
Reliable Transport Service

Shankar

June 10, 2014

Outline abortless ts overview

Overview: Reliable transport service w/o Abort

Program: Reliable transport service w/o Abort

Reliable transport service with Abort

Basic features abortless ts overview

N

jv Nv1

j

v

1

j

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

ReliableTransportService(addrs)

v .accept(),

v .connect(k)

v .tx(k,msg),

v .close(k)

v .endServer()

v .rx(k)j

j

j

j

j

Like reliable streaming Internet sockets

addr ↔ [ip addr, tcp port]

User starts as server (accept) or client (connect)

Client-server and client-client connections

Tx/rx data on connection

Graceful closing

Client or server can be �rst to open // Transaction TCP

Non-abortable // resend until ack rcvd

Simpli�ed description � 1 abortless ts overview

j.accept() // willing to accept a conn req

j enters server mode (if not already so)
call blocks until connected or canceled
returns [k]: connected to k
overlapping k.connect(j)

returns []: canceled

j.endServer()
ends server mode at j
cancels any ongoing accept call
deletes any bu�ered conn reqs

In server mode, incoming conn reqs are bu�ered

to be handled (by future accept call) or canceled

Simpli�ed description � 2 abortless ts overview

j.connect(k) // request connect to k
blocks until connected or rejected
returns [k]: connected to k
returns []: rejected

j.tx(k, msg) // send msg to k
call only when j connected to k

j.rx(k): // rcv msg from k
call only when j connected to k
blocking
returns msg or null (if remote closing and all msgs rcvd)

Simpli�ed description � 3 abortless ts overview

j.close(k) // no further j.tx on connection

call only when j connected to k
returns only after // graceful closing

remote has called k.close(j)
all msgs sent by remote have been rcvd

return cancels any ongoing j.rx(k)

j can have multiple connections ongoing (to di�erent addrs)

customary to identify connection to k by [j, k] // socket

Issues to be addressed abortless ts overview

A connection should not see msgs of previous connections

[j,k] socket should rcv msgs only from the [k,j] socket to
which it connected
and not from [k,j] sockets of previous j-k connections

Conditions that ensure a connect call succeeds

progress, not performance

· · ·

Service endpoints abortless ts overview

Tag every connect and accept call with a unique call id

Service endpoint: 4-tuple of socket and local/remote call ids

Example

j.connect(k) with call id n connects to k.accept with call id m
endpoint at j: [j,k,n,m]
corresponding endpoint at k, if created: [k,j,m,n]

Require [j,k,n,m] to rcv msgs only from [k,j,m,n]

Call ids are internal params // internal nondeterminism

Client-server connection example abortless ts overview

j

[j, k] created
[k]

j.connect(k)
k.accept()

[k, j] created [j]

k.tx(j, msgK1)

k.rx(j)

[msgJ1]

k.close(j)

[k, j] closed
[j, k] closed

j.tx(k, msgJ1)

j.rx(k)

[msgK1]

j.close(k)

k

[j, k, n, m] created

[j, k, n, m] closed

[k, j, m, n] created

call id n
call id m

[k, j, m, n] closed

time

Client-client connection example abortless ts overview

j

[k]

j.connect(k)

k.connect(j)

[j]

k

k.tx(j, msgK1)
j.tx(k, msgJ1)

[j, k] created

call id n

[j, k, n, m] created

[k, j] created[k, j, m, n] created

call id m

time

Outline abortless ts program

Overview: Reliable transport service w/o Abort

Program: Reliable transport service w/o Abort

Reliable transport service with Abort

Helper functions � 1 abortless ts program

Endpoint [j,k,n,m]
opened: has been created
closed: opened, then j.close(k) called and returned
open: opened and not closed
closing: open and j.close(k) ongoing

connecting(j,k,n): ongoing j.connect(k) with cid n

accepting(j,n): ongoing j.accept() with cid n

openedTo(j,n): endpoint [k,j,m,n] opened forsome k, m

overlapped(j,k,n,m): connecting(j,k,n) overlapped with
accepting(k,m) or with connecting(k,j,m)

Helper functions � 2 abortless ts program

connecting(j,k,n) has dedicated accept:

while connecting(j,k,n)
k.accept() is ongoing (and not canceled)
no other client attempts to connect to k

when connect was called

no [k,j] socket
no ongoing j.accept // to avoid potential k.connect(j)

accepting(j,n) has dedicated connect:

while accept ongoing, for some k
k.connect(j) is issued
there is no [j,k] socket,
j.connect(k) is not issued // to avoid k.connect(j)

