Reliable Transport Protocol

Shankar

June 16, 2014

Outline v

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Transport protocol overview

Y .accept(),vj .endServer()
vj.connect(k)

Yj .tx(k,msg)yj Ix(K)

Vi .close(k)

iV g x(k;msg)g.rx(k)
[cj LRD channel

m Implements reliable transport service using LRD channel
m Tp system at each address

Distributed program

m program TpDist (ADDR)
// implements RelTransportService (ADDR)
{cj} « start LrdChannel(ADDR)

for j in ADDR
Vj ¢ start Tp(ADDR,j,cj)

return {v;}

Similarities with TCP overview

m Connection establishment involves 3-way handshake

m Tp j maintains an endpoint for k only while interacting with k
= opening, open, open-and-closing, closed
= opening: active (if client) or passive (if server)

m Each endpoint gets a unique endpoint number when created

= same role as TCP’s initial sequence numbers
= increasing but need not be consecutive // clock, counter
= when open, maintains both local and remote endpoint numbers

m Endpoint’s 4-tuple: [j,k,n,m] // addrs j, k; endpt numbers n,m

Differences with TCP overview

m Clean separation of connection establishment and data transfer

m Conn establishment provides dedicated virtual channel
= by tagging msgs with endpoint’s 4-tuple

m Can run any dtp (data transfer protocol) over this
m for concreteness, use graceful-closing dtp (GeDtp)

m Tp system starts a dtp system when endpoint becomes open
= relays msgs: dtp system <> user, LRD channel

m Connect req msg indicates whether sender is client or server
= TCP does not do this, and hence has a flaw

Outline gc-dtp

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Graceful-closing dtp: review ge-dtp

tx, rx, close M i tx, rx, close M k
GceDtpDist
(Lossy/Lrd Channel)
m Input fns

» tx(k, data)
m rx(): returns [0, datal or [—11 (if in-data done)
m close(): returns if data xfr done, remote closing

m Msgs: DAT, ACK, FIN, FINACK // FINs sent by close

m Local thread fns:

= doTxDat(): sends DAT
m doRxDatAck(): rcvs; sends ACK, FINACK

Graceful-closing dtp: properties gc-dtp

- if j.rx returns [0,db] then j.drxho [db] prefix-of k.dtxh
- if j.rx returns [—11 then j.drxh=k.dtxh, k closing/closed
- if jis closed then no ongoing j.tx or j.rx, j.drxh=k.dtxh,

and k closing/closed

- if j.tx is ongoing then j.tx returns
- if j.rx ongoing, j.drxh # k.dtxh, then j.rx returns
- if j.rxis ongoing, j.drxh=k.dtxh, k closing/closed

then j.rx returns

- if Jj closing, k closing/closed then

j becomes closed or j.rx not ongoing

Two modifications to GeDtp ge-dtp

m Terminate GcDtp system when it becomes closed:

= fn close: insert endSystem() before the return
m original: doRxDatAck() responds to FIN even when closed
= now: tp system handles takes care of this

m Rename output calls: c.tx, c.rx — x.dTx, x.dRx

= original: ¢ is Lrd channel sid
= now: C is tp sid // already has input fns tx, rx

QOutline tp desc

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Transport protocol endpoints tp desc

m Endpoint (ep) [j, k,n, m]
= maintained at tp j while interacting with tp k
= n: ep's local number; >0
= set from increasing clock/counter when ep created
m m: ep's remote number; —1 if unknown
= rcvd from remote endpoint [k,j, m,n]

m Ep [}, k,n,m]

active opening (aop): j.connect(k) ongoing

passive opening (pop): j.accept responding to k.connect(j)
open: connected to [k,j,m,n]; send/rcv data

closing: j.close(k) ongoing; rcv data // still open
closed: endpoint no longer exists

Interaction between tp systems

m Interaction between j and k is a succession of handshakes
= each connect/close req initiates a handshake

2-way handshake

3-way handshake

- oml—
J o m2

k

m Client-server connection: one 3-way handshake

J

ml—
—m2
m3—

k

tp desc

m Client-client connection: two simultaneous 2-way handshakes

m Connect rejection: two simultaneous 2-way handshakes

m Data transfer: 2-way handshakes

m Close: two 2-way handshakes

// one for each direction

Client-server connection — assuming fifo channel

j.connect(k)

endpoint # n

[i.k,n,-1] active opening

[i,k,n,m] open,

j-x(k,data)]

jrx(k)

start dtp

[CCR,j k,n, -1]

[SCR, k. j, m,]
_ IsoRkjmal

[CRACK, j, k, n, m]

[EDT, j, k ,n, m, [DAT,..]]
[EDT, |, k, n, m, [ACK...]]

