Simple Lock Program and Service

Shankar

September 18, 2014

Outline

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Producer-Consumer using Lock Service

Program SimpleLock(N) overview lock program

m Lock for threads 0, ---, N—1 J/N=>1
= input functions: acq(), rel(), end()
= non-input function: serve()

= Main
= bool xreg[NI: xreqlLi] true iff user i has ongoing request
= bool xacq: true iff a user holds the lock
= start thread executing serve()

m Function serve()

» cycle through entries of xreq
m if xreqLj] true: set xacq, unset xreqljl, wait for xacq false

m Input functions
m acq(): set xreqCmytidl, wait for it to be false; return
m rel(): unset xacq; return
m end(): execute endSystem(); return

Program SimpleLock(N) - 1

program SimpleLock(int N) {
ia {N > 13
boolean[N] xreq <« false;
boolean xacq < false;
int xp < 0;
Tid t < startThread(serve());
return mysid;

function void serve() {
while (true)

a0: if e (xreqlxpl)

al: e xacq < true;

a2: e xreqlxpl < false;

a3: while e (xacq) skip;

a4d: xp < mod(xp+l, N);

3

lock program

Note the o's

= ignore them for now

» later we refer to them as
“atomicity breakpoints”

SimpleLock(N) - 2

input void mysid.acq()
ia {mytid in 0..N—13
ab: xreqCmytidl < true;
ab: while e (xreqlmytidl) skip;
return;

input void mysid.rel() {
ia {mytid in 0..N—13
a’: xacq < false;
return;

input void mysid.end() {
ia {truel
endSystem();

lock program

atomicity assumption:
reads and writes of
xacq,
xreql0]1, ..., xreqCN—1]
progress assumption:
weak fairness
for threads

Some Properties of SimpleLock(N) lock program

m Input assumptions of acq() and rel() are “weak”

= only require caller tid to be in 0..N-1
= allow acq() caller to hold lock
= allow rel() caller to not hold lock

m Hence the program has some odd allowed evolutions
= e.g., two users hold lock simultaneously
[but it does implement SimpleLockService]

m Input assumptions are sufficient to ensure following

» SimpleLock(N) is fault-free
// no allowed evolution is faulty

= the e's are a valid set of atomicity breakpoints
// code between two successive o's is effectively atomic

Outline

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Producer-Consumer using Lock Service

Simple Lock Service Overview lock service

m Lock for threads 0, ---, N—1

m Main
= vars indicating: whether ending; which user (if any) has lock

m Input functions acq(), rel(), end()
m No output function

m Defines all acceptable io sequences
m Constrains both environment and lock, e.g.,
= acq.ia: not ending, caller in 0..N—1, does not hold lock

m Atomicity assumptions: input parts and output parts

m Progress assumptions:

m acq() returns eventually if lock becomes repeatedly free
= rel() and end() each returns eventually

Program SimplelLockService - 1 lock service

service SimplelLockService(int N) {

ic (N > 13
boolean[N] acqd < false; // acqdlil true iff i has Tock
ending < false; // termination initiated

return mysid;

input void mysid.acq() {
ic {not ending and (mytid in 0..N—1) and not acqdlmytidl}
oc {forall(j in 0..N—1: not acqdl(j1)3
acqdCmytid]l < true;
return;

Program SimpleLockService - 2 -

input void mysid.rel() {
ic {not ending and (mytid in 0..N—1) and acqdlmytidl}
acqdlmytidl < false;
oc {truel

return;
3

input void mysid.end() {
ic {not endingl
ending < true;
oc {truel

return;
3

Program SimpleLockService - 3 lock service

atomicity assumption {input parts and output partsl

progress assumption {

// rel returns
forall(i: (i inmysid.rel) leads-to (not i inmysid.rel));

// if no one holds the lock forever then acq returns
forall(i: acqd[i]l leads-to not acqdlil) =
forall(i: (i in mysid.acq) leads-to (not i in mysid.acq));

// end returns

forall(i: (i inmysid.end) leads-to (not i inmysid.end));

