Introduction to SESF
(Services and Systems Framework)

Shankar

February 21, 2014

Programs
Service Programs
Implements

Using Services

Program structure programs

m Program

= header: program name + program parameters
= main code + functions + input functions
= assumptions of inputs, atomicity, progress // for analysis only

m startSystem (pname(params)): instantiates program

= basic system is created with a unique system id (abbr sid)
= instantiating thread executes main and returns
= system remains

m Special read-only variables available for code

= mysid: sid of this system
m mytid: tid of this thread

m All parameters are read-only

Input functions

= Input function:

m retType mysid. fname (params) {body}
= retType can be void or absent (for arbitrary type)

m Thread in environment can call input functions of system

m syntax: sid.fname (params)
= thread enters system, executes function, returns

m Above is the only way for systems to interact
(other than instantiating a program)

programs

m Can create a thread executing a local non-input function

» startThread(func(params))
m returns a unique thread id (abbr tid)
= thread ends when it reaches end of func()

m local threads: those created in the system
m guest threads: those that came from the environment

System termination programs

m Platform eventually terminates a system if

= a thread in system has executed endSystem()
= system is continuously in a endable state

m System is endable

= no guest threads in the system
= no local thread of the system is in another system

Ensures that a thread is not left in limbo.

m At termination, platform

» terminates all local threads
» cleans up system’s state

start return input output output input
system systemid call return call return
\L maln COde T gueSt oo EE@]\
Threads oo ooEoEoDOoEEE@ thread
ina start return
basic thread | | thread id
SyStem |Oca| s s s s s s s s s s R s s Ry s s s s e Y s R s s R s sl g@a
thread
time

Assumptions of a Program programs

m Analyzing a program requires three kinds of assumptions

m input assumptions: about inputs from systems in environment
m atomicity assumption: atomicity expected from platform
m progress assumption: progress expected from platform

m All are defined (explicitly or by default) in the program

m They are only for analysis; program need not check them

m Placed at input function headers and output call returns
= syntax: ia{predicate} // predicate in variables and input
» default: ia{truel

m Implicitly includes type constraints on call params and return vals

program xyz(int p) (
ia{p primel
int x;

function mysid.fnl(int q)
ialx +p > ql
int y;

ret < sid.fn2(.);
ia{predicate in p,x,q,y,retl

33

Atomicity assumption programs

m An execution « of a code chunk is atomic means that while « is
ongoing, no (other) thread can influence or observe a

= thus o appears to be indivisble or “instantaneous”

m Code chunk S is atomic if every execution of S is atomic

m Every platform provides some atomicity

m bare hardware: read word, write word, test-and-set, ...
» OS: above + locks, condition variables, semaphores, ...

m Atomicity assumption of a program identifies the atomicity
assumed to be provided by the platform

m Without them, (multi-threaded) program is not well-defined

Effective Atomicity programs

m Not all of a program need be covered by the atomicity assumption

m Program can ensure that an execution « of a code chunk is
atomic by ensuring that there is no simultaneous conflicting
execution 3
= « and (3 conflict if one writes to memory accessed by the other

m Program does this by isolating conflicting code

= in time, e.g., by thread synchronization
= in memory, e.g., by duplicating data

m Effective atomicity can depend on program’s input assumptions
= e.g., at most one ongoing call of a non-reentrant function

Progress assumption programs

m For a program to satisfy progress properties, the platform must
execute its threads with some progress.

m Two kinds of minimal progress: weak fairness and strong fairness

m Weak fairness for a thread
= thread regularly gets processor cycles, i.e., non-zero speed
Ensures that it gets past a continuously-unblocked instruction

m Strong fairness for a blocking instruction S

= any thread at S eventually gets past if S is repeatedly (but not
necessarily continuously) unblocked

m Progress assumption states the fairness expected of the platform

Aggregate Systems and Composite Systems programs
m For a basic system x, the aggregate system x is x and all basic
systems created directly or indirectly by x

m For a program Y, the aggregate system Y is the aggregate system
of Y's instantiation without renaming or constraining its params.