[EDT, k. j, m, n, [DAT,.

1
[EDT, k. j, m, n, [ACK,..]]

tp desc

accept()

endpoint# m

[k,j,m,n] passive opening

[k,j,m,n] open,
start dtp

- >

k.tx(j, data)
. k.rx(j)

Client-client connection — assuming fifo channel

j.connect(k)

endpoint # n
li.k,n,-1] active opening

[i,k,n,m] open,
start dtp

j-tx(k,data)
j-rx(k)

EDT msgs

k.connect(j)

endpoint # m
[k,j,m,-1] active opening

[k,j,m,n] open,
start dtp

|: ktX data

K.rx(j)

Client connect rejection — assuming fifo channel -

j k
j-connect(k)

[CCR,j no ongoing k.accept()

Ukneq?%%tr:\t/g i?é’ﬁﬁ; % no ongoing k.connect
A0
[1k,n,-1] closed (RELKY

Connection closing — assuming fifo channel tp desc

j-tx(k,data) EDT DAT/ACK msgs . data

j-rx(k) — 1 k.rx(j)

jclose(k) | [EDT,jk,n,m,[FIN]]

j k,;n,m] closin
: |) [EDT, k,j, m, n, [FINACK]] |
k.close())

[j,k,n,m] closed, [EDT, k, j, M, N, (FINT] [k,j,;m,n] closing
end dtp system EDT, k . m FINACK] [k,j,m.n] closed
’ start dtp system

Handling LRD tp desc

m To overcome msg loss

= non-final msgs resent until response rcvd // primary msg
= final msg sent only in response // secondary msg
= final msg sent even if handshake over from sender’s perspective

m Old msgs can start handshakes, which need to be ended
= handle via reject msgs / increasing ep numbers
= example

accepting k rcvs old [CCR,j,k,m,—1]

starts pop [k,j,n,m], (re)sends [SCRk,j,n,m]

if j not aop to k: j rejects SCR

if j aop [j,k,p,—11: k becomes pop [k,j,q,p]

Tp messages from j to k tp desc

m [CCR,j,k,n,mI: client conn-req; primary; sent by aop [j,k,n,m]
m [SCR, j,k,n,m1: server conn-req; primary; sent by pop [j,k,n,m]

m [CRACK, J,k,n,m1: conn-req ack; secondary
= response to [SCR|CCR, k,j,m,n] by aop/open [j,k,n,m]

m [REJ, j,k,n,m]: reject; secondary
= response to [CCR, k,j,m,n1 when not accepting or aop to k
= response to [SCR, k,j,m,n] when not aop to k

m [EDT,j,k,n,m, dtmsgl: encapsulates dtpmsg

= primary if dtmsg is DAT or FIN
= secondary if dtmsg is ACK or FINACK

Overlapping handshakes tp desc

m Handshakes can overlap
= j starts a handshake while k is still in previous handshake
= msg of later handshake can end the earlier handshake
= example
= opening [j,k,n,m] rcvs [EDT,k,j,m,n,.]
= becomes open

Buffering rcvd CCRs at j in server mode tp desc

m ccrBuff: map <addr, ep#p> to store CCRs in server mode

m ccrBuffy exists and equals n iff

= j in server mode

= no [j,k] socket exists

m at least one [CCR,k,j,.,.] rcvd

= n is highest sender ep # in these CCRs

m An ongoing j.accept() gets its next CCR from ccrBuff
= fifo or priority queuing

Outine oo wbnied o 1.

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Program Tp -1 tp program: unbnded ep #s

m Parameters: ADDR, j, ¢y

m Input fns // called by service users
= accept(), endServer(), connect(k), close(k) // cm
n tx(k, data), rx(k) /] dt
m Input fns // called by dtpy
» dtx(k,dtmsg), drx(k) // send/rcv dtmsg
m Local fns
= doRx() // rcv msg, update state, tx secondary msg

m Output calls
n cj.tx(k, msg), cj.rx() // send/rcv msg

® atomicity assumption: await
m progress assumption: weak fairness for all threads

Program Tp - 2 tp program: unbnded ep #s

m Main
= ngen: endpoint number generator // clock/counter, initially 0
» For every k st ep [j,k] exists // initially none
= sty: status: aop, pop, rejected, open // no closed

= Ing: local number, >0
= 'pn: remote number, —1 if null

w Iff in server mode, no ep [j,k,..], >1 CCR rcvd from k
= ccrBuffy: highest sender ep # in these CCRs

= For every open ep [jk,.]

