
Implements and Compositionality

Shankar

November 6, 2014

Overview

De�nitions and conventions

De�nition of �program A implements program B�

Compositionality theorem

if C uses A implements D
A′ implements A

then C [A/A′] implements D
C [A/A′] satis�es any property of C − A

Program version of �A implements B�

B : service w/o internal nondeterminism

Program version of �A implements B�

B : service with internal nondeterminism

Outline defns, conventions

De�nitions and Conventions

Implements: evolution-based de�nition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

De�nitions recap � 1 defns, conventions

Input is allowed at a state if its input assumption holds

Evolution is allowed if each of its inputs is allowed

Evolution is complete if it satis�es progress assumption

Input is acceptable at a state if does not cause fault

aka accepts input

Transition is enabled at a state if it is outgoing from the state

ext(x): io sequence of x // same as io(x)

De�nitions recap � 2 defns, conventions

For program B and evolution x of program A

x safe wrt B :
x is fault-free and
B has evolution y st ext(x) = ext(y)

x complete wrt B :
x is fault-free and
B has complete evolution y st ext(x) = ext(y)

For composite system C ⊇ composite system P

state/transition/evolution u of C → image u.P on P

Abbreviations defns, conventions

�: fault-free

x .end: end state of evolution x

A.progress: progress assumption of program A

swrt: safe wrt

cwrt: complete wrt

�n: �nite

Outline implements defn

De�nitions and Conventions

Implements: evolution-based de�nition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Implements de�nition implements defn

programs A, B

x : A-evolution swrt B

t: A-transition

// conventions

A implements B

Safety

if B 's instantiation � then A's instantiation �

for �nite x , input e of B , x ◦ 〈e〉 swrt B :
A accepts e at x .end

for �nite x , output or internal t enabled at x .end:
t is � and if t outputs e then x ◦ 〈e〉 is swrt B

Progress

for x satisfying A.progress: x cwrt B

Outline compositionality thm

De�nitions and Conventions

Implements: evolution-based de�nition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Compositionality theorem compositionality thm

programs A, C , D, A′, C ′

C instantiates A
C implements D
A′ implements A
C ′: C with A replaced by A′

Ĉ : composite system C − A

Theorem 7.1

C ′ implements D

// C ′ equivalent to C wrt Ĉ -properties

if x ′ is an evolution of C ′ safe wrt D,
then C has an evolution x st x .Ĉ equals x ′.Ĉ

if x ′ also satis�es C ′.progress, then x satis�es C .progress

Outline proof compositionality thm

De�nitions and Conventions
Implements: evolution-based de�nition
Compositionality theorem

Proof of compositionality theorem

Program-based implements: internally-deterministic service
Proof of program-based implements theorem

Program-based implements: internally-nondeterministic service
Proof of externalizer theorem 7.3

Proof of externalizer theorem 7.4

Overview proof compositionality thm

Let x ′ be evolution of C ′ swrt D // x ′.Ĉ , x ′.A′

Show A has evolution xA with ioseq of x ′.A′ // lemma 7.1

Stitch xA and x ′.Ĉ into an evolution x of C

Show: if x ′ violates �C ′ implements D�
then x violates �C implements D�

Details for lemma 7.1, outlines for the rest

Conventions

for C : evolutions x , y , transition t
for C ′: x ′, y ′, t ′

for A: xA, yA, tA :

for A′: x ′A, y
′
A, t

′
A

Lemma 7.1 � 1 proof compositionality thm

Lemma 7.1: if x ′ is safe wrt D, then x ′.A′ is safe wrt A

Proof: induction on # transitions in x ′

Base case: C ′ instantiation is fault-free

holds if C ′ instantiation does not start A′ // C -impl-D
holds if C ′ instantiation starts A′ // C -impl-D, A′-impl-A

Let y ′ = x ′ ◦ 〈t ′〉 be safe wrt D

x ′ safe wrt D
x ′.A′ safe wrt A // induction hyp
∃ xA st ext(xA) = ext(x ′.A′) // swrt defn

