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Program structure programs

program name ( params )
ia { pred }
main
functions
input functions
atomicity assumption {...}
progress assumption {...}

Read-only variables

mysid: �this� sid
mytid: �this� tid

Parameters read-only

input rtype mysid.name ( params ) // input function
ia { pred }
body

rval ← sid.fname ( params ); // call to environment
ia { pred }



Systems and Threads programs

startSystem (P (params))
instantiates program P
basic system is created with a unique system id (sid)
instantiating thread executes main and returns
system remains

Aggregate system x : basic system x and its descended systems

Composite system: arbitrary collection of systems

startThread(F (params))
creates thread executing local non-input function F
returns a unique thread id (abbr tid)
thread ends when it reaches end of F



System termination programs

Platform eventually terminates a system if

a thread in system has executed endSystem()
system is continuously in a endable state

System is endable

no guest threads in the system
no local thread of the system is in another system

Ensures that a thread is not left in limbo.

At termination, platform

terminates all local threads
cleans up system's state
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Service program structure service programs

A service program is essentially a state machine
organized into �input� and �output� functions

service prog name(params) {
ic {predicate in params}
<main> // define and initialize variables
<input functions>
<output functions>
<atomicity and progress assumptions>

}

Does not create any other system

so only one basic system, even for a distributed service

Creates threads only to execute output functions (if any)

Maximal atomicity: every atomic step does input or output



Input function service programs

Consists of

input part: executed atomically when function is called
output part: executed atomically when function returns

Input part consists of

input condition: predicate in vars and params, no side-e�ect
body: non-blocking deterministic update to main's vars

Body is executed if input condition holds, o/w fault

Output part consists of

output condition and body, as in input part

Body is executed only if output condition holds, o/w block

Note: input function never calls the environment



Input function: general case service programs

input retType sid.fname(param)
ic {predicate}
body

input part

output(extParam, internalParam)
oc {pred}
body
return rval;

output part

output(.): introduces additional parameters for output part

extParam : return value; allows external nondeterminism
internalParam : allows internal nondeterminism
parameters can have any value allowed by oc's pred
parameters not updated in output body



Output function service programs

Output function: �reverse� of an input function

output part followed by input part

Output part: output condition and body

body ends in call to environment, say sid.fn(param)
atomically create thread and execute body (including call)
only if output condition holds, o/w block

Input part: input condition and body

body starts with the call's return value (if any)
upon return, atomically execute body and terminate thread
if input condition holds, o/w fault

Never called by environment.

Program has no other call to sid.fn(.)
so all its sid.fn(.) calls are caputed by the output condition



Output function: general case service programs

output fname ( extParam, intParam) {
oc {oc predicate}
output body
rval ← sid.fn(args);
ic {ic predicate}
input body

}

output part,
ends at sid.fn(.)

input part,
begins at rval

extParam : sid and args of the call

intParam : internal parameters, allows internal nondeterminism



Atomicity and progress assumptions service programs

Atomicity assumption

main, input parts, output parts

Progress assumption

predicate with terms replaced by leads-to assertions, e.g.

P ⇒ Q −→ (A leads-to B) ⇒ (C leads-to D)

forsome(j: P) −→ forsome(j: (A leads-to B) )

�thread-location� expressions are restricted to

�thread t in s.f� and its negation where s.f is an input
function or output call of the service

locally realizable: w/o requiring inputs from environment



Fault-Freedom and Usability service programs

Service program must be fault-free

Service program with internal parameters must be usable

for any input e,
for any �nite evolutions x and y st ioseq(x) = ioseq(y),
e accepted at end of x i� e accepted at end of y

Otherwise the service program is useless as a standard
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State transition model semantics

To reason about a program, need a mathematical model of its
evolutions

We use a state transition model

state: value assignment of vars, params, thread locations
transition: state change due to execution of an atomic step
evolution: sequence of transitions starting from initial state

Provide state transition model for a composite system M

M can be the aggregate system of a program



State transition model semantics

State space

transition

evolution

reachable

state

initial state

e

input or output states

First transition creates the system

initial state: system not yet created
next state: system exists



States of M semantics

State of a basic system

value assignment of vars, params, thread locations

State of composite system M with multiple basic systems

collection of states of the basic systems in M
for a state s and a component system P

s.P : P 's component of s



Transitions of M semantics

Transition: 〈s, t〉 or 〈s, e, t〉 // atomic step execution

s: start state; fault-free
e: input or output, if present
t: end state; fault-free or fault

atomicity can be e�ective or platform-provided

Types of transitions

basic internal: no io; internal to a basic system
input: input e from environment
output: output e to environment
composite internal: io e between two basic systems of M

