Bounded Buffer

Shankar

September 18, 2014

Overview

m Bounded-buffer service

= input functions: void put(x), Val get(), void end()
= no output functions

m Implementations using standard synchronization constructs

m locks, condition variables
= semaphores

m Implementations using await synchronization constructs

= more powerful, convenient
= mechanical transformation to standard synch constructs

m Reduce blocking (increase parallelism) in implementations

m Cancelling blocked calls to remote systems
= allows a caller no longer interested in call to retrieve itself

Outline service

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Bounded-Buffer Service - 1 service

m Fifo bounded buffer of size N
= input functions: put(x), get(), end() = no output functions

m Main
= buff: sequence of items in buffer
m ending: true iff end() has been called
= putBusy: true iff put call ongoing
= getBusy: true iff get call ongoing

m void mysid.put(x)
= ic {not ending and no ongoing put call}
= oc {buff has space}
append x to buff; return

Bounded-Buffer Service - 2 service

m Val mysid.get()

= ic {not ending and no ongoing get call}
= output rval
oc {buff has item, rval is buff.head}
behead buff; return rval

m void mysid.end()
= ic {not ending}
set ending
m oc {true} return

m Progress assumption
= put call returns if buff has space // uses putBusy
= get call returns if buff has item // uses getBusy
= end call returns // uses “thread in mysid.end"

BoundedBuffer(int N) -

// main

ic {N = 13

buff « [1;
ending < false;
putBusy < false;
getBusy «+ false;
return mysid;

input void mysid.put(Val x)
ic {not ending and
not putBusy}
putBusy < true;
oc {buff.size < N}
buff.append(x);
putBusy < false;
return;

1

service

input Val mysid.get()
ic {not ending and
not getBusy3
getBusy < true;
output(Val rval)
oc {buff.size > 0
and rval = buffl[01}
buff.remove();
getBusy <+ false;
return rval;

input void mysid.end()
ic {not ending}
ending < true;
oc {truel
return;

BoundedBuffer(int N) — 2 service

atomicity assumption {input and output parts}

progress assumption {
// thread in put returns if buffer has space
(putBusy and buff.size < N) leads-to not putBusy;

// thread in get returns if buffer has an item
(getBusy and buff.size > 0) leads-to not getBusy;

// thread in end returns
(thread u in mysid.end) leads-to (not u in mysid.end);

Outline

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Service Inverse Overview - 1 service inverse

m BoundedBufferInverse(N, bb) // bb: sid of implementation

= main: buff, ending, putBusy, getBusy
= output functions: doPut(x), doGet(), doEnd()

m doPut(x)

= oc {not ending and no ongoing put call}
bb.put(x)

w ic {buff has space}
append x to buff

m doGet()

= oc {not ending and no ongoing get call}
rval < bb.get()

= ic {buff has item, rval is buff.head}
behead buff

Service Inverse Overview - 2 service inverse

m doEnd()
= oc {not ending}
set ending; bb.end()
w ic {true} return

m progress condition
= put call returns if buff has space // uses putBusy
= get call returns if buff has item // uses getBusy
= end call returns // uses “thread in bb.end"

BoundedBufferInverse(N, bb) -

// main output doGet() {

ic (N = 13 oc {not ending and not getBusyl
buff « [I; getBusy < true;

putBusy « false; Val x < bb.get(x);

getBusy < false; ic {buff.size > 0 and x = buff[013
return mysid; buff.remove();

getBusy « false;
output doPut(Val x) {

~oc {not end- output doEnd() {
ing and oc {not endingl
not putBusy} ending < true;
putBusy < true; Tck.end();
bb.put(x); ic {truel
ic {buff.size < N}
buff.append(x); progress condition (... mysid bb...3

putBusy < false;

Outline await

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Await construct await

m Await: powerful synchronization construct not provided by PLs

= convenient for writing progams
= implementable by standard synchronization constructs

m await (B) S

= B is predicate, S is non-blocking code
= atomically execute S only if B holds, otherwise wait
= weak or strong fairness

= await (B) S: more general than oc {B} S
= S can make (non-blocking) output calls, use return values

m atomic S: short for await (true) S

Await-structured programs await

m Await-structured program

= awaits are the only synchronization construct
= code outside awaits does not conflict with code executed by
other threads

m Await-structured program

= easier to understand than equivalent program with standard
synchronization constructs