∃ x st x .A = xA and x .Ĉ = x ′.Ĉ // stitching xA and x ′.Ĉ

Lemma 7.1 � 2 proof compositionality thm

Consider di�erent cases of t ′

t ′ not involving A′

t ′.Ĉ enabled at x ′.Ĉ .end, hence at x .Ĉ .end
t ′.Ĉ � if output or internal // C -impl-D, x ′ swrt D

t ′.Ĉ � if input // C -impl-D, y ′ swrt D
so y ′ �, so y ′.A′ � and swrt A

output t ′ involving A′

t ′.A′ output transition of A′

y ′A′ � and swrt A // A′-impl-A, x ′.A′ swrt A

internal t ′ involving A′: same as t ′ output

Lemma 7.1 � 3 proof compositionality thm

input t ′ involving A′, rcving input e

x ′ ◦ 〈e〉 swrt D, hence x ◦ 〈e〉 swrt D // y ′ swrt D
so A accepts e at x .A.end // C -impl-D
so A′ accepts e at x ′.A′.end // A′-impl-A
so t ′.A′ �, so y ′.A′ swrt A

composite internal t ′: A′ outputs e to Ĉ

t ′.A′ output transition of A′

x ′.A′ ◦ 〈e〉 swrt A // A′-impl-A

t ′.Ĉ � // A can output e at x .end, C -impl-D
so t ′.A′ �, so y ′.A′ swrt A

composite internal t ′: A′ inputs e from Ĉ

similar

Theorem 7.1 proof proof compositionality thm

Let x ′ be swrt D

Let xA be st ext(xA) = ext(x ′.A′) // ∃ by lemma 7.1

Let x be stitch of xA and x ′.Ĉ

Suppose x ′ ◦ t ′ violates C ′-impl-D safety

if t ′ of Ĉ : not C -impl-D // due to Ĉ at x .Ĉ .end

if t ′ of A′

if due to A′: not A′-impl-A
if not due to A′: not C -impl-D

if t ′ is Ĉ -A′ interaction: similar

Suppose x ′ satis�es C ′-impl-D safety but not progress

then x satis�es C -impl-D safety but not progress

Outline int.det service: prog-based implements

De�nitions and Conventions

Implements: evolution-based de�nition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Theorem int.det service: prog-based implements

B: service program without internal params

A: candidate implementation program

B: service inverse program

AB: closed program of A-system a and B-system b

Theorem 7.2

�A implements B� safety condition holds

i� AB is fault-free

i� AB satis�es for every ic{P} in b
Inv (thread at b.ic{P}) ⇒ b.P

�A implements B� progress condition holds

i� AB satis�es b.progress

Outline proof int.det service: prog-based implements

De�nitions and Conventions
Implements: evolution-based de�nition
Compositionality theorem

Proof of compositionality theorem

Program-based implements: internally-deterministic service
Proof of program-based implements theorem

Program-based implements: internally-nondeterministic service
Proof of externalizer theorem 7.3

Proof of externalizer theorem 7.4

�If� safety proof int.det service: prog-based implements

if AB � then �A implements B� safety holds

assume �A implements B� safety does not hold

exists �nite xA swrt B with a faulty extension tA
A cannot accept input e swrt B, or
A does faulty internal/output transition, or
A outputs f not swrt B

exists �nite xB with same ioseq as xA // swrt defn

exchange inputs and outputs in xB to get x¯B
stitch x¯B and xA to get xAB,
at the end of which the faulty tA is doable

so AB is faulty

�Only if� safety proof int.det service: prog-based implements

if �A implements B� safety holds then AB �

assume AB has � evolution xAB and faulty extension tAB

xAB.a is � evol of A

xAB.b is � evol of B

exchange inputs and outputs in xAB.b to get xB of B

if tAB.a is faulty (input, internal, output) transition:

�A implements B� does not hold

if tAB.a is � but outputs e not accepted by B:
B does not accept e at xB.end
no other B-evolution with ioseq of xB // internally deterministic
so output not swrt B, so �A implements B� does not hold

Progress proof int.det service: prog-based implements

Given AB �:
AB satis�es B.progress i� �A implements B� progress holds

if �A implements B� safety but not progress holds
then AB does not satisfy B.progress
similar to �if� safety proof

if AB does not satisfy B.progress
then �A implements B� progress does not hold

similar to �only if� safety proof

Outline int.nondet service: prog-based implements

De�nitions and Conventions

Implements: evolution-based de�nition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Approach int.nondet service: prog-based implements

Given

B: service program with internal params (in output parts)
A: candidate implementation program

Construct B-externalized (B̂)
augment output with any internal parameter values
call/ret (extparam) → call/ret (extparam, intparam)

