Programs, Semantics and Effective Atomicity

Shankar

April 3, 2014

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

programs

```
program name(params)
ia { pred }
main
functions
input functions
atomicity assumption {...}
progress assumption {...}
```

- input rtype mysid.name(params)
 ia { pred }
 body

// call to environment

Read-only variables

mysid: "this" sid

mytid: "this" tid

// input function

startSystem(P(params))

- instantiates program P
- basic system is created with a unique system id (sid)
- instantiating thread executes main and returns
- system remains
- Aggregate system x: basic system x and its descended systems
- Composite system: arbitrary collection of systems
- startThread(F(params))
 - creates thread executing local non-input function F
 - returns a unique thread id (abbr tid)
 - thread ends when it reaches end of F

Platform eventually terminates a system if

- a thread in system has executed endSystem()
- system is continuously in a *endable* state

System is endable

- no guest threads in the system
- no local thread of the system is in another system
 Ensures that a thread is not left in limbo.
- At termination, platform
 - terminates all local threads
 - cleans up system's state

Outline

Program

- Service Programs
- State transition semantics of systems
- Assertions and their evaluation
- Splitting and stitching of evolutions
- Auxiliary variables
- Effective atomicity
- Commutativity
- Proof rules

A service program is essentially a state machine organized into "input" and "output" functions

```
service prog name(params) {
  ic {predicate in params}
  <main> // define and initialize variables
  <input functions>
  <output functions>
  <atomicity and progress assumptions>
}
```

Does not create any other system

- so only one basic system, even for a distributed service
- Creates threads only to execute output functions (if any)
- Maximal atomicity: every atomic step does input or output

Consists of

- input part: executed atomically when function is called
- output part: executed atomically when function returns

Input part consists of

- input condition: predicate in vars and params, no side-effect
 body: non-blocking deterministic update to main's vars
 Body is executed if input condition holds, o/w fault
- Output part consists of
 - output condition and body, as in input part
 Body is executed only if output condition holds, o/w block
- Note: input function never calls the environment

<pre>input retType sid.fname(param) ic {predicate} body</pre>	input part
<pre>output(extParam, internalParam) oc {pred} body</pre>	output part
return <i>rval</i> ;	

output(.): introduces additional parameters for output part

- extParam: return value; allows external nondeterminism
- internalParam: allows internal nondeterminism
- parameters can have any value allowed by oc's pred
- parameters not updated in output body

Output function

- Output function: "reverse" of an input function
 - output part followed by input part
- Output part: output condition and body
 - body ends in call to environment, say sid.fn(param)
 - atomically create thread and execute body (including call) only if output condition holds, o/w block
- Input part: input condition and body
 - body starts with the call's return value (if any)
 - upon return, atomically execute body and terminate thread if input condition holds, o/w fault
- Never called by environment.
- Program has no other call to sid.fn(.)
 - so all its *sid.fn*(.) calls are caputed by the output condition

```
output fname(extParam, intParam) {
    oc {oc predicate}
    output body
    rval ← sid.fn(args);
    ic {ic predicate}
    input body
}
```

```
output part,
ends at sid.fn(.)
```

input part, begins at *rva1*

extParam: sid and args of the call

intParam: internal parameters, allows internal nondeterminism

- Atomicity assumption
 - main, input parts, output parts
- Progress assumption
 - predicate with terms replaced by leads-to assertions, e.g.
 - $\blacksquare P \Rightarrow Q \qquad \longrightarrow \quad (A \text{ leads-to } B) \Rightarrow (C \text{ leads-to } D)$
 - forsome(j: P) \longrightarrow forsome(j: (A leads-to B))
 - "thread-location" expressions are restricted to
 - "thread t in s.f" and its negation where s.f is an input function or output call of the service
 - locally realizable: w/o requiring inputs from environment