Service program � 1 abortless ts program

Parameters: ADDR

Input fns

j.accept(), j.endServer(), j.connect(k), j.close(k) // cm
j.tx(k,msg), j.rx(k) // dt

No output fns

Main

cidgen: call-id generator, initially 0
addrs in server-mode
cids of ongoing accepts and connects
cid pairs of open sockets
history of accept/connect/close calls and returns
msg txh/rxh histories for each opened endpoint

Service program � 2 abortless ts program

input fn j.accept()
ic {no ongoing j.accept}
n ← cidgen + + ; put j in server-mode

output (rval, remote addr k, remote cid m)
oc { rval= [k] & overlapped(k,j,m,n) & no open [j,k] &

(not openedTo(j,n) or opened(k,j,m,n))
OR
rval= [] & ongoing j.endServer & not openedTo(j,n)

}
update state ; return rval

Service program � 3 abortless ts program

input fn j.connect(k)
ic {no open or connecting [j,k]}
n ← cidgen + + ; update state

output (rval, remote cid m)
oc { rval= [k] & overlapped(j,k,n,m) & no open [j,k] &

(not openedTo(j,n) or opened(k,j,m,n))
OR
rval= [] & no dedicated accept & not openedTo(j,n)

}
update state ; return rval

Service program � 4 abortless ts program

input fn j.endServer()
ic {no ongoing j.endServer}
remove j from server-mode

oc { no ongoing j.accept }
update state ; return

input fn j.tx(k, msg)
ic {[j,k] open and not closing & no ongoing j.tx(k,.)}
update state

oc { true }
return

Service program � 5 abortless ts program

input fn j.endServer()
ic {no ongoing j.endServer}
remove j from server-mode

oc { no ongoing j.accept }
update state ; return

input fn j.tx(k, msg)
ic {[j,k] open and not closing & no ongoing j.tx(k,.)}
update state

oc { true }
return

Service program � 6 abortless ts program

input fn j.rx(k)
ic {[j,k] open & no ongoing j.rx(k)}

output (rval, msg }
let [n,m] be cid-pair of open [j,k]
oc { rval= [0,msg] & (rxh[n,m] ◦ [msg] pre�x-of txh[m,n])

OR
rval= [−1] & rxh[n,m]= txh[m,n] &

closing(k,j,m,n) or closed(k,j,m,n)
}
update state ; return rval

Service program � 7 abortless ts program

input fn j.close(k)
ic {[j,k] open & no ongoing j.close(k)}

let [n,m] be cid-pair of open [j,k]
oc { no ongoing j.tx(k,.) or j.rx(k) &

rxh[n,m]= txh[m,n] &

closing(k,j,m,n) or closed(k,j,m,n)
}
update state ; return

Service program � 8 abortless ts program

Progress assumption

accepting(j,n) & (dedicated connect or ending server)
leads-to not accepting(j,n)

connecting(j,k,n) leads-to not connecting(j,k,n)

opened(j,k,n,m) leads-to opened(k,j,m,n)

ongoingj.endServer leads-to no ongoingj.endServer

ongoingj.tx(k,.) leads-to no ongoingj.tx(k,.)

ongoing j.endServer leads-to no ongoingj.endServer

// continued

Service program � 9 abortless ts program

// continued

Progress assumption

ongoing j.tx(k,.) leads-to no ongoingj.tx(k,.)

ongoing j.rx(k) & open(j,k,n,m) &

(rxh[n,m] 6= txh[m,n] or closing(k,j) or closed(k,j,m,n))
leads-to no ongoing j.rx(k)

closing(j,k,n,m) & (ongoing k.close(j) or closed(k,j,m,n))
leads-to (no ongoing j.close(k) or no ongoing j.rx(k))

Outline abortable ts overview

Overview: Reliable transport service w/o Abort

Program: Reliable transport service w/o Abort

Reliable transport service with Abort

Basic features abortable ts overview

Abortless service is implementable over an LRD channel

need to resend a �to-be-acked� msg until the ack is rcvd
impractical in context of failures

Abortable service: abort after speci�ed number of resends

Abortable service has many more acceptable evolutions

endpoint [j,k,n,m] opens but endpoint [k,j,m,n] never opens
j.close(k) returns before remote is closing or all data rcvd
j.connect(k) returns unsuccessfully even if it is not rejected

	Overview: Reliable transport service w/o Abort
	Program: Reliable transport service w/o Abort
	Reliable transport service with Abort