For non-faulty transitions

basic internal, input, output: a�ect only one basic system of M
composite internal: a�ects two basic systems of M



Evolutions semantics

Evolution of M : path in the state transition model

starts from initial state
has at least one transition // creates �rst basic system of M
�nite (can end in fault), or in�nite (no fault)

Complete evolution: one that satis�es progress assumption of M

Allowed evolution: one where every input is allowed

i.e., every input satis�es its input assumption

Set of allowed evolutions determine M 's correctness properties

M is fault-free i� every allowed evolution is fault-free

an allowed evolution can be faulty
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Predicates assertions

Predicates: express properties of system states

fault state does not satisfy any predicate

Predicate: boolean-valued construct in

boolean-valued terms: usually involving system quantities
propositional operators: not, and, or, ⇒, ⇔ , OR
quanti�ers: forall, forsome, forone

Bound variable: variable de�ned in the scope of a quanti�er

Free variable: variable that is not bound

If free variable x of predicate P is not a system quantity,
then P holds at a state i� forall(x : P) holds at the state



Assertions assertions

Assertions: express properties of system evolutions

faulty evolution does not satisfy any assertion

Two kinds of properties: safety and progress

Safety: nothing �bad� happens

if a �nite sequence x does not satisfy it,
no extension of x will satisfy it

Progress: something �good� eventually happens

if a �nite sequence x does not satisfy it,
there is an extension of x that will satisfy it



Safety assertions assertions

Invariant assertion: Inv P // P predicate

holds for evolution x if every non-initial state of x satis�es P

Unless assertion: P unless Q // P , Q predicates

holds for evolution x if
for every non-initial state s of x satisfying P and notQ,
s is the last state of x or the next state satis�es P orQ

Safety assertion: predicate [terms → invariant/unless assertions]

e.g., forall(int n: (Inv P) ⇒ (Q unless R))
holds for evolution x if predicate holds after evaluating its
component assertions on x

Safety assertion holds for a system if it holds for all its allowed
evolutions



Progress assertions � 1 assertions

Weak fairness for thread t

holds for evolution x if

x is �nite and t is blocked in last state of x , or
x is in�nite and t executes in�nitely often or is blocked
in�nitely often

Strong fairness for thread t

holds for evolution x if

x is �nite and t is blocked in last state of x , or
x is in�nite and t executes in�nitely often if it is unblocked
in�nitely often

Weak (strong) fairness for statement S

weak (strong) fairness for every thread on S



Progress assertions � 2 assertions

Leads-to assertion: P leads-to Q // P , Q predicates

holds for evolution x if
for every non-initial state s of x satisfying P and notQ,
some later state satis�es P orQ

Progress assertion: pred [terms → fairness/leads-to assertions]

e.g., forall(int n: (P leads-to Q) ⇒ (R leads-to S))
holds for evolution x if predicate holds after evaluating its
component assertions on x

Progress assertion holds for a system if the system is fault-free
and every complete allowed evolution sats�es assertion
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Image de�nitions exec split/stitch

Let C be a composite system.

Let P be the composite system of a subset of basic systems of C .

For every state, transition, or evolution x of C

x has an image on P , denoted x .P

For state s of C : s.P = part of s concerning P

For transition t = 〈u, e, v〉 of C :

t.P =

{
〈u.P , e, v .P〉 if t involves P

〈 〉 o/w

For evolution x of C :

x .P = x with every transition t replaced by t.P



Splitting exec split/stitch

Let C be a composite system.

Let P be the composite system of a subset of C

Let x be a fault-free evolution of C st x .P is not null

Theorem

x .p is a fault-free evolution of P

for any assertion β not involving C − P :
x satis�es β i� x .P satis�es β

if x is a complete evolution of C :
x .P is a complete evolution of P

Proof

easy; by induction on # transitions in x ; see text



Stitching Theorem exec split/stitch

Let P1, · · · , PN be disjoint composite systems

Let C be union of P1, · · · , PN

Let x1, · · · , xN be fault-free evolutions of P1, · · · , PN

De�nition: x1, · · · , xN are signature-compatible if

there is a merge y of io(x1), · · · , io(xN) such that
yK is output e of Pi to Pj ⇒ yK+1 is input e of io(xj)

Theorem

there is a fault-free evolution z of C st z .Pi = xi for all i
i� x1, · · · , xN are signature-compatible

for any assertion β not involving C − Pi :
z satis�es β i� xi satis�es β

z is a complete evolution of C i�
xi is complete evolution of Pi for all i
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Auxiliary variables aux vars

