
Programs, Semantics and E�ective Atomicity

Shankar

April 3, 2014

Outline programs

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Program structure programs

program name (params)
ia { pred }
main
functions
input functions
atomicity assumption {...}
progress assumption {...}

Read-only variables

mysid: �this� sid
mytid: �this� tid

Parameters read-only

input rtype mysid.name (params) // input function
ia { pred }
body

rval ← sid.fname (params); // call to environment
ia { pred }

Systems and Threads programs

startSystem (P (params))
instantiates program P
basic system is created with a unique system id (sid)
instantiating thread executes main and returns
system remains

Aggregate system x : basic system x and its descended systems

Composite system: arbitrary collection of systems

startThread(F (params))
creates thread executing local non-input function F
returns a unique thread id (abbr tid)
thread ends when it reaches end of F

System termination programs

Platform eventually terminates a system if

a thread in system has executed endSystem()
system is continuously in a endable state

System is endable

no guest threads in the system
no local thread of the system is in another system

Ensures that a thread is not left in limbo.

At termination, platform

terminates all local threads
cleans up system's state

Outline service programs

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Service program structure service programs

A service program is essentially a state machine
organized into �input� and �output� functions

service prog name(params) {
ic {predicate in params}
<main> // define and initialize variables
<input functions>
<output functions>
<atomicity and progress assumptions>

}

Does not create any other system

so only one basic system, even for a distributed service

Creates threads only to execute output functions (if any)

Maximal atomicity: every atomic step does input or output

Input function service programs

Consists of

input part: executed atomically when function is called
output part: executed atomically when function returns

Input part consists of

input condition: predicate in vars and params, no side-e�ect
body: non-blocking deterministic update to main's vars

Body is executed if input condition holds, o/w fault

Output part consists of

output condition and body, as in input part

Body is executed only if output condition holds, o/w block

Note: input function never calls the environment

Input function: general case service programs

input retType sid.fname(param)
ic {predicate}
body

input part

output(extParam, internalParam)
oc {pred}
body
return rval;

output part

output(.): introduces additional parameters for output part

extParam : return value; allows external nondeterminism
internalParam : allows internal nondeterminism
parameters can have any value allowed by oc's pred
parameters not updated in output body

Output function service programs

Output function: �reverse� of an input function

output part followed by input part

Output part: output condition and body

body ends in call to environment, say sid.fn(param)
atomically create thread and execute body (including call)
only if output condition holds, o/w block

Input part: input condition and body

body starts with the call's return value (if any)
upon return, atomically execute body and terminate thread
if input condition holds, o/w fault

Never called by environment.

Program has no other call to sid.fn(.)
so all its sid.fn(.) calls are caputed by the output condition

Output function: general case service programs

output fname (extParam, intParam) {
oc {oc predicate}
output body
rval ← sid.fn(args);
ic {ic predicate}
input body

}

output part,
ends at sid.fn(.)

input part,
begins at rval

extParam : sid and args of the call

intParam : internal parameters, allows internal nondeterminism

Atomicity and progress assumptions service programs

Atomicity assumption

main, input parts, output parts

Progress assumption

predicate with terms replaced by leads-to assertions, e.g.

P ⇒ Q −→ (A leads-to B) ⇒ (C leads-to D)

forsome(j: P) −→ forsome(j: (A leads-to B))

�thread-location� expressions are restricted to

�thread t in s.f� and its negation where s.f is an input
function or output call of the service

locally realizable: w/o requiring inputs from environment

Fault-Freedom and Usability service programs

Service program must be fault-free

Service program with internal parameters must be usable

for any input e,
for any �nite evolutions x and y st ioseq(x) = ioseq(y),
e accepted at end of x i� e accepted at end of y

Otherwise the service program is useless as a standard

Outline semantics

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

State transition model semantics

To reason about a program, need a mathematical model of its
evolutions

We use a state transition model

state: value assignment of vars, params, thread locations
transition: state change due to execution of an atomic step
evolution: sequence of transitions starting from initial state

Provide state transition model for a composite system M

M can be the aggregate system of a program

State transition model semantics

State space

transition

evolution

reachable

state

initial state

e

input or output states

First transition creates the system

initial state: system not yet created
next state: system exists

States of M semantics

State of a basic system

value assignment of vars, params, thread locations

State of composite system M with multiple basic systems

collection of states of the basic systems in M
for a state s and a component system P

s.P : P 's component of s

Transitions of M semantics

Transition: 〈s, t〉 or 〈s, e, t〉 // atomic step execution

s: start state; fault-free
e: input or output, if present
t: end state; fault-free or fault

atomicity can be e�ective or platform-provided

Types of transitions

basic internal: no io; internal to a basic system
input: input e from environment
output: output e to environment
composite internal: io e between two basic systems of M