= dtpy: sid of dtp system for k
= dtpRxQy: revd dtp msgs for dtpy

m startThread (doRx())

Program Tp. ~ 3 oo wbnied o 1.

m input mysid.accept():
while (true)
await (not server-mode or ccrBuff not empty)
if (not server-mode)
return []
k < earliest key in ccrBuff
(sty, T, rn) < (pop, ngen++, crBuffy delete)
while (true)
if (sty is pop)
cj-tx(k, [SCR, j, k, n, ry]
else if (st = open)
return [k]
else // st = RICT
delete sty, Tny, rmy, break

Program Tp - 4

m input mysid.endServer():

await (true)
exit server-mode
for (k in ccrBuff.keys)

cj.tx(k, [REJ, j, k, ccrBuffy, —11)

empty ccrBuff

await (no ongoing accpet)
return

Program Ty - 5 oo wbnied o 1.

m input mysid.connect(k):
await (true)
(stg, Tng, rng) < (aop, ngen++, —1)
while (true)
await (true)
if (st is aop)
cj.tx(k, [CCR, j, k, n, rny]
else if (st = open)
return [k]
else // sty = RICT
delete sty, Tny, rmy
return []

Program Tp - 6

m input mysid.tx(k, data):
dtpy.tx(k, data)
return

m input mysid.rx(k):
rval < dtpy.rx()
return rval

m input mysid.dtx(k, dtmsg):
await (true)
¢.tx(LEDT, J, k, Tny, rny, dtmsgl)
return rval

m input mysid.drx(k):
await (dtpRxQy not empty)
remove head of dtpRxQy
return 1t

Program Tp ~ 7 oo wbnied o 1.

m input mysid.close(k):
dtpy.close()
delete dtpy, dtpRxQy

return
m doRx(): // executed by local thread
while (true)
(type, k, m, n, dtmsg) <« cj.rx()
handle<type>(k, m, n, dtmsg) // dtmsg only for EDT

m helper fn startDtp(k):
dtpy < start GeDtp(j, k, mysid, ...)
dtpRxQy <« [1]

Program Tp - 8 tp program: unbnded ep #s

m helper fn handleCCR(k, m, n):
if (no Stk)
if (not server-mode) ¢ ;.tx([REJ, j, k, n, m])
else if (no ccrBuffy or m > ccrBuffy) ccrBuffy <— m
else if (sty) is aop and n = Tny)
(sty. rng) <« (open, m)
startDtp(k)
else if (sty) is pop and m > rny)
M < m
else if (sty) is open)
if ([m, nl] = [r‘nk, 1nk])
Cj.tx([CRACK,j, k,n, mI)
else if (m > rny)
cj.tx([REJ,j,k, n,ml) // dtpRxQy.append (LFINACKI) 77

Program Tp. ~ ¢ oo wbnied o 1.

m helper fn handleSCR(k, m, n):
if (no sty)
¢;-tx([REJ, j, k, n, m])
else if (sty) is aop and n = Tny)
(sty, rng) < (open, m)
startDtp(k)
¢ -tx(LCRACK, j, k, n, mJ)
else if (sty) is pop and m > rny)
cj.tx([REJ, j, k, n, m])
else if (sty) is open)
if (Cm, n1 = [rny, Tn, 1)
¢ 3-tx(CCRACK, j, k, n, m1)
else if (m > rny)
cj.tx([REJ,j, k,n,ml) // dtpRxQy.append(LFINACK1) 77

Program Tp. ~ 10 oo wbnied o 1.

m helper fn handleCRACK(k, m, n):
if (sty exists and sty is aop or pop and
Cm, n]1 = [rny, Tni 1)
sty < open
startDtp(k)

m helper fn handleREJ(k, m, n):
if (sty exists and sty is aop or pop and
Cm, n]1 = [rny, Tni 1)
sty < rjctd

Program Tp. ~ 11 oo wbnied o 1.

m helper fn handleEDT(k, m, n, dtmsg):
if (no Stk)
if (dtmsg = [FIN])
Cj.tx([EDT,j, k,n, m,,[FINACK1])

else if (sty is aop or pop and
[m, nl] = [rnk, 1nk])
sty < open
startDtp(k)
dtpRxQy.append(dtmsg)
else if (sty is open and
[m, n]1 = [rny, Tni 1)
dtpRxQy.append(dtmsg)

Outine oo e 42

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Using cyclic endpoint numbers tp program: cyclic ep #s

m Above protocol can use modulo-N endpoint numbers if

6L+ 4W +2C
- J
= L: max message lifetime of the LRD channel
= 0: min time between ngen increases (new endpoints) at an addr

= W: max opening duration of an endpoint
= C: max open duration of an endpoint

N

= Note
m L, § arise as in sliding window protocol
» W, C arise because j tracks k only while opening/open to it
w set C to O for correctness with Pr ~ 1 — (1/N?)

