
Message-Passing Services

(aka Channels)

Shankar

September 18, 2014



Overview: Msg-passing service (aka Channel)

 access system

 (e.g., mac, ip, url, ...)
address

v[1]

1

v[i] v[n]

ni

Channel( ... )

Distributed service: addresses and access systems

Connection-less: tx and rx without any prior intimation

input fns at v[i]: tx, rx

Connection-oriented: tx and rx only after connection established

input fns at v[i]: connect, accept, close, tx, rx, · · ·

Quality: �fo, lossy, LRD (loss, reorder, duplicate), · · ·

Bene�ts of internal nondeterminism



Outline connection-less �fo

Connection-less Fifo Channels

Connection-less Lossy Channels

Connection-less LRD (Loss, Reordering, Duplication) Channels

Connection-oriented Fifo Channels

Multiplexing Ports onto Channels



Fifo Channel � 1 connection-less �fo

Service FifoChannel (ADDR)
ADDR: set of addresses // ADDR.size > 0
input fns at j: s.tx(k,msg), s.rx() // s: access system
msgs are Seq

Main:

txhj,k ← [] // seq of msgs sent at j to k
rxhj,k ← [] // seq of msgs rcvd at k from j
vj ← sid() // access system at j
return {vj} // map from ADDR to sids

In an implementation

separate return for each vj
but the collection of returns is e�ectively atomic // Why?



Fifo Channel � 2 connection-less �fo

input void vj.tx(k,msg) // at j, tx msg to k

ic {k 6= j and no ongoing vj.tx(.)}

append msg to txhj,k;

oc {true}
return

input Seq vj.rx() // at j, rx msg

ic {no ongoing vj.rx()}

output msg, k // rcvd msg, sender addr

oc {rxhk,j ◦ [msg] pre�x-of txhk,j}

append msg to rxhk,j;
return msg;

k is internal param → internal nondeterminism // Avoidable?



Fifo Channel � 3 connection-less �fo

atomicity assumption: input parts and output parts

progress assumption

ongoing vj.tx(.) leads-to not ongoing vj.tx(.) // tx

txhk,j.size ≥ i leads-to // rx
rxhk,j.size ≥ i or not ongoing vj.rx()

sum (txhk,j.size: k in ADDR) ≥ i leads-to // weaker rx
sum (rxhk,j.size: k in ADDR) ≥ i or

not ongoing vj.rx()



Fifo Channel Inverse � 1 connection-less �fo

Program FifoChannelInverse (ADDR, Map<ADDR,Sid> v)
main: txhj,k, rxhj,k, vj

output fns: doTx(j,k,msg), doRx(j)

progress condition: no change

output doTx(j, k, msg)
oc {k 6= j and no ongoing vj.tx(.)}

append msg to txhj,k;
vj.tx(k, msg)

ic {true}



Fifo Channel Inverse � 2 connection-less �fo

output doRx(j)
oc {no ongoing vj.rx()}

[msg, k] ← vj.rx() // local vars

ic {rxhk,j ◦ [msg] pre�x-of txhk,j}

append msg to rxhk,j;

Recall k: internal param in service

not present in regular implementation

but returned by above implementation vj.rx()

augment regular implementation with auxiliary



Outline connection-less lossy

Connection-less Fifo Channels

Connection-less Lossy Channels

Connection-less LRD (Loss, Reordering, Duplication) Channels

Connection-oriented Fifo Channels

Multiplexing Ports onto Channels



Lossy Channel connection-less lossy

Lossy channel is a �fo channel except msgs can be lost

LossyChannel(.): FifoChannel(.) with two changes to vj.rx

output condition:

{rxhk,j ◦ [msg] pre�x-of subsequence-of txhk,j}

progress � option 1:

(msg repeatedly sent to j) and
(j repeatedly calls rx)
⇒ j receives msg

progress � option 2

(msgs from msgset repeatedly sent to j) and
(j repeatedly calls rx)
⇒ j receives msg from msgset



Lossy channel: formalizing rx progress connection-less lossy

Progress � option 1

helper functions

nbr(txh, msg): # of txh entries that equal msg

increasing(txh, msg):
nbr(txh, msg) = i leads-to nbr(msg, txh) > i

increasing(txhj,k, msg) and

(not ongoing vj.rx leads-to ongoing vj.rx)

⇒ increasing(rxhj,k, msg)

Progress � option 2

above except

nbr(txh, msgset): # of txh entries that are in msgset



Outline connection-less lrd

Connection-less Fifo Channels

Connection-less Lossy Channels

Connection-less LRD (Loss, Reordering, Duplication) Channels

Connection-oriented Fifo Channels

Multiplexing Ports onto Channels



LRD Channel connection-less lrd

LRD channel can lose, reorder and duplicate msgs

any message sent in the past can be (again) received

Service program: option 1

LossyChannel(.) with vj.rx.oc changed to

{rxhk,j ◦ [msg] subsequence-of in txhk,j}

Service program: option 2

txhj: seq of msgs sent to j from anywhere

rxhj: seq of msgs rcvd at j from anywhere

any msg in txhj can be received



Service LrdChannel (ADDR) connection-less lrd

Main: txhj, rxhj, return {vj}

input void vj.tx(k,msg)
ic {...}
append msg to txhk;
oc {true}
return

input Seq vj.rx()
ic {...}
output msg
oc {msg in txhj}
append msg to rxhj;
return msg;