m The evolutions and properties of program Y are those of aggregate
system Y

m Aggregate system inputs: union of component systems’ inputs,
except for inputs explicitly hidden from environment

m Aggregate system outputs: union of component systems’ outputs
that are directed to the environment of the aggregate system.

m Composite system: an arbitrary collection of basic systems
m inputs, outputs: same as in aggregate system

Programs
Example: Producer-consumer-lock
Service Programs
Input Functions
Output Functions
Atomicity and Pro
Example Lock Service
Distributed-Services Programs
Implements
Lock implements LockService
MsgImp implements MsgService
Using Services

ss Assumptions

ProdCons prod-cons ' programs

program ProdCons(J) { // J: max # of items produced
ia {d > 13 // input assumption

Tck < startSystem(Lock());

cons < startSystem(Cons(1ck, J));

prod < startSystem(Prod(1ck, cons, J));

return [prod, cons]; // end main

atomicity assumption { 3 // none; single-threaded

progress assumption {weak fairness}

m ProdCons may be a “make” program

m ProdCons may be a “virtual” program,
e.g., humans at three computers, synchronizing over phone

prod-cons

program Lock() {
ia (...}
return mysid;

input void mysid.acq()
ia (...}
return; 3

atomicity assumption {
word read, word write

input void mysid.rel()
ia {...2
return;

progress assumption {
weak fairness of threads
3

input void mysid.end() L

ia (...}
endSystem() ;
return;

Producer and Consumer

program Producer(1ck,cons,d) {
ia {...]
t < startThread(produce());
return mysid;

function void produce()
for (i in 1..J)
produce item;
1ck.acq();
cons.put(item);
Tck.rel();
endSystem();

atomicity & progress
assumptions

prod-cons ' programs

program Consumer(lck, J)
ia {...3
t < startThread(consume());
return mysid;

function void consume()
for (i in1..9) {
Tck.acqQ);
consume item;
Tck.rel();
Tck.end();
endSystem();

input void mysid.put(item)
ia (...}
return;

atomicity & progress assumps

Programs
Service Programs
Implements

Using Services

Service program structure service

m A service program is essentially a state machine
organized into “input” and “output” functions

service prog name(params) {
ic {predicate in params}
<main> // define and initialize variables
<input functions>
<output functions>

<atomicity and progress assumptions>
3

m Does not create any other system
= so only one basic system, even for a distributed service
m Creates threads only to execute output functions (if any)
m Maximal atomicity: every atomic step does input or output

Programs

Example: Producer-consumer-lock
Service Programs

Input Functions

Output Functions

Atomicity and Progress Assumptions

Example Lock Service

Distributed-Services Programs
Implements

Lock implements LockService

MsgImp implements MsgService
Using Services

Input function input function service

m Consists of

= input part: executed atomically when function is called
= output part: executed atomically when function returns

m Input part consists of

= input condition: predicate in vars and params, no side-effect
= body: non-blocking deterministic update to main's vars

Body is executed if input condition holds, o/w fault

m Output part consists of
= output condition and body, as in input part
Body is executed only if output condition holds, o/w block

m Note: input function never calls the environment

Example: Bounded Counter — 1 input function service

m service Cntrl(N) {
ic {N in 0..1003
int X < 0;
return mysid;

input mysid.add(int d) {

Possible evolution

s U does
s < startSystem(Cntr(3))

m u calls s.add(2)

ic {d in -2..23
oc {x+d in 0..N} = U returns
X — X + d; = v calls s.add(2) // blocks
return; m w calls s.add(-1)
} m W returns

. m Vv returns
m Allows multiple add calls

ongoing simultaneously

Example: Bounded Counter — 2 input function service

m service Cntr2(N) {

input mysid.add(int d) {

ic {din -2..2) Like Cntrl except add()

output(rval) { returns a value between
oc {(x+d in 0..N) old x and new x
and (rval in x..x+d)3
X ¢ X + d;

return rval;

313

m Note that rval is set not in body but in output condition
m add() has external non-determinism
= external: choice is immediately visible to environment

Example: Bounded Counter — 3
m service Cntr3(N) {

input mysid.add(int d)
ic {d in -2..23

output(d)
oc {(x+4 in 0..N) and
((d<0 and ¢ in d..0) or
. (d>0 and ¢ in 0..d))
X+ X+ 0;
return;
31!