- Service program must be fault-free
- Service program with internal parameters must be usable
 - for any input e,
 for any finite evolutions x and y st ioseq(x) = ioseq(y),
 e accepted at end of x iff e accepted at end of y
- Otherwise the service program is useless as a standard

semantics

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

- To reason about a program, need a mathematical model of its evolutions
- We use a state transition model
 - state: value assignment of vars, params, thread locations
 - transition: state change due to execution of an atomic step
 - evolution: sequence of transitions starting from initial state
- Provide state transition model for a composite system M
 - *M* can be the aggregate system of a program

semantics

- First transition creates the system
 - initial state: system not yet created
 - next state: system exists

- State of a basic system
 - value assignment of vars, params, thread locations
- **State** of composite system *M* with multiple basic systems
 - collection of states of the basic systems in M
 - for a state *s* and a component system *P*
 - s.P: P's component of s

Transitions of M

semantics

Transition: $\langle s, t \rangle$ or $\langle s, e, t \rangle$

// atomic step execution

- *s*: start state; fault-free
- e: input or output, if present
- t: end state; fault-free or fault
- atomicity can be effective or platform-provided

Types of transitions

- basic internal: no io; internal to a basic system
- input: input e from environment
- output: output e to environment
- composite internal: io e between two basic systems of M
- For non-faulty transitions
 - basic internal, input, output: affect only one basic system of M
 - composite internal: affects two basic systems of M

Evolution of *M*: path in the state transition model

- starts from initial state
- has at least one transition // creates first basic system of M
- finite (can end in fault), or infinite (no fault)
- **Complete** evolution: one that satisfies progress assumption of M
- Allowed evolution: one where every input is allowed
 - i.e., every input satisfies its input assumption
- Set of allowed evolutions determine M's correctness properties
- \blacksquare *M* is fault-free iff every allowed evolution is fault-free
 - an allowed evolution can be faulty

assertions

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

Predicates: express properties of system states

- fault state does not satisfy any predicate
- Predicate: boolean-valued construct in
 - boolean-valued terms: usually involving system quantities
 - propositional operators: not, and, or, \Rightarrow , \Leftrightarrow , OR
 - quantifiers: forall, forsome, forone
- Bound variable: variable defined in the scope of a quantifier
- Free variable: variable that is not bound
- If free variable x of predicate P is not a system quantity, then P holds at a state iff forall(x : P) holds at the state

- Assertions: express properties of system evolutions
 - faulty evolution does not satisfy any assertion
- Two kinds of properties: safety and progress
- Safety: nothing "bad" happens
 - if a finite sequence x does not satisfy it, no extension of x will satisfy it
- Progress: something "good" eventually happens
 if a finite sequence x does not satisfy it, there is an extension of x that will satisfy it

- Invariant assertion: Inv P // P predicate
 - holds for evolution x if every non-initial state of x satisfies P
- Unless assertion: P unless Q // P, Q predicates
 holds for evolution x if for every non-initial state s of x satisfying P and not Q, s is the last state of x or the next state satisfies P or Q
- Safety assertion: predicate [terms \rightarrow invariant/unless assertions]
 - e.g., forall(int n: (Inv P) \Rightarrow (Q unless R))
 - holds for evolution x if predicate holds after evaluating its component assertions on x
- Safety assertion holds for a system if it holds for all its allowed evolutions

Progress assertions -1

- Weak fairness for thread t
 - holds for evolution x if
 - x is finite and t is blocked in last state of x, or
 - x is infinite and t executes infinitely often or is blocked infinitely often

assertions

- Strong fairness for thread t
 - holds for evolution x if
 - x is finite and t is blocked in last state of x, or
 - x is infinite and t executes infinitely often if it is unblocked infinitely often
- Weak (strong) fairness for statement S
 - weak (strong) fairness for every thread on S

 Leads-to assertion: P leads-to Q // P, Q predicates
 holds for evolution x if for every non-initial state s of x satisfying P and not Q, some later state satisfies P or Q

- Progress assertion: pred [terms → fairness/leads-to assertions]
 - e.g., forall(int n: (P leads-to Q) \Rightarrow (R leads-to S))
 - holds for evolution x if predicate holds after evaluating its component assertions on x
- Progress assertion holds for a system if the system is fault-free and every complete allowed evolution satsfies assertion