For non-faulty transitions

basic internal, input, output: a�ect only one basic system of M
composite internal: a�ects two basic systems of M

Evolutions semantics

Evolution of M : path in the state transition model

starts from initial state
has at least one transition // creates �rst basic system of M
�nite (can end in fault), or in�nite (no fault)

Complete evolution: one that satis�es progress assumption of M

Allowed evolution: one where every input is allowed

i.e., every input satis�es its input assumption

Set of allowed evolutions determine M 's correctness properties

M is fault-free i� every allowed evolution is fault-free

an allowed evolution can be faulty

Outline assertions

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Predicates assertions

Predicates: express properties of system states

fault state does not satisfy any predicate

Predicate: boolean-valued construct in

boolean-valued terms: usually involving system quantities
propositional operators: not, and, or, ⇒, ⇔ , OR
quanti�ers: forall, forsome, forone

Bound variable: variable de�ned in the scope of a quanti�er

Free variable: variable that is not bound

If free variable x of predicate P is not a system quantity,
then P holds at a state i� forall(x : P) holds at the state

Assertions assertions

Assertions: express properties of system evolutions

faulty evolution does not satisfy any assertion

Two kinds of properties: safety and progress

Safety: nothing �bad� happens

if a �nite sequence x does not satisfy it,
no extension of x will satisfy it

Progress: something �good� eventually happens

if a �nite sequence x does not satisfy it,
there is an extension of x that will satisfy it

Safety assertions assertions

Invariant assertion: Inv P // P predicate

holds for evolution x if every non-initial state of x satis�es P

Unless assertion: P unless Q // P , Q predicates

holds for evolution x if
for every non-initial state s of x satisfying P and notQ,
s is the last state of x or the next state satis�es P orQ

Safety assertion: predicate [terms → invariant/unless assertions]

e.g., forall(int n: (Inv P) ⇒ (Q unless R))
holds for evolution x if predicate holds after evaluating its
component assertions on x

Safety assertion holds for a system if it holds for all its allowed
evolutions

Progress assertions � 1 assertions

Weak fairness for thread t

holds for evolution x if

x is �nite and t is blocked in last state of x , or
x is in�nite and t executes in�nitely often or is blocked
in�nitely often

Strong fairness for thread t

holds for evolution x if

x is �nite and t is blocked in last state of x , or
x is in�nite and t executes in�nitely often if it is unblocked
in�nitely often

Weak (strong) fairness for statement S

weak (strong) fairness for every thread on S

Progress assertions � 2 assertions

Leads-to assertion: P leads-to Q // P , Q predicates

holds for evolution x if
for every non-initial state s of x satisfying P and notQ,
some later state satis�es P orQ

Progress assertion: pred [terms → fairness/leads-to assertions]

e.g., forall(int n: (P leads-to Q) ⇒ (R leads-to S))
holds for evolution x if predicate holds after evaluating its
component assertions on x

Progress assertion holds for a system if the system is fault-free
and every complete allowed evolution sats�es assertion

Outline exec split/stitch

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Image de�nitions exec split/stitch

Let C be a composite system.

Let P be the composite system of a subset of basic systems of C .

For every state, transition, or evolution x of C

x has an image on P , denoted x .P

For state s of C : s.P = part of s concerning P

For transition t = 〈u, e, v〉 of C :

t.P =

{
〈u.P , e, v .P〉 if t involves P

〈 〉 o/w

For evolution x of C :

x .P = x with every transition t replaced by t.P

Splitting exec split/stitch

Let C be a composite system.

Let P be the composite system of a subset of C

Let x be a fault-free evolution of C st x .P is not null

Theorem

x .p is a fault-free evolution of P

for any assertion β not involving C − P :
x satis�es β i� x .P satis�es β

if x is a complete evolution of C :
x .P is a complete evolution of P

Proof

easy; by induction on # transitions in x ; see text

Stitching Theorem exec split/stitch

Let P1, · · · , PN be disjoint composite systems

Let C be union of P1, · · · , PN

Let x1, · · · , xN be fault-free evolutions of P1, · · · , PN

De�nition: x1, · · · , xN are signature-compatible if

there is a merge y of io(x1), · · · , io(xN) such that
yK is output e of Pi to Pj ⇒ yK+1 is input e of io(xj)

Theorem

there is a fault-free evolution z of C st z .Pi = xi for all i
i� x1, · · · , xN are signature-compatible

for any assertion β not involving C − Pi :
z satis�es β i� xi satis�es β

z is a complete evolution of C i�
xi is complete evolution of Pi for all i

Outline aux vars

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Auxiliary variables aux vars