m add() has internal non-determinism

input function 'service

Like Cntrl except
add(d) updates x by
some value between d
and 0

= internal: choice is not immediately visible to environment

Input function: general case input function service

input retType sid.fname(param) _
ic {predicate} input part
body

output(rval, internalParam)
oc {pred}
body
return rval;

output part

m output(.): introduces additional parameters for output part
m rval: return value; allows external nondeterminism
= internalParam: allows internal nondeterminism
= parameters can have any value allowed by the output condition
= parameters not updated in output body

m The sid field in the header can differ from mysid (Why?)

Programs

Example: Producer-consumer-lock
Service Programs

Input Functions

Output Functions

Atomicity and Progress Assumptions

Example Lock Service

Distributed-Services Programs
Implements

Lock implements LockService

MsgImp implements MsgService
Using Services

Output function output function service

m QOutput function: “reverse” of an input function
m Consists of an output part followed by an input part

m QOutput part: output condition and body

= body ends in call to environment, say sid. fn(param)
= atomically create thread and execute body (including call)
only if output condition holds, o/w block

m Input part: input condition and body

= body starts with the call’s return value (if any)
= when call returns, atomically execute body and terminate
thread if input condition holds, o/w fault

m Never called by environment.

m Program has no other call to sid.fn(.)
m so all its sid.fn(.) calls are caputed by the output condition

output function

m output fname (extParam, intParam) {
oc {oc predicatel
output body

rval < sid.fn(args);
ic {ic predicatel input part,
input body begins at rval

output part,
ends at sid.fn(.)

3

m extParam: sid and args of the call

m intParam: parameters to achieve internal nondeterminism

output function

m service Tkrl(Sid s, int K) { m Issues s.tick(n) Ca”S,

ic {K>03 where n is positive int
int ongoing « 0; = At most K calls
return;

ongoing at any time
output doTick(int n) {
oc {ongoing <K and n> 03
ongoing++;
s.tick(n);
ic {truel
ongoing--;

output function

m service Tkr2(Sid s, int K) { = Like Tkrl except
1:C K> 0_3 = tick() returns a
int ongoing <+ 0; boolean
bool active < true; = false return stops
return; the service

output doTlick(int n) {
oc {active and
ongoing < K and n > 03
ongoing++;
bool rval < s.tick(n);

ic {truel

if (not rval)
active <« false;

ongoing - -;

output function

m service Tkr3(Sid s, int K) {
ic {K>03
int ongoing < 0;
bool TowMode <— false;
return: = entry to low mode
is internally
nondeterministic

m Like Tkrl except

= has a “low” mode:
tick(1) calls only

out-
put doTick(int n, bool chm) {
oc {(TowMode and n=1) or
(not TowMode and n>0)}
ongoing++;
if (chm) TowMode < true;
s.tick(n);

ic {truel
ongoing - —;

Programs

Example: Producer-consumer-lock
Service Programs

Input Functions

Output Functions

Atomicity and Progress Assumptions

Example Lock Service

Distributed-Services Programs
Implements

Lock implements LockService

MsgImp implements MsgService
Using Services

Atomicity assumption atom, progress ' service

m Every service program has the same atomicity assumption

= every input part is atomic
= every output part is atomic

m Main is is also atomic, but comes for free because

= it is executed by one thread
m it does not interact with the environment before the return

Progress assumption atom, progress 'service

m Predicate whose terms are restricted to be leads-to assertions
m (A leads-toB) = (C leads-to D)
» forsome(j: (A(j) leads-toB(j)))
= forall(k: (C(k) leads-toD(k)))

m Avoid fairness assertions because

= clumsier to prove (and invert)
= often inconvenient (e.g., message-passing service)

m Progress assumption must be locally realizable, i.e., realizable
without requiring inputs from the environment.
= “u holds lock” leads-to “u calls re1()” // not ok
» "“u calls acqO)" leads-to “u returns from call’ // not ok