Analysis -1 tp program: cyclic ep #s

m Let j rcv msg [., k,j, m, n] when it has ep [}, k,n,m]

" ["Message Receiving endpoint Possible tests
[CCR|SCR k,j,m,n] [pop|aop,n,m] n=n, m>m
m > ccrBufflk]
[CCR|SCR,k, j,m,n] Lopen,n,m] m=m n=n;
m>m
[CRACK|REJ, Kk, j,m,n] [aop|pop,n,m] m=m n=n
[EDT,k, j,m,n,.] [aop|pop|open,n,m] m=m n=n

m Need K st m—m and n—n wrt above tests

m Following are invariant

Fy: (C,k,n,ml exists) = m < k.nGen

Fo . (Lj,k,n,m] exists) and ([.,k,J,m,nl rcvbl) = m < k.nGen
Fs: ([j,k,n,m] exists) = n < j.nGen

Fy: (C,k,n,m] exists) and ([.,k,j,m,nlrcvbl) = n<nb

Fs : (Lj,k,n,ml opening) = k.nGen < m+ (L+2W)/§

Fe : ([j.,k,n,ml open) = k.nGen <m+ (C+ L+2W)/§

Analysis - 3 tp program: cyclic ep #s

m Following are invariant

Gli

G@Z

G7Z

[j,k,n,m] opening and [.kjm,nlrcvbl =
(m=-1 or m=-1 or m<m+ (L+2W)/9)

: (Lj.k,n,m] open) and ([.,k,j,m,nd rcvbl) =

m<m+ (C+L+2W)/6

- ([j,k,n,m] opening or open) and (LCCR|SCR k,j,m,n] rcvbl) =

m>f— (L+W)/§ and n>h—(2L+2W)/s

: ([j,k,n,m] opening) and (LCRACKk,j,m,n] rcvbl) =

m>m—(2L+2W)/§ and n>n—(2L+ W)/
[j,k,n,m] opening and [REJk,j,m,n] rcvbl =
m>m—3L+2W)/§ and n>n—(2L+ W)/

[j,k,n,m] opening or open and [EDTk,j,m,n,.] rcvbl =
m>m—(L+C+ W)/ and n>n —(L+ C+2W)/¢

Analyis ~ 4 oo e 42

m From the above, the following hold

Hi:m<m+ (C+L+2W)/) /1 Gy, Gy
Hy :m>m—max(3L+2W,L+ C+ W)/ /] G3—Gy
Hy:n<n /1 Fy
Hy:n>n—max(2L+2W, L+ C+2W)/o /] G3—Gy
Hs : —max(3L4+2W, L+ C+W)/6 < m—m < (C+L+2W)/o

/1 Hy, H,

He : —max(2L+2W,L+ C+2W)/6 < n—n < n
/1 Hs, Hy
Hy: K < m—mn—n < K, where K=3L+2W + C)/¢
/1 Hs, Hg

Tp with modulo-N ep #s _

m Ep #s in msgs and vars now range over —1..N -1
m Optional: ngen is now modulo-N

m Tests involving these values are now as follows

|
Old test New test
m = rnCk] no change
n = InCk] no change
m > ccrBufflk] 1 < mod(m — ccrBufflall) < N/2
m > rnLk] (rnfk]l = -1 and m # —1)
or 1 < mod(m— rnCk]) < N/2

Outine sty

Overview

Graceful-closing data transfer protocol

Transport protocol description

Transport protocol program: unbounded endpoint numbers
Transport protocol program: cyclic endpoint numbers

Transport protocol with abort

Extending Tp with aborts abortable tp

m Tp now aborts endpoint if response to a primary message not
rcvd after K resends

= returns of functions distinguish between closing (or rejection)
and abort
= use the abortable dtp program and service

	Overview
	Graceful-closing data transfer protocol
	Transport protocol description
	Transport protocol program: unbounded endpoint numbers
	Transport protocol program: cyclic endpoint numbers
	Transport protocol with abort