Record information about a program's behavior without
in�uencing its evolutions

Auxiliary variable condition

aux vars do not appear in output conditions
aux var value not used in updating a non-aux var
any statement involving aux vars is fault-free

treat as atomic with an adjacent �non-aux� statement

Theorem: Let Q be program P extended with auxiliary vars

for any Q-evolution x (faulty or not): x .P is a P-evolution
for any P-evolution y : there is a Q-evolution x st x .P = y
for any assertion β of Q: P satis�es β i� Q satis�es β

Outline e� atomicity

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

E�ective atomicity de�nition e� atomicity

Let S be a code chunk in a program X

S-run: an execution of S by a thread in an evolution

sequence of transitions 〈t1, t2, · · · tn〉
may not be contiguous: eg, ti end state 6= ti+1 start state
may be whole or partial

S-run is atomic if contiguous and whole

S is e�ectively atomic if:
for every evolution w , there is an evolution w ′ st

every S-run in w ′ is atomic
ioseq(w) equals ioseq(w ′)
if w is complete then w ′ is complete

E�ective atomicity theorem e� atomicity

Theorem:

let S be e�ectively atomic in system X
let X ′ be X with S (platform-provided) atomic
let β be a correctness property concerning only ioseqs(X)
then X satis�es β i� X ′ satis�es β

E�ective atomicity for arbitrary properties e� atomicity

Let Z(.) be a function on evolutions // e.g., ioseq(.)

S in program X is e�ectively atomic wrt Z if:
for every evolution w , there is an evolution w ′ st

every S-run in w ′ is atomic
Z(w) equals Z(w ′)
if w is complete then w ′ is complete

Let β be a correctness property concerning only Z
i.e., β(w) = β(w ′) if Z(w) = Z(w ′)

Theorem:

let S and β be as above
let X ′ be X with S (platform-provided) atomic
then X satis�es β i� X ′ satis�es β

Outline commutativity

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Commuting transitions commutativity

Commutativity is an incremental technique for w → w ′

Let Z(.) be a function on sequences of transitions

A sequence of transitions x is massageable wrt Z if modifying
only the states in x yields an evolution x ′ s.t.Z(x) = Z(x ′)

A contiguous transition pair (ctp) is a pair of transitions 〈t1, t2〉
s.t. t1's end state equals t2's start state

Ctp 〈t1, t2〉 commutes wrt Z if in every evolution w with the cpt,
replacing it by 〈t2, t1〉 yields a sequence that is massageable wrt Z

Typically if t1 = 〈a,F , b〉 and t2 = 〈b,G , c〉, only b changes

if w = [· · · , 〈a,F , b〉, 〈b,G , c〉, · · ·]
then w ′ = [· · · , 〈a,G , d〉, 〈d ,F , c〉, · · ·]

Commuting atomic statements commutativity

Let F and G be atomic statements in program X

〈F ,G 〉 commutes wrt Z if every ctp 〈t1, t2〉 s.t.
t1 is an F -transition
t2 is a G -transition by another thread

commutes wrt Z

Let S be a code chunk in program X .

For every atomic F in S and atomic G in X

if 〈F ,G 〉 commutes wrt Z then every S-run can be coalesced
if 〈F ,G 〉 commutes wrt Z then every S-run can be coalesced

What remains is to handle partial S-runs

Handling partial runs commutativity

Let S be a code chunk in program X .

An atomic F in S is tail-droppable wrt Z if for every evolution w
with a partial S-run ending at F , deleting the F -transition yields
a sequence massageable wrt Z

An atomic F in S is tail-appendable wrt Z if for every evolution
w with a S-run ending just before F , inserting the F -transition at
the end of the S-run yields a sequence massageable wrt Z

E�ective atomicity theorem commutativity

Let the following hold

S is a code chunk in program X

K is an atomic statement in S

for every atomic F in S before K and every G in X

〈F ,G 〉 commutes wrt Z
F is tail-droppable wrt Z

for every atomic F in S after K and every G in X

〈G ,F 〉 commutes wrt Z
F is tail-appendable wrt Z

Then

S is e�ectively atomic
K is said to be the anchor of S

Some simple su�cient conditions commutativity

Below, S , R , J , K are code chunks in program X

S and R interfere if they con�ict (over a variable) or both do io

Theorem

let S be blockable only at the start
let S not interfere with any simultaneously executable J
then S is e�ectively atomic.