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

- Let *C* be a composite system.
- Let P be the composite system of a subset of basic systems of C.
- For every state, transition, or evolution x of C
 - x has an image on P, denoted x.P
- For state s of C: s.P = part of s concerning P
- For transition $t = \langle u, e, v \rangle$ of C:

 $t.P = \begin{cases} \langle u.P, e, v.P \rangle & \text{if } t \text{ involves } P \\ \langle \rangle & o/w \end{cases}$

- For evolution *x* of *C*:
 - x.P = x with every transition t replaced by t.P

- Let *C* be a composite system.
- Let P be the composite system of a subset of C
- Let x be a fault-free evolution of C st x.P is not null

Theorem

- x.p is a fault-free evolution of P
- for any assertion β not involving C P:
 x satisfies β iff x.P satisfies β
- if x is a complete evolution of C:
 x.P is a complete evolution of P

Proof

• easy; by induction on # transitions in x; see text

Stitching Theorem

- Let P_1, \dots, P_N be disjoint composite systems
- Let C be union of P_1, \dots, P_N
- Let x_1, \dots, x_N be fault-free evolutions of P_1, \dots, P_N
- **Definition:** x_1, \dots, x_N are signature-compatible if
 - there is a merge y of $io(x_1), \dots, io(x_N)$ such that y_K is output e of P_i to $P_j \Rightarrow y_{K+1}$ is input e of $io(x_j)$

Theorem

- there is a fault-free evolution z of C st $z.P_i = x_i$ for all i iff x_1, \dots, x_N are signature-compatible
- for any assertion β not involving C P_i:
 z satisfies β iff x_i satisfies β
- z is a complete evolution of C iff
 x_i is complete evolution of P_i for all i

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

 Record information about a program's behavior without influencing its evolutions

- Auxiliary variable condition
 - aux vars do not appear in output conditions
 - aux var value not used in updating a non-aux var
 - any statement involving aux vars is fault-free
 - treat as atomic with an adjacent "non-aux" statement
- Theorem: Let Q be program P extended with auxiliary vars
 - for any Q-evolution x (faulty or not): x.P is a P-evolution
 - for any *P*-evolution *y*: there is a *Q*-evolution *x* st $x \cdot P = y$
 - for any assertion β of Q: P satisfies β iff Q satisfies β

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

- Let S be a code chunk in a program X
- **S**-run: an execution of S by a thread in an evolution
 - sequence of transitions $\langle t_1, t_2, \cdots t_n
 angle$
 - **•** may not be contiguous: eg, t_i end state $\neq t_{i+1}$ start state
 - may be whole or partial
- *S*-run is atomic if contiguous and whole
- **S** is effectively atomic if:

for every evolution w, there is an evolution w' st

- every S-run in w' is atomic
- ioseq(w) equals ioseq(w')
- if w is complete then w' is complete

Theorem:

- let S be effectively atomic in system X
- let X' be X with S (platform-provided) atomic
- let β be a correctness property concerning only *ioseqs*(X)
- then X satisfies β iff X' satisfies β

Effective atomicity for arbitrary properties

• Let $\mathcal{Z}(.)$ be a function on evolutions

- S in program X is effectively atomic wrt Z if: for every evolution w, there is an evolution w' st
 - every S-run in w' is atomic
 - **Z**(w) equals $\mathcal{Z}(w')$
 - if w is complete then w' is complete

 \blacksquare Let β be a correctness property concerning only $\mathcal Z$

- i.e., $\beta(w) = \beta(w')$ if $\mathcal{Z}(w) = \mathcal{Z}(w')$
- Theorem:
 - let S and β be as above
 - let X' be X with S (platform-provided) atomic
 - then X satisfies β iff X' satisfies β