Programs

Example: Producer-consumer-lock
Service Programs

Input Functions

Output Functions

Atomicity and Progress Assumptions

Example Lock Service

Distributed-Services Programs
Implements

Lock implements LockService

MsgImp implements MsgService
Using Services

service LockService() {

ic {truel input void mysid.rel()
- ic {not ending and
ending < false; mytid has Tock}
return mysid; ves

oc {truel
input void mysid.acq() return;

ic {not ending and
mytid does not have Tock}

input void mysid.end()

oc {no user has Tock} ic {not ending}

ces ending < true;

return; oc {truel
return;

atomicity assumption {input parts and output parts}

progress assumption { // u, v range over tids
forall(u: (u in rel) leads-to (not u in rel));

forall(u: (u holds lock) leads-to (u in rel))
= forall(u: (u in acq) leads-to (not u in acq));

forall(u: (u in end) leads-to (not u in end));
3
3

Programs

Example: Producer-consumer-lock
Service Programs

Input Functions

Output Functions

Atomicity and Progress Assumptions

Example Lock Service

Distributed-Services Programs
Implements

Lock implements LockService

MsgImp implements MsgService
Using Services

Distributed message-passing system

| A
void <—x1 x(msg) msg <—‘ xm2 rX()

atv

[. O Dlstrlbuted system O .]

Msg-passing service (option 1) Msg-passing service (option 2)
oA | A A | A
void <x1.tx(msg) msg < x2.rx() void <x1.tx(msg) msg < x2.rx()
ail a2V atl a2l
@ @) | | |

service MsgService(al, a2) {
ic {...]
X // define variables

x1l < sid(); // sid of sender at al

x2 < sid(); // sid of receiver at a2

return [x1, x21;

input Msg x2.rx()

input void x1.tx(msg) ic 6.3

ic {...} ... output(msg) €
oc {...2} ...

oc {...2 ...
return;

return msg;

atomicity assumption (...}
progress assumption {...}

Programs
Service Programs
Implements

Using Services

A implements B — 1 implements

m General programs A and B // B need not be service

m A implements B if, roughly speaking,
» A can accept every input that B can accept
= any output of A is an output that B can do
= A satisfies B's progress assumption

m To formalize, define following for any evolution x

= ext(x): the io sequence of x

» x is safe wrt B if x is fault-free and ext(x) is generated by a
fault-free evolution of B.

= x is complete wrt B if x is fault-free and ext(x) is generated by
a fault-free evolution of B that satisfies B’s progress assumption

A implements B — 2 implements

m Definition: A implements B if
» Safety:
for every finite evolution x of A s.t. x safe wrt B
= for every input e of B, if x o (e) is safe wrt B then
input e at x does not make A faulty

= any step that A can do at the end of x is fault-free,
and if that step outputs f then x o (f) is safe wrt B
= Progress:

= if evolution x of A is safe wrt B and satisfies A’s progress
assumption, then x is complete wrt B

m Achieves compositionality: i.e., C is preserved by C[B/A]
m But it's not in terms of programs A and B

Program-version: A implements B — 1 implements

m Program A, service B

m Construct a program B = Blinputs <> outputs]
= B: can output e whenever B can input e, and vice versa

= B: most general environment for any implementation of B
= referred to as inverse of B

m Obtaining B is easy for a service program
= treat B.main's return value as a parameter of B-inverse

change every B input function — B output function

= input part — output part
= output part — input part

similarly change every B output function — B input function

B'’s progress assumption becomes B’s progress condition

Program version: A implements B — 2 implements

m Define program Z that executes A and B concurrently

program Z() {
ia {B.ic}
inputs(); outputs(); // aggregate Z is closed
rval < startSystem(A (param));
si < startSystem(B (param, rval));
return mysid;

atomicity assumption {3
progress assumption {weak fairness}

m A implements B if program Z satisfies
= for every input condition ic{P3 in B:
Inv ((thread at si.ic{P}) = si.P) (safety condition)
= si.(progress condition) (progress condition)