= can be mechanically transformed to program that uses standard
synchronization constructs

Outline await bbuff

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Implementation BBuffAwait(N)

program BBuffAwait(int N) {
ia (N > 13
Seq buff < seq();
return mysid;

input void mysid.put(Val x)
e await (buff.size < N)
buff.append(x);
return;

input Val mysid.get()

e await (buff.size > 0) {
Val x < buff[0];
buff.remove();
return Xx;

await bbuff

input void mysid.end()
endSystem();
return;

atomicity assumption
awaits

progress assumption
weak fairness
for threads

BBuffAwait implements BoundedBuffer: Z -

m program Z(int N) {
bb < startSystem (BBuffAwait(N));
si < startSystem (BoundedBufferInverse(N,bb));

atomicity assumption {3
progress assumption {weak fairnessl

BBuffAwait implements BoundedBuffer: Safety await bbuff

m To not violate si.doPut.ic, want Inv C, to hold

Co : ((thread in bb.put) and bb.buff.size < N) =
si.buff.size < N

m To not violate si.doGet.ic, want Inv C; to hold

C; : ((thread at bb.get) and bb.buff.size > 0) =
(si.buff.size > 0 and bb.buff[0] = si.buffl[0])

m Hold because Inv G, holds (via invariance rule)

Cy : bb.buff = si.buff

BBuffAwait implements BoundedBuffer: Progress await bbuff

m Want 82—84 to hold

B, : (putBusy and si.buff.size < N) leads-to not putBusy
Bs : (getBusy and si.buff.size > 0) leads-to not getBusy
B, : (thread u in bb.end) leads-to (not u in bb.end)

m B, holds via weak fairness and Inv G,

= only a thread in bb.put can falisify B,.lhs
= only one such thread at any time // doPut.oc
= so it eventually executes, establishing B,.rhs /] wfair

m B; holds via weak fairness and Inv G,

m B; holds via weak fairness

Outline lock-cv

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Locks lock-cv

m A lock is either acquired by a thread or free

Lock Tck: // initially free

Tck.acq(): // acquire

» caller must not hold lock
= atomically acquire Tck only if free, o/w wait

Tck.rel(): // release
m caller must hold lock
= atomically free 1ck

m Progress: a thread at 1ck.acq() eventually gets past if

m lock is free continuously // wfair; weak lock
= lock is free continuously or repeatedly // sfair strong lock

Condition Variables lock-cv

m Condition(1ck) cv: // cond var cv associated with lock Ick

m cv.wait(): // always blocks

» caller must hold 1ck
= atomically release 1ck and wait on cv;
when awakened: acquire 1ck; return

m cv.signal():

m caller must hold Tck
= atomically awaken a thread (if any) waiting on cv; return

m Progress: a thread at cv.wait() eventually gets past if

= CV is signalled, and no other process is waiting on cv // weak
= cV is repeatedly signalled // strong

Implementing Await with Lock-Cv

m Await-structured program with distinct await guards By, - - -

= works even if guards are not distinct
m Introduce Tck and associated cvy, - -, cvy

m Replace await (B;) S by
1ck.acq()
while (not B;)
cvi.wait()
S
for k in1,---,N
if (By)
cvy .signal()
Tck.rel()

m For more parallelism
= partition awaits into “non-conflicting” groups
= use separate lock for each group

lock-cv

, By

QOutline lock-cv impl

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Implementation BBuffLockCv — 1 lock-cv impl

program BBuffLockCv(int N) {

ia (N > 13

Seq buff « [1;

Lock Tck; // protects buffer
Condition(1ck) cvItem; // signaled when buffer not empt
Condition(1ck) cvSpace; // signaled when buffer not full

return mysid;

input void mysid.put(Val x)
1ck.acq(); // Note: no ’e’
while (buff.size = N)
e cvSpace.wait();
buff.append(x);
cvitem.signal();
Tck.rel();
return;