Progress assumption for rx

increasing(txhj, msg) and

(not ongoing vj.rx leads-to ongoing vj.rx)

⇒ increasing(rxhj, msg)

No internal nondeterminism



Outline connection-oriented lrd

Connection-less Fifo Channels

Connection-less Lossy Channels

Connection-less LRD (Loss, Reordering, Duplication) Channels

Connection-oriented Fifo Channels

Multiplexing Ports onto Channels



Connection-oriented channel � 1 connection-oriented lrd

Connection management + data transfer within connections

Simplistic connection mgmt

Addr j
closed: inactive
accepting: waiting for any remote connect request
opening: waiting for response to local connect request
open: connected to a remote address

Input functions

j.accept(): closed → accepting → open // server
j.connect(k): closed → opening → open/closed // client
j.close(): open → closing → closed
j.tx(msg): only while open
j.rx(): only while open



Connection-oriented channel � 2 connection-oriented lrd

Require msgs of one connection to not show up in another

tag each connect attempt with a unique connect number (�cn�)
cn identifes connection and its txh/rxh

Add remote addr and cn to �opening� and �open�

opening to addr k with cn n
open to addr k with cn n

Become closed only when // graceful closing

remote has closed connection or is closing
all incoming data received
no ongoing rx or tx



ConnFifoChannel (ADDR) � 1 connection-oriented lrd

Main

nc ← 0 // connect number counter
j's status ← closed // connection status of j
txhj,n ← rxhj,n ← [] // tx/rx histories for j with cn n

vj ← sid() // access system

input ADDR j.accept()

ic {j is closed}

j becomes accepting;

output k
oc {k is opening to j}

j becomes open to k with k's cn;
return k



ConnFifoChannel (ADDR) � 2 connection-oriented lrd

input bool j.connect(k)

ic { j is closed }
n ← nc + +;
j becomes opening to k with cn n

output bool rval

oc {rval ⇔ k is open to j with cn n}

if (rval)
j becomes open to k with cn n;

else
j becomes closed;

return rval;



ConnFifoChannel (ADDR) � 3 connection-oriented lrd

input void j.close()

ic {j is open and is not closing}

k ← j's remote addr; n ← j's cn;

oc {(k is closing or not open to j with cn n) and

rxhj,n = txhk,n and

(j has no ongoing tx or rx)
}

j becomes closed;

return;



ConnFifoChannel (ADDR) � 4 connection-oriented lrd

input void j.tx(msg)

ic { j has no ongoing tx, is open, and is not closing }

n ← j's cn;

txhj,n.append(msg);

oc {true}
return;



ConnFifoChannel (ADDR) � 5 connection-oriented lrd

input Seq j.rx()

ic { j is open and has no ongoing rx }

k ← j's remote addr; n] ← j's cn;

output rval, msg

oc {(rval = [−1] and rxhj,n = txhk,n and

remote is closing or not open to k with cn n)

or

(rval = [0,msg] and

(rxhj,n ◦ [msg]) pre�x-of txhk,n)

}

if (rval[0] = 0)
rxhj,n.append(msg);

return rval;



ConnFifoChannel (ADDR) � 5 connection-oriented lrd

Progress assumption

ongoing j.accept and ?? leads-to not ongoing j.accept

ongoing j.connect leads-to not ongoing j.connect // ??

ongoing j.tx leads-to not ongoing j.tx

ongoing j.rx and (j open to k with cn n) and
rxhj,n.size < txhk,n.size or

(rxhj,n.size = txhk,n.size and

(k closing or not open to j with n))
leads-to (not ongoing j.rx)

ongoing j.close and (j open to k with cn n) and
(k closing or not open to j with n) and
(j.rx repeatedly called)

leads-to not ongoing j.close



Outline muxing ports

Connection-less Fifo Channels

Connection-less Lossy Channels

Connection-less LRD (Loss, Reordering, Duplication) Channels

Connection-oriented Fifo Channels

Multiplexing Ports onto Channels



Distributed multiplexor program muxing ports

program MuxorDist (ADDR, PORT)

// start connection-less channel

{cj} ← startSystem ( FifoChannel (ADDR));

// start muxor system at each address

for (j in ADDR)
vj ← startSystem ( Muxor (ADDR, PORT, j, cj));

// return muxor system sids

return {vj};



Multiplexor program � 1 muxing ports

program Muxor (ADDR, PORT, aL, cL)

// aL: local address. cL: local channel system

rbuffp ← []; // rx queue for port p

startThread(doRx()); // thread to receive msgs

input mysid.tx (pR, aR, msg) // remote port/addr pR/aR
await (true)

cL.tx(aR, [pR, msg])
return

input Seq mysid.rx (pR) // local port p
• await (rbuff[pR] 6= [])

msg ← rbuff[pR][0];
rbuff[pR].remove();

return msg;



Multiplexor program � 2 muxing ports

// receive msg from channel, and bu�er; local thread
function doRx()

while (true)
• msg ← cL.rx();

await (true)
rbuff[msg[0]].append(msg[1]);

atomicity assumption {awaits}

progress assumption {weak fairness of threads}


	Connection-less Fifo Channels
	Connection-less Lossy Channels
	Connection-less LRD (Loss, Reordering, Duplication) Channels
	Connection-oriented Fifo Channels
	Multiplexing Ports onto Channels