Theorem

let S be blockable only at the start
let K be atomic in S
let S w/o K not interfere with any simultaneously executable J
then S is e�ectively atomic and K is its anchor

Outline proof rules

Program

Service Programs

State transition semantics of systems

Assertions and their evaluation

Splitting and stitching of evolutions

Auxiliary variables

E�ective atomicity

Commutativity

Proof rules

Proof rules overview proof rules

Assume a given program throughout this section

Proof rule: template of requirements and concluding assertion

conclusion holds if requirements hold
requirements involve program/predicates/assertions
predicates/assertions need to be invented
requirements mechanically checkable

Hoare-triples: properties of code in isolation

Proof rules for safety assertions: Inv P ; P unless Q

Proof rules for progress assertions: P leads-to Q

Hoare-triples proof rules

Hoare-triple {P} S {Q} // code chunk S , predicates P , Q

P : precondition; Q: postcondition

For S nonblocking and non-input:

{P} S {Q} means executing S in isolation starting from any
state satisfying P always terminates with Q holding

For S with blocking/input condition B and action C :

{P} S {Q} means {P and B}C {Q}

Terminology

{P} S {Q} aka �S unconditionally establishes Q from P�

{true} S {Q} aka �S unconditionally establishes Q�

{Q} S {Q} aka �S unconditionally preserves Q�

Hoare-triple examples proof rules

{true} if x 6= y then x← y+1 {(x = y+1) or (x = y)} (valid)

{x = n} for (i in 0..10) x← x+i {x = n + 55} (valid)

{x = 3} x ← y + 1 {x = 4} (invalid; eg, if y is 1 at start)

{(x = 1) and (y = 1)} while (x > 0) x← 2*x {y = 1}
(invalid; does not terminate)

{true} await (x 6= y) x ← y+1 {x=y+1} (valid)

{true} oc{x ≥ 1} y ← 1/(2−x) {y=1/(2−x)}
(invalid; may divide by zero)

Proof rules for Hoare-triples: see text

Safety: invariance proof rule proof rules

Invariance induction rule

Inv P holds if the following hold:

1. for initial atomic step f : {true} f {P}

2. for every non-initial atomic step e: {P} e {P}

Above aka �P satis�es invariance rule�

To exploit a previously-established Inv R

1. {true} f {P} −→ {true} f {R ⇒ P}

2. {P} e {P} −→ {P and R} e {R ⇒ P}

Above aka �P satis�es invariance rule assuming Inv R�

Reachable vs invariant vs inv rule proof rules

State space

initial state

R: reachable
states

P is invariant

Q satisfies

P
Q

R
invariance rule

not possible
leaving Q

Safety: unless proof rule proof rules

Unless rule P unless Q holds if

for every non-initial atomic step e:

{P and notQ} e {P or Q}

Above aka �P satis�es unless rule�

To exploit a previously-established Inv R

pre −→ pre and R
post −→ R ⇒ post

Above aka �P satis�es unless rule assuming Inv R�

Safety: closure proof rules proof rules

Closure rules: requirements do not involve program

Inv P holds if P holds

Inv P holds if Inv Q and Inv Q ⇒ P hold

P unless Q holds if Inv P ⇒ Q holds

P unless Q holds if following hold:

U unless V Inv P ⇒ U Inv V ⇒ Q

We say �assertion holds via closure of <assertions>�

Progress: leads-to weak-fair rule proof rules

e.enabled, for atomic step e

(thread at e) if e is non-blocking
(thread at e) and B if e has blocking condition B

Leads-to weak-fair rule
P leads-to Q holds if following hold:

e is a weak-fair atomic step
(P and not Q) ⇒ e.enabled
{P and not Q} e {Q}
for every non-initial atomic step f :
{P and not Q} f {P or Q}

Above aka �P leads-to Q via wfair e

Progress: leads-to strong-fair rule proof rules

Leads-to strong-fair rule
P leads-to Q holds if following hold:

e is a strong-fair atomic step

(P and not Q and not e.enabled) leads-to

(Q or e.enabled)
{P and not Q} e {Q}
for every non-initial atomic step f :
{P and not Q} f {P or Q}

Above aka �P leads-to Q via sfair e

Progress: closure proof rules proof rules

P leads-to (Q1 or Q2) holds if following hold:

P leads-to (P1 or Q2) P1 leads-to Q1

P leads-to Q holds if following hold for some R :

Inv R (P and R) leads-to (R ⇒ Q)

(P1 and P2) leads-to Q2 holds if following hold for some Q1:

P1 leads-to Q1 P2 unless Q2 Inv (Q1 ⇒ not P2)

P leads-to Q holds if following hold for some R , S :

P unless Q Inv (P ⇒ R)
R leads-to S Inv (S ⇒ not R)

Progress: well-founded closure rule proof rules

P leads-to Q holds if the following hold:

F is a function on a lower-bounded partial order (Z ,≺)
P leads-to (Q or forsome(x in Z : F (x)))

forall(x in Z:
F (x) leads-to (Q or forsome(w in Z , w ≺ x : F (w)))

We say �assertion holds via closure of <assertions>�

	Program
	Service Programs
	State transition semantics of systems
	Assertions and their evaluation
	Splitting and stitching of evolutions
	Auxiliary variables
	Effective atomicity
	Commutativity
	Proof rules