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

- Commutativity is an incremental technique for $w \rightarrow w'$
- Let $\mathcal{Z}(.)$ be a function on sequences of transitions
- A sequence of transitions x is massageable wrt Z if modifying only the states in x yields an evolution x' s.t.Z(x) = Z(x')
- A contiguous transition pair (ctp) is a pair of transitions $\langle t_1, t_2 \rangle$ s.t. t_1 's end state equals t_2 's start state
- Ctp $\langle t_1, t_2 \rangle$ commutes wrt \mathcal{Z} if in every evolution w with the cpt, replacing it by $\langle t_2, t_1 \rangle$ yields a sequence that is massageable wrt \mathcal{Z}

Typically if
$$t_1 = \langle a, F, b \rangle$$
 and $t_2 = \langle b, G, c \rangle$, only b changes
if $w = [\cdots, \langle a, F, b \rangle, \langle b, G, c \rangle, \cdots]$
then $w' = [\cdots, \langle a, G, d \rangle, \langle d, F, c \rangle, \cdots]$

• Let F and G be atomic statements in program X

- $\langle F, G \rangle$ commutes wrt \mathcal{Z} if every ctp $\langle t_1, t_2 \rangle$ s.t.
 - t_1 is an *F*-transition
 - t_2 is a *G*-transition by another thread commutes wrt \mathcal{Z}
- Let *S* be a code chunk in program *X*.
- For every atomic F in S and atomic G in X
 - if $\langle F, G \rangle$ commutes wrt \mathcal{Z} then every S-run can be coalesced
 - if $\langle F, G \rangle$ commutes wrt $\mathcal Z$ then every S-run can be coalesced

What remains is to handle partial S-runs

- Let S be a code chunk in program X.
- An atomic F in S is tail-droppable wrt \mathcal{Z} if for every evolution w with a partial S-run ending at F, deleting the F-transition yields a sequence massageable wrt \mathcal{Z}
- An atomic *F* in *S* is tail-appendable wrt *Z* if for every evolution *w* with a *S*-run ending just before *F*, inserting the *F*-transition at the end of the *S*-run yields a sequence massageable wrt *Z*

- Let the following hold
 - S is a code chunk in program X
 - K is an atomic statement in S
 - for every atomic F in S before K and every G in X
 - $\langle F, G
 angle$ commutes wrt \mathcal{Z}
 - F is tail-droppable wrt \mathcal{Z}
 - for every atomic F in S after K and every G in X
 - $\langle G, F \rangle$ commutes wrt \mathcal{Z}
 - F is tail-appendable wrt $\mathcal Z$

Then

- *S* is effectively atomic
- K is said to be the anchor of S

- Below, S, R, J, K are code chunks in program X
- S and *R* interfere if they conflict (over a variable) or both do io
- Theorem
 - \blacksquare let S be blockable only at the start
 - let S not interfere with any simultaneously executable J
 - then *S* is effectively atomic.

Theorem

- let S be blockable only at the start
- let K be atomic in S
- let $S \le N$ not interfere with any simultaneously executable J
- then S is effectively atomic and K is its anchor

Outline

Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of evolutions Auxiliary variables Effective atomicity Commutativity Proof rules

Assume a given program throughout this section

- Proof rule: template of requirements and concluding assertion
 - conclusion holds if requirements hold
 - requirements involve program/predicates/assertions
 - predicates/assertions need to be invented
 - requirements mechanically checkable
- Hoare-triples: properties of code in isolation
- Proof rules for safety assertions: Inv P; P unless Q
- Proof rules for progress assertions: P leads-to Q

- Hoare-triple $\{P\} S \{Q\}$ // code chunk S, predicates P, Q
 - *P*: precondition; *Q*: postcondition
- For *S* nonblocking and non-input:
 - {P} S {Q} means executing S in isolation starting from any state satisfying P always terminates with Q holding
- For S with blocking/input condition B and action C:
 - $\{P\} S \{Q\}$ means $\{P \text{ and } B\} C \{Q\}$

Terminology

 $\{P\} S \{Q\} \quad \text{aka "} S \text{ unconditionally establishes } Q \text{ from } P" \\ \{true\} S \{Q\} \quad \text{aka "} S \text{ unconditionally establishes } Q" \\ \{Q\} S \{Q\} \quad \text{aka "} S \text{ unconditionally preserves } Q" \\ \end{cases}$

