

entry to low mode
is internally
nondeterministic
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Atomicity assumption atom, progress service

Every service program has the same atomicity assumption

every input part is atomic
every output part is atomic

Main is is also atomic, but comes for free because

it is executed by one thread
it does not interact with the environment before the return



Progress assumption atom, progress service

Predicate whose terms are restricted to be leads-to assertions

(A leads-to B) ⇒ (C leads-to D)
forsome(j: (A(j) leads-to B(j)))
⇒ forall(k: (C(k) leads-to D(k)))

Avoid fairness assertions because

clumsier to prove (and invert)
often inconvenient (e.g., message-passing service)

Progress assumption must be locally realizable, i.e., realizable
without requiring inputs from the environment.

�u holds lock� leads-to �u calls rel()” // not ok
�u calls acq()� leads-to �u returns from call� // not ok
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Lock Service � 1 lock service

service LockService() {
ic {true}
...
ending ← false;
return mysid;

input void mysid.acq()
ic {not ending and

mytid does not have lock}
...
oc {no user has lock}
...
return;

input void mysid.rel()
ic {not ending and

mytid has lock}
...
oc {true}
return;

input void mysid.end()
ic {not ending}
ending ← true;
oc {true}
return;

}



Lock Service � 2 lock service

atomicity assumption {input parts and output parts}

progress assumption { // u, v range over tids

forall(u: (u in rel) leads-to (not u in rel));

forall(u: (u holds lock) leads-to (u in rel))
⇒ forall(u: (u in acq) leads-to (not u in acq));

forall(u: (u in end) leads-to (not u in end));
}

}
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Distributed services options dist service

Distributed message-passing system
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Msg-passing service program (option 2) dist service

service MsgService(a1, a2) {
ic {...}
... // define variables
x1 ← sid(); // sid of sender at a1
x2 ← sid(); // sid of receiver at a2
return [x1, x2];

input void x1.tx(msg)
ic {...} ...
oc {...} ...
return;

input Msg x2.rx()
ic {...} ...
output(msg) {

oc {...} ...
return msg;

atomicity assumption {...}
progress assumption {...}

}
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A implements B � 1 implements

General programs A and B // B need not be service

A implements B if, roughly speaking,

A can accept every input that B can accept
any output of A is an output that B can do
A satis�es B 's progress assumption

To formalize, de�ne following for any evolution x

ext(x): the io sequence of x

x is safe wrt B if x is fault-free and ext(x) is generated by a
fault-free evolution of B .

x is complete wrt B if x is fault-free and ext(x) is generated by
a fault-free evolution of B that satis�es B 's progress assumption



A implements B � 2 implements

De�nition: A implements B if

Safety:
for every �nite evolution x of A s.t. x safe wrt B

for every input e of B , if x ◦ 〈e〉 is safe wrt B then
input e at x does not make A faulty

any step that A can do at the end of x is fault-free,
and if that step outputs f then x ◦ 〈f 〉 is safe wrt B

Progress:

if evolution x of A is safe wrt B and satis�es A's progress
assumption, then x is complete wrt B

Achieves compositionality: i.e., C is preserved by C [B/A]

But it's not in terms of programs A and B



Program-version: A implements B � 1 implements

Program A, service B

Construct a program B = B[inputs ↔ outputs]

B : can output e whenever B can input e, and vice versa
B : most general environment for any implementation of B
referred to as inverse of B

Obtaining B is easy for a service program

treat B .main's return value as a parameter of B-inverse

change every B input function −→ B output function

input part −→ output part
output part −→ input part

similarly change every B output function −→ B input function

B 's progress assumption becomes B 's progress condition



Program version: A implements B � 2 implements

De�ne program Z that executes A and B concurrently

program Z() {
ia {B.ic}
inputs(); outputs(); // aggregate Z is closed
rval ← startSystem (A (param));
si ← startSystem (B (param, rval));
return mysid;

atomicity assumption {}
progress assumption {weak fairness}

}

A implements B if program Z satis�es

for every input condition ic{P} in B :
Inv ((thread at si.ic{P})⇒ si.P) (safety condition)

si.(progress condition) (progress condition)
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Inverse of Lock Service � 1 lockservice implements

service LockService() {
program LockServiceInverse(lck) { // lck: lock system

ic {true}
...

ending ← false;
return mysid;

output doAcq() input void mysid.acq()
ic oc {not ending and

mytid does not have lock}
...

lck.acq(); // add call
oc ic {no user has lock}
...
return;



Inverse of Lock Service � 2 lockservice implements

output doRel() input void mysid.rel()
ic oc {not ending and mytid has lock}
...
lck.rel(); // add call
oc ic {true}
return;

output doEnd() input void mysid.end()
ic oc {not ending}
ending ← true;
lck.end(); // add call
ic {true}
return;

atomicity assumption {...} // as before
progress assumption condition {....} // as before



Program Z for Lock and LockService lockservice implements

program Z() {
ia {LockService.ic}
inputs(); outputs();
lck ← startSystem ( Lock());
lsi ← startSystem (LockServiceInverse(lck));
return mysid;

atomicity assumption {}
progress assumption {weak fairness}

}

Lock() implements LockService() if program Z satis�es

Inv (thread t at lsi.doAcq().ic) ⇒ lsi.(no user has lock)

lsi.(progress condition)
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Inverse of Msg-passing Service msgservice implements

service MsgService(a1, a2) {
program MsgServiceInverse(a1, a2, [x1,x2]) {

ic {...}
· · ·
x1 ← sid();
x2 ← sid();
return [x1, x2] mysid;

output doTx(msg)
ic oc {...} ...
x1.tx(msg);
oc ic {...} ...
return;

output doRx()
ic oc {...} ...
msg ← x2.rx();
oc ic {...} ...
return msg;

atomicity assumption {...}
progress assumption condition {...}

}



Program Z for MsgImp and MsgService msgservice implements

program Z(a1,a2) {
ia {MsgService.ic}
inputs(); outputs();
[x1,x2] ← startSystem(MsgImp(a1,a2));
si ← startSystem(MsgServiceInverse(a1,a2, [x1,x2]));
return mysid;

atomicity assumption {}
progress assumption {weak fairness}

}

MsgImp(a1,a2) implements MsgService(a1,a2) if Z satis�es

Inv (thread t at si.doRx().ic) ⇒ si.doRx().ic)

lsi.(progress condition)
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Using LockService using services

program ProdCons1(J) {
ia {...} // input assumption
lck ← startSystem(Lock() LockService());
cons ← startSystem(Consumer(lck,J));
prod ← startSystem(Producer(lck,cons,J));
return mysid;

atomicity assumption {} // none
progress assumption {weak fairness for thread}

}

For proper use of service, need to prove

Inv (thread t at lck.acq.ic)
⇒ lck.(not ending and t does not have lock)

Inv (thread t at lck.rel.ic)
⇒ lck.(not ending and t has lock)



Using MsgService � 1 using services
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Using MsgService � 2 using services

program DistApp(a1, a2) {
ia {...} // input assumption
[x1,x2] ← startSystem(MsgService(a1,a2)); // tx x1; rx x2
[y2,y1] ← startSystem(MsgService(a2,a1)); // tx y2; rx y1
z1 ← startSystem(App(x1,y1,a1,a2));
z2 ← startSystem(App(y2,x2,a2,a1));
return [z1,z2];

atomicity assumption {} // none
progress assumption {weak fairness for thread}

}

For proper use of service, need to ensure that calls to services
(x1.tx, x2.rx, y2.tx, y2.rx) satisfy their input conditions.
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