Programs
Example: Producer-consumer-lock
Service Programs
Input Functions
Output Functions
Atomicity and Pro
Example Lock Service
Distributed-Services Programs
Implements
Lock implements LockService
MsgImp implements MsgService
Using Services

ss Assumptions

lockservice

: co_LoekSeryicel){
program LockServicelInverse(lck) { // 1ck: lock system
ic {truel

ending < false;
return mysid;

output doAcq() Fnput—veid-mysid-acgsr

+e oc {not ending and
mytid does not have Tockl

Tck.acq(); // add call
o€ ic {no user has Tock3}

return;

lockservice

output doRel() input—voidmysid-retor
4e oc {not ending and mytid has Tock}

Tck.rel(); // add call
ee ic {truel

return;

output doEnd() dnput—veid-mysid-endO—
4e oc {not endingl

ending < true;

Tck.end(); // add call
ic {truel

return;

atomicity assumption {...3 // as before
progress assumption condition {....2} // as before

lockservice

m program Z() {
ia {LockService.ic}
inputs(); outputs();
1ck < startSystem(Lock());
1si < startSystem(LockServicelnverse(lck));
return mysid;

atomicity assumption {2
progress assumption {weak fairnessl

m Lock() implements LockService() if program Z satisfies
m Inv (thread t at 1si.doAcq().ic) = Tsi.(no user has lock)

m 1si.(progress condition)

Programs
Example: Producer-consumer-lock
Service Programs
Input Functions
Output Functions
Atomicity and Pro
Example Lock Service
Distributed-Services Programs
Implements
Lock implements LockService
MsgImp implements MsgService
Using Services

ss Assumptions

msgservice

B serviceMsgServieetal; a2+
program MsgServicelnverse(al, a2, [x1,x2]1) {

ic {...}

x—~—-sidE+

x2—~——sHd+

return &d5=23 mysid;

output doTx(msg) output doRx()
e oc {...] ... e oc {...] ...
x1.tx(msg); msg < x2.rx();
ec ic {...] ... ec ic {...} ...
return; return msg;

atomicity assumption (...}
progress assufption condition {...3

Program Z for MsgImp and MsgService msgservice implements

m program Z(al,a2) {
ia {MsgService.ic}
inputs(); outputs();
[x1,x2] < startSystem(MsgImp(al,a2));
si < startSystem(MsgServicelnverse(al,a?2, [x1,x21));
return mysid;

atomicity assumption {1
progress assumption {weak fairnessl

m MsgImp(al,a2) implements MsgService(al,a?2) if Z satisfies
m Inv (thread t at si.doRx().ic) = si.doRx().ic)

m 1si.(progress condition)

Programs
Service Programs
Implements

Using Services

m program ProdCons1(J) {
ia (...} // input assumption
Tck < startSystem(teek&)> LockService());
cons <« startSystem(Consumer(lck,J));
prod <— startSystem(Producer(1ck,cons,J));
return mysid;

atomicity assumption {3 // none
progress assumption {weak fairness for thread}

m For proper use of service, need to prove
m Inv (thread t at lck.acq.ic)
= 1ck.(not ending and t does not have Tock)
m Inv (thread t at lck.rel.ic)
= lck.(not ending and t has Tock)

A L
msg < z1.9() msg < z1.9()
at a2
z2
App(y2, X2)
void < x1.tx(msg) msg < X2.rx()
ai az‘

[MsgService(al, a2)]
msg <- y1.rx() void <~ y2.tx(msg)
& al az//
[MsgService(a2, al)]

Using MsgService - 2 using services

m program DistApp(al, a2) {
ia {...] // input assumption
[x1,x2] < startSystem(MsgService(al,a2)); // tx x1; rx x2
[y2,yl]l < startSystem(MsgService(a2,al)); // tx y2; rx yl
z1 < startSystem(App(x1,yl,al,a2));
z2 < startSystem(App(y2,x2,a2,al));
return [z1,z2];

atomicity assumption {3} // none
progress assumption {weak fairness for thread}

m For proper use of service, need to ensure that calls to services
(x1.tx, x2.rx, y2.tx, y2.rx) satisfy their input conditions.

	Programs
	Example: Producer-consumer-lock

	Service Programs
	Input Functions
	Output Functions
	Atomicity and Progress Assumptions
	Example Lock Service
	Distributed-Services Programs

	Implements
	Lock implements LockService
	MsgImp implements MsgService

	Using Services