Hoare-triple examples

- {true} if $x \neq y$ then $x \leftarrow y+1$ {(x = y+1) or (x = y)} (valid)
- {x = n} for (i in 0..10) x \leftarrow x+i {x = n+55} (valid)
- {x = 3} $x \leftarrow y+1$ {x = 4} (invalid; eg, if y is 1 at start)
- {(x = 1) and (y = 1)} while (x > 0) $x \leftarrow 2*x \{y = 1\}$ (invalid; does not terminate)
- {true} await $(x \neq y) x \leftarrow y+1 \{x=y+1\}$ (valid)
- {true} oc{x ≥ 1} y ← 1/(2-x) {y=1/(2-x)} (invalid; may divide by zero)

Proof rules for Hoare-triples: see text

Invariance induction rule

Inv P holds if the following hold:

- 1. for initial atomic step f: {true} f {P}
- 2. for every non-initial atomic step $e: \{P\} \in \{P\}$

Above aka "P satisfies invariance rule"

To exploit a previously-established Inv R

- 1. {true} $f \{P\} \longrightarrow \{\text{true}\} f \{R \Rightarrow P\}$
- 2. $\{P\}e\{P\} \longrightarrow \{P \text{ and } R\} e \{R \Rightarrow P\}$

Above aka "P satisfies invariance rule assuming Inv R"

Reachable vs invariant vs inv rule

 Unless rule P unless Q holds if
 for every non-initial atomic step e: {P and not Q} e {P or Q}

Above aka "P satisfies unless rule"

To exploit a previously-established Inv R

- pre \longrightarrow pre and R
- post \longrightarrow $R \Rightarrow$ post

Above aka "P satisfies unless rule assuming Inv R"

Closure rules: requirements do not involve program

- Inv P holds if P holds
- Inv P holds if Inv Q and Inv $Q \Rightarrow P$ hold
- P unless Q holds if $Inv P \Rightarrow Q$ holds
- P unless Q holds if following hold:
 U unless V Inv P ⇒ U Inv V ⇒ Q

We say "assertion holds via closure of <assertions>"

■ e.enabled, for atomic step e

- (thread at e) if e is non-blocking
- (thread at e) and B if e has blocking condition B

Leads-to weak-fair rule

P leads-to Q holds if following hold:

- e is a weak-fair atomic step
- $(P \text{ and not } Q) \Rightarrow e.enabled$
- $\{P \text{ and not } Q\} e \{Q\}$
- for every non-initial atomic step f: {P and not Q} f {P or Q}

Above aka "P leads-to Q via wfair e

Leads-to strong-fair rule

P leads-to Q holds if following hold:

- e is a strong-fair atomic step
- (P and not Q and not e.enabled) leads-to
 (Q or e.enabled)
- $\{P \text{ and not } Q\} e \{Q\}$
- for every non-initial atomic step f: {P and not Q} f {P or Q}

Above aka "P leads-to Q via sfair e

- P leads-to (Q₁ or Q₂) holds if following hold:
 P leads-to (P₁ or Q₂)
 P₁ leads-to Q₁
- P leads-to Q holds if following hold for some R:
 Inv R (P and R) leads-to (R ⇒ Q)
- $(P_1 \text{ and } P_2)$ leads-to Q_2 holds if following hold for some Q_1 : • P_1 leads-to Q_1 • P_2 unless Q_2 • $Inv(Q_1 \Rightarrow not P2)$
- P leads-to Q holds if following hold for some R, S:
 - P unless Q $Inv(P \Rightarrow R)$
 - R leads-to S $Inv(S \Rightarrow not R)$

- *P* leads-to *Q* holds if the following hold:
 - F is a function on a lower-bounded partial order (Z, \prec)
 - P leads-to (Q or forsome(x in Z : F(x)))
 - forall(x in Z:

F(x) leads-to (Q or forsome(w in Z, $w \prec x : F(w)$))

We say "assertion holds via closure of <assertions>"