Record information about a program's behavior without
in�uencing its evolutions

Auxiliary variable condition

aux vars do not appear in output conditions
aux var value not used in updating a non-aux var
any statement involving aux vars is fault-free

treat as atomic with an adjacent �non-aux� statement

Theorem: Let Q be program P extended with auxiliary vars

for any Q-evolution x (faulty or not): x .P is a P-evolution
for any P-evolution y : there is a Q-evolution x st x .P = y
for any assertion β of Q: P satis�es β i� Q satis�es β
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E�ective atomicity de�nition e� atomicity

Let S be a code chunk in a program X

S-run: an execution of S by a thread in an evolution

sequence of transitions 〈t1, t2, · · · tn〉
may not be contiguous: eg, ti end state 6= ti+1 start state
may be whole or partial

S-run is atomic if contiguous and whole

S is e�ectively atomic if:
for every evolution w , there is an evolution w ′ st

every S-run in w ′ is atomic
ioseq(w) equals ioseq(w ′)
if w is complete then w ′ is complete



E�ective atomicity theorem e� atomicity

Theorem:

let S be e�ectively atomic in system X
let X ′ be X with S (platform-provided) atomic
let β be a correctness property concerning only ioseqs(X )
then X satis�es β i� X ′ satis�es β



E�ective atomicity for arbitrary properties e� atomicity

Let Z(.) be a function on evolutions // e.g., ioseq(.)

S in program X is e�ectively atomic wrt Z if:
for every evolution w , there is an evolution w ′ st

every S-run in w ′ is atomic
Z(w) equals Z(w ′)
if w is complete then w ′ is complete

Let β be a correctness property concerning only Z
i.e., β(w) = β(w ′) if Z(w) = Z(w ′)

Theorem:

let S and β be as above
let X ′ be X with S (platform-provided) atomic
then X satis�es β i� X ′ satis�es β
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Commuting transitions commutativity

Commutativity is an incremental technique for w → w ′

Let Z(.) be a function on sequences of transitions

A sequence of transitions x is massageable wrt Z if modifying
only the states in x yields an evolution x ′ s.t.Z(x) = Z(x ′)

A contiguous transition pair (ctp) is a pair of transitions 〈t1, t2〉
s.t. t1's end state equals t2's start state

Ctp 〈t1, t2〉 commutes wrt Z if in every evolution w with the cpt,
replacing it by 〈t2, t1〉 yields a sequence that is massageable wrt Z

Typically if t1 = 〈a,F , b〉 and t2 = 〈b,G , c〉, only b changes

if w = [· · · , 〈a,F , b〉, 〈b,G , c〉, · · · ]
then w ′ = [· · · , 〈a,G , d〉, 〈d ,F , c〉, · · · ]



Commuting atomic statements commutativity

Let F and G be atomic statements in program X

〈F ,G 〉 commutes wrt Z if every ctp 〈t1, t2〉 s.t.
t1 is an F -transition
t2 is a G -transition by another thread

commutes wrt Z

Let S be a code chunk in program X .

For every atomic F in S and atomic G in X

if 〈F ,G 〉 commutes wrt Z then every S-run can be coalesced
if 〈F ,G 〉 commutes wrt Z then every S-run can be coalesced

What remains is to handle partial S-runs



Handling partial runs commutativity

Let S be a code chunk in program X .

An atomic F in S is tail-droppable wrt Z if for every evolution w
with a partial S-run ending at F , deleting the F -transition yields
a sequence massageable wrt Z

An atomic F in S is tail-appendable wrt Z if for every evolution
w with a S-run ending just before F , inserting the F -transition at
the end of the S-run yields a sequence massageable wrt Z



E�ective atomicity theorem commutativity

Let the following hold

S is a code chunk in program X

K is an atomic statement in S

for every atomic F in S before K and every G in X

〈F ,G 〉 commutes wrt Z
F is tail-droppable wrt Z

for every atomic F in S after K and every G in X

〈G ,F 〉 commutes wrt Z
F is tail-appendable wrt Z

Then

S is e�ectively atomic
K is said to be the anchor of S



Some simple su�cient conditions commutativity

Below, S , R , J , K are code chunks in program X

S and R interfere if they con�ict (over a variable) or both do io

Theorem

let S be blockable only at the start
let S not interfere with any simultaneously executable J
then S is e�ectively atomic.