Construct A-externalized (Â)
call/ret (extparam) → call/ret (extparam, intparam)
add auxiliary code to compute intparam value

i.e., augment A with an auxiliary externalizer fn Ψ
call/ret (extparam) → call/ret (extparam,Ψ)

Check for � Â implements B̂ � using theorem 7.2

Theorems int.nondet service: prog-based implements

Theorem 7.3

if safety condition of � Â implements B̂ � holds
then safety condition of �A implements B � holds

if progress condition of � Â implements B̂ � holds
then progress condition of �A implements B � holds

Theorem 7.4

if A implements B then
there is an externalizer Ψ s.t. Â implements B̂

Outline proof 7.3 int.nondet service: prog-based implements

De�nitions and Conventions
Implements: evolution-based de�nition
Compositionality theorem

Proof of compositionality theorem

Program-based implements: internally-deterministic service
Proof of program-based implements theorem

Program-based implements: internally-nondeterministic service
Proof of externalizer theorem 7.3

Proof of externalizer theorem 7.4

Overview proof 7.3 int.nondet service: prog-based implements

Theorem 7.3: if Â implements B̂ then A implements B

Externalizer Ψ is auxiliary

so evol x of A maps 1-1 to evol x̂ of Â ?

Let x be evolution of A swrt B

Show that x̂ is swrt B̂ // lemma 7.6

So extension of x̂ is swrt B̂ // Â-impl-B̂

So extension of x is swrt B // ?

Similarly for x cwrt B

x : evolution of A

quantity z in A ←→ quantity ẑ in Â
// conventions

Lemma 7.6 proof 7.3 int.nondet service: prog-based implements

Let Â implement B̂. If evol x of A swrt B then x̂ swrt B̂

Proof

Let evol x be swrt B

x is � // swrt defn

x̂ � // ?

inputs in x̂ swrt B̂ // x swrt B, inputs same in x and x̂

x̂ swrt B̂ // Â-impl-B̂, x̂ inputs swrt B̂

Safety proof 7.3 int.nondet service: prog-based implements

if Â-impl-B̂ safety holds then A-impl-B safety holds

let x be swrt B

x̂ swrt B̂ // lemma 7.6

let e be input of B st x ◦ 〈e〉 swrt B
x̂ ◦ 〈e〉 swrt B̂ // x̂ swrt B̂, inputs same for B and B̂
Â accepts e at x̂ .end // Â-impl-B̂

let u be an output transition enabled at x .end

û enabled at x̂ .end // ?

x̂ ◦ 〈û〉 swrt B̂ // x̂ swrt B̂, Â-impl-B̂
x ◦ 〈u〉 swrt B // x̂ ◦ 〈û〉 swrt B̂

let u be an internal transition enabled at x .end

like output transition w/o output e

Progress proof 7.3 int.nondet service: prog-based implements

if Â-impl-B̂ holds then A-impl-B progress holds

let x be swrt B

x̂ swrt B̂ // lemma 7.6

let x satisfy A.progress

x̂ satis�es Â.progress // A and Â have same progress

x̂ cwrt B̂ // x̂ satis�es Â.progress, Â-impl-B̂

x cwrt B // B and B̂ have same progress

Outline proof 7.4 int.nondet service: prog-based implements

De�nitions and Conventions
Implements: evolution-based de�nition
Compositionality theorem

Proof of compositionality theorem

Program-based implements: internally-deterministic service
Proof of program-based implements theorem

Program-based implements: internally-nondeterministic service
Proof of externalizer theorem 7.3

Proof of externalizer theorem 7.4

Overview proof 7.4 int.nondet service: prog-based implements

Theorem 7.4: if A implements B then ∃ Ψ st Â implements B̂

Let Ψ maintain an instance b̂ of B̂,
kept synchronized to Â's ioseq thus far

initially, when Â instantiated, instantiate b̂

when Â rcvs input ê, execute corresponding input part of b̂

when Â does an output whose �unhatted� part is e
set ê to any output that b̂ can output

at least one such exists // A-impl-B, ioseq thus far is swrt B

Such an externalizer ensures that Â-impl-B̂ holds

	Definitions and Conventions
	Implements: evolution-based definition
	Compositionality theorem
	Proof of compositionality theorem

	Program-based implements: internally-deterministic service
	Proof of program-based implements theorem

	Program-based implements: internally-nondeterministic service
	Proof of externalizer theorem 7.3
	Proof of externalizer theorem 7.4