}}

m Convention: 1, j range over 0..N-1

Observations on SimplelLockService(N) lock service

m Program is fault-freee
m otherwise it's useless as a service

m Atomicity breakpoints at (and only at) output conditions
= natural consequence of atomicity assumptions

m Progress stated by leads-to (and not fairness) assertions

m Comparing against SimpleLock
= input conditions stronger than SimplelLock’s input assumptions
= so precludes some (“odd”) evolutions of SimpleLock
= has io sequences not achievable by SimpleLock(N)

Outline

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Producer-Consumer using Lock Service

Overview: Lock Implements Service implements

m Define lock-service inverse program
= most general environment for a lock implementation

m Define program Z:
= concurrently executes implementation and service inverse

m Define the assertions that Z must satisfy

= safety: 7 satisfies inverse's input conditions
= progress: Z inverse's progress assertions

m Prove that Z satisfies above assertions

Outline inverse service -

Simple Lock Program

Simple Lock Service

Proving Lock Implements Service
Simple Lock Service Inverse

Producer-Consumer using Lock Service

SimpleLockService Inverse - 1 inverse service -

 coSimplelockServicelint NI

program SimplelLockServiceInverse(int N, Sid Tck) {
// Tck: Tlock system being tested
ic (N = 13
boolean[N] acqd < false;
ending « false;
return mysid;

. . d dacqOL
output doAcq() {
i€ oc {not ending and (mytid in 0..N—1) and not acqdlmytid]
Tck.acq();
oc ic {forall(j in 0..N—1: not acqd[j1)}
acqdCmytidl < true;
return;

SimpleLockService Inverse - 2 inverse service -

output doRel() Fnput—veid-mysidret)
4e oc {not ending and (mytid in 0..N—1) and acqdlmytid]l}
acqdlmytid]l < false;
Tck.rel();
ee ic {truel

return;
3

ot o dendO
output doEnd() {
4e oc {not endingl}
ending < true;
Tck.end();
oc ic {truel
return;

SimpTlelLockService Inverse — 3 inverse service implements

atomicity assumption {input parts and output parts}

progress assumption condition {
forall(i: (i in mysid Tck.rel)

leads-to (not i inmysid 1ck.rel));

forall(i: acqd[i]l leads-to not acqdlil) =
forall(i: (i in mysid Tck.acq)
leads-to (not 1 in mys+d 1ck.acq));

forall(i: (i inmysid Tck.end)
leads-to (not i in mysid Tck.end));

Outline conditions -

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Implements conditions

Producer-Consumer using Lock Service

Program of lock and inverse service conditions implements

program Z(int N) {

ic (N > 13

inputs(); outputs(); // aggregate sys-
tem Z is closed

Sid Tck « startSystem(SimpleLock(N));
Sid 1si < startSystem(SimpleLockServicelInverse(N, 1ck));
return mysid;

atomicity assumption {3
progress assumption {weak fairnessl

Assertions that Z(N) must satisfy conditions implements

By : Inv [(i at Tsi.doAcqg.ic) = forall(j: not acqdl[jl)]
By : (i in Ick.rel) leads-to (not i in lck.rel)

B, : forall(i: acqdlil leads-to not acqdlil) =
forall(i: (i inlck.acq) leads-to (not i in Tck.acq))

Bs : (i in 1ck.end) leads-to (not i in Tck.end)

m Recall conventions
= i, j range over 0..N-1

= free variables are universally quantified
e.g., B; equivalent to forall(i: Bs)

Outline

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Proving the Implements Conditions
Producer-Consumer using Lock Service

Effective atomicity of Z(N) proof implements

system Tck(N) system 1si(N,1ck)
<main> <main>
fn serve(){...00... ...}
input acqOf...e...] output doAcq(){eoc ...
input rel1){...} output doRel(){eoc ...}
input endO){...} output doEnd(){eoc ...}
m step Z.init: Z.main, 1ck.init, 1si.main
m step doAcq.call: 1si.doAcq.oce — Tck.acqe
m step acq.ret: 1ck.acqe — 1si.doAcq.end
m step doRel: 1si.doRel.oce — 1ck.rel — 1si.doRel.end
m step doEnd: 1si.doEnd.oce — 1ck.end — 1si.doEnd.end
m steps in Tck.serve() defined by its e's

= valid in Z because 1ck gets only allowed inputs (from 1s1)