Implementation BBuffLockCv — 2 lock-cv impl

input Val mysid.get()
1ck.acq(); // Note: no ‘e’
while (buff.size = 0)
e cvitem.wait();
Val x < buffL[0];
buff.remove();
cvSpace.signal();
Tck.rel();
return x;

input void mysid.end()
endSystem() ;
return;

atomicity assumption {1ck, cvItem, cvSpace}
progress assumption {weak fairness for threads}
}

QOutline semaphore

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Semaphores semaphore

m Combines mutual exclusion + conditional wait

m Counting semaphores

» Semaphore(N) sem: sem initialized to N > 0
m sem.P(): atomically sem—— only if sem> 0, o/w wait
= sem.V(): atomically sem++

m Binary semaphores

= Semaphore(N) sem: sem initialized to N in 0..1
= sem.P(): atomically sem <— 0 only if sem=1, o/w wait
= sem.V(): atomically sem « 1

m Progress: condition in which a thread at P() eventually gets past

= sem > 0 holds continuously // wfair; weak sem
= sem > 0 continuously or intermittently // sfair; strong sem

Implementing Lock-cv with Semaphore semaphore

m Program with locks and condition variables

m For every lock Tck

= introduce binary semaphore, say TckMutex, initialized to 1
m Ick.acq() — TckMutex.P()
m Ick.rel() — TckMutex.V()

m For every condition variable cv associated with lock Tck

= introduce binary semaphore, say cvGate, initialized to 0
m cv.wait() —— TckMutex.V(); cvGate.P(); TckMutex.P()
m cv.signal() —— cvGate.V()

m To have waiting thread come before entering thread
m skip TckMutex.P() after cvGate.P()
» skip 1ckMutex.V() after cvGate.V()

QOutline sem impl

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Outline

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

Increasing Parallelism more parallelism

m Consider an await-structured program

m Define two awaits to be strongly nonconflicting if
they do not conflict even without atomicity of awaits

m Technique 1 to increasing parallelism
= partition awaits into non-conflicting groups of awaits

m use separate locks for the groups
= to avoid deadlock, obtain locks in increasing order

m Technique 2 to increasing parallelism
= modify code to increase extent of strongly-nonconflicting awaits
= duplicate hot spots into separate memory areas
= loosen coupling between duplicates

BBuffPar: BBuff with concurrent put and get ' more parallelism

m Implement buff as a circular array

= DuffALN]
min < 0 // next put call accesses buffALin]
mout «+ 0 // next get call accesses buffAlout]
mcnt < 0 // # items in buffA
m input void mysid.put(x) m input Val mysid.get(x)
pl: eawait (cnt < N); gl: eawait (cnt > 0);
p2: ebuffALin] < x; g2: ex < buffAloutl;
await (true) await (true)
cnt «— cnt+1; cnt < ent—1;
in <= mod(in+1, N); out <— mod(out+1,N);
return return

m If statements p2 and g2 do not conflict, we can remove their o's

Proving that p2 and g2 do not conflict more parallelism

m Let X be BBuffPar with statements p2 and g2 replaced by skip

m Can remove o's at p2 and g2 if X satisfies Inv Dy

D()Z

(thread at p2) and (thread at g2) = in # out

m D;—Ds satisfies invariance rule and implies Dy, // Inv Dy holds

D, -
: (at most one thread in get)
: (thread on p2) = cnt < N

: (thread at g2) = cnt > 0

- cnt = mod(in—out, N)

(at most one thread in put)

m So e's at p2 and g2 can be removed from BBuffPar

m Now easy to show BBuffPar implements BoundedBuffer

Outline call cancel

Bounded-Buffer Service

Bounded-Buffer Service Inverse

Awaits

Bounded-Buffer Implementation using Awaits

Locks and Condition Variables

Bounded-Buffer Implementation using Locks and Condition Variables
Semaphores

Bounded-Buffer Implementation using Semaphores // SEE TEXT
Increasing Parallelism

Canceling Blocked Calls // SEE TEXT

	Bounded-Buffer Service
	Bounded-Buffer Service Inverse
	Awaits
	Bounded-Buffer Implementation using Awaits
	Locks and Condition Variables
	Bounded-Buffer Implementation using Locks and Condition Variables
	Semaphores
	Bounded-Buffer Implementation using Semaphores // SEE TEXT
	Increasing Parallelism
	Canceling Blocked Calls // SEE TEXT