Theorem

let S be blockable only at the start
let K be atomic in S
let S w/o K not interfere with any simultaneously executable J
then S is e�ectively atomic and K is its anchor
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Proof rules overview proof rules

Assume a given program throughout this section

Proof rule: template of requirements and concluding assertion

conclusion holds if requirements hold
requirements involve program/predicates/assertions
predicates/assertions need to be invented
requirements mechanically checkable

Hoare-triples: properties of code in isolation

Proof rules for safety assertions: Inv P ; P unless Q

Proof rules for progress assertions: P leads-to Q



Hoare-triples proof rules

Hoare-triple {P} S {Q} // code chunk S , predicates P , Q

P : precondition; Q: postcondition

For S nonblocking and non-input:

{P} S {Q} means executing S in isolation starting from any
state satisfying P always terminates with Q holding

For S with blocking/input condition B and action C :

{P} S {Q} means {P and B}C {Q}

Terminology

{P} S {Q} aka �S unconditionally establishes Q from P�

{true} S {Q} aka �S unconditionally establishes Q�

{Q} S {Q} aka �S unconditionally preserves Q�



Hoare-triple examples proof rules

{true} if x 6= y then x← y+1 {(x = y+1) or (x = y)} (valid)

{x = n} for (i in 0..10) x← x+i {x = n + 55} (valid)

{x = 3} x ← y + 1 {x = 4} (invalid; eg, if y is 1 at start)

{(x = 1) and (y = 1)} while (x > 0) x← 2*x {y = 1}
(invalid; does not terminate)

{true} await (x 6= y) x ← y+1 {x=y+1} (valid)

{true} oc{x ≥ 1} y ← 1/(2−x) {y=1/(2−x)}
(invalid; may divide by zero)

Proof rules for Hoare-triples: see text



Safety: invariance proof rule proof rules

Invariance induction rule

Inv P holds if the following hold:

1. for initial atomic step f : {true} f {P}

2. for every non-initial atomic step e: {P} e {P}

Above aka �P satis�es invariance rule�

To exploit a previously-established Inv R

1. {true} f {P} −→ {true} f {R ⇒ P}

2. {P} e {P} −→ {P and R} e {R ⇒ P}

Above aka �P satis�es invariance rule assuming Inv R�



Reachable vs invariant vs inv rule proof rules

State space

initial state

R: reachable
states

P is invariant

Q satisfies

P
Q

R
invariance rule

not possible
leaving Q



Safety: unless proof rule proof rules

Unless rule P unless Q holds if

for every non-initial atomic step e:

{P and notQ} e {P or Q}

Above aka �P satis�es unless rule�

To exploit a previously-established Inv R

pre −→ pre and R
post −→ R ⇒ post

Above aka �P satis�es unless rule assuming Inv R�



Safety: closure proof rules proof rules

Closure rules: requirements do not involve program

Inv P holds if P holds

Inv P holds if Inv Q and Inv Q ⇒ P hold

P unless Q holds if Inv P ⇒ Q holds

P unless Q holds if following hold:

U unless V Inv P ⇒ U Inv V ⇒ Q

We say �assertion holds via closure of <assertions>�



Progress: leads-to weak-fair rule proof rules

e.enabled, for atomic step e

(thread at e) if e is non-blocking
(thread at e) and B if e has blocking condition B

Leads-to weak-fair rule
P leads-to Q holds if following hold:

e is a weak-fair atomic step
(P and not Q) ⇒ e.enabled
{P and not Q} e {Q}
for every non-initial atomic step f :
{P and not Q} f {P or Q}

Above aka �P leads-to Q via wfair e



Progress: leads-to strong-fair rule proof rules

Leads-to strong-fair rule
P leads-to Q holds if following hold:

e is a strong-fair atomic step

(P and not Q and not e.enabled) leads-to

(Q or e.enabled)
{P and not Q} e {Q}
for every non-initial atomic step f :
{P and not Q} f {P or Q}

Above aka �P leads-to Q via sfair e



Progress: closure proof rules proof rules

P leads-to (Q1 or Q2) holds if following hold:

P leads-to (P1 or Q2) P1 leads-to Q1

P leads-to Q holds if following hold for some R :

Inv R (P and R) leads-to (R ⇒ Q)

(P1 and P2) leads-to Q2 holds if following hold for some Q1:

P1 leads-to Q1 P2 unless Q2 Inv (Q1 ⇒ not P2)

P leads-to Q holds if following hold for some R , S :

P unless Q Inv (P ⇒ R)
R leads-to S Inv (S ⇒ not R)



Progress: well-founded closure rule proof rules

P leads-to Q holds if the following hold:

F is a function on a lower-bounded partial order (Z ,≺)
P leads-to (Q or forsome(x in Z : F (x)))

forall(x in Z:
F (x) leads-to (Q or forsome(w in Z , w ≺ x : F (w)))

We say �assertion holds via closure of <assertions>�
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