Proof of safety condition: By proof implements

m Recall By: if thread at doAcq.ic then every acqdl j] is false
m Given Z's effective atomicity, By is equivalent to Inv Gy
Co : ((i on 1ck.acqe) and not 1ck.xreqlil) =
forall(j: not 1si.acqdljl)

m Inv G and Inv G, hold // operational reasoning

(7 : (Ick.alive and (not t ona3)) = forall(j: not acqdLjl)

G (t on a3) =
((acqdlxpl or
(not acqdlxp] and (xp on a6) and not xreqlxpl))
and forall(j, j # xp: not acqd[j1))

m Inv G, holds from Inv C; and Inv G, // operational reasoning

Proof of progress condition: B; and Bs proof implements

m Recall B;: thread in 1ck.rel eventually leaves 1ck.rel

m B; holds

= 1ck.rel.body has no loops and no blocking
= thread has weak fairness (from 1ck progress assumption)

m Recall Bs: thread in 1ck.end eventually leaves 1ck.end

m B; holds just like B;

Proof of progress condition: B, - 1 proof implements

m Recall By: Dy = Dy, where
Dy : acqd[i] leads-to not acqdli]
Dy : (k in Tck.acq) leads-to (not k in lck.acq)

m We will establish the following

D, : [t at a0, xp = j, jin Tck.acq] leads to
[xp not in Tck.acq]

Dy : [t at a0, xp = j] leads to
[t at a0, xp = mod(j+1,N)]

m D, and D, imply D,

Proof of progress condition: B, - 2 proof implements

m We establish

D, : ((t on a0) and xp = j and xreq[jl) leads-to
((t on a3) and xp = j and acqdl[jl)

m Proof
= “j in Tck.acq” equivalent to “j at a6” // Z's atomicity
w [jat a6, tatal, xp=j] leadsto // via wfair t

[j at a6, t at a3, xreql[j] is false] leads to // via wfair j
[J not at a6, t at a3, xreq[j] is false]

Proof of progress condition: B, — 3 proof implements

m We establish
Ds : ((t on a3) and xp = j and acqd[jl) leads-to
((t on a0) and xp = mod(j+1,N))

m Proof
w [D>'s rhs] leads to // via Dy, j.doRel
[xacq false, t on a3] leads to // via wfair t

[t at a0, xp is mod(j+1,N)]

m D, and D3 imply

D, : ((t on a0) and xp = j) leads-to
((t on a0) and xp = mod(j+1,N))

Assertional Proof of By—Bs

m See text

Outline

Simple Lock Program
Simple Lock Service
Proving Lock Implements Service

Producer-Consumer using Lock Service

Overview using lock service

m Program ProdConsl

= start systems: producer, consumer, lock service
= producer and consumer use lock service

m Show that ProdConsl is fault-free
= show that it satisfies input conditions of lock service system

m Obtain atomicity breakpoints // effective atomicity

m Establish desired properties
n still hold when lock service is replaced by a lock implementation

Program Producer-Consumer-Lock - 1 -

program ProdConsLck(...) {
ia {...3
<hide 1ck inputs>;
Tck <+ startSystem(SimplelLockService());
cons < startSystem(Consumer(lck));
prod <— startSystem(Producer(1ck, cons));
return [0, mysidl;

atomicity assumption {3 // none
progress assumption {weak fairnessl

Program Producer-Consumer-Lock -

SimpleLockService(N):

input mysid.acq():
ic {...2
® oc {...}

input mysid.rel():

input mysid.end():

Consumer(1ck):
start-
Thd(consum());
fn consum():
while (...)
Tck.acq();

Tck.rel();
Tck.end();
endSystem();

input mysid.put():

2

using lock service

Producer(1ck,cons):
start-
Thd(prod());

fn produce():
while (...)
Tck.acq();
cons.put();
Tck.rel();
endSystem();

m Single atomicity breakpoint in entire program text
= ProdCons.init: start — only 2 threads at Tck.acq
= cons.step: Tck.acq — lck.acq or exit
m prod.step: Tck.acq — 1ck.acq or exit

	Simple Lock Program
	Simple Lock Service
	Proving Lock Implements Service
	Simple Lock Service Inverse
	Implements conditions
	Proving the Implements Conditions

	Producer-Consumer using Lock Service

