Implements and Compositionality

Shankar

November 6, 2014

Overview

m Definitions and conventions
m Definition of “program A implements program B”

m Compositionality theorem

mif s C uses A implements D
s A implements A

= then u C[A/A] implements D
n C[A/A] satisfies any property of C — A

m Program version of “A implements B”
= B: service w/o internal nondeterminism

m Program version of “A implements B”
m B: service with internal nondeterminism

Outine ot o

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Definitions recap - 1 defns, conventions

Input is allowed at a state if its input assumption holds

Evolution is allowed if each of its inputs is allowed

Evolution is complete if it satisfies progress assumption

Input is acceptable at a state if does not cause fault
= aka accepts input

Transition is enabled at a state if it is outgoing from the state

ext(x): io sequence of x // same as io(x)

Definitions recap - 2 defns, conventions

m For program B and evolution x of program A

= x safe wrt B:
x is fault-free and
B has evolution y st ext(x) = ext(y)
» x complete wrt B:
x is fault-free and
B has complete evolution y st ext(x) = ext(y)

m For composite system C O composite system P
= state/transition/evolution u of C — image u.P on P

Abbreviations

m ff; fault-free

m x.end: end state of evolution x

m A.progress: progress assumption of program A
m swrt: safe wrt

m cwrt: complete wrt

m fin: finite

Outine g i

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Implements definition implements defn

m programs A, B
m x: A-evolution swrt B // conventions

m t: A-transition

m A implements B
Safety
m if B’s instantiation ff then A’s instantiation ff
= for finite x, input e of B, xo (e) swrt B:
A accepts e at x.end

= for finite x, output or internal t enabled at x.end:
tis ff and if t outputs e then x o (e) is swrt B

Progress
= for x satisfying A.progress: x cwrt B

Outine compostoray

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Compositionality theorem compositionality thm

programs A, C, D, A, C'

= C instantiates A

C implements D

A" implements A

s C’: C with A replaced by A’

. C: composite system C — A

m Theorem 7.1
a C' implements D

s // C' equivalent to C wrt C-properties

if x is an evolution of C’ safe wrt D,
then C has an evolution x st x.C equals x'. c

it x also satisfies C’.progress, then x satisfies C.progress

Outine et compstnsty

Definitions and Conventions
Implements: evolution-based definition
Compositionality theorem
Proof of compositionality theorem
Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Overview proof compositionality thm

m Let x’ be evolution of C’' swrt D // xX.C, XA

m Show A has evolution x4 with ioseq of x". A’ // lemma 7.1

m Stitch x4 and x'.C into an evolution x of C

m Show: if x’ violates “C’ implements D"
then x violates “C implements D"

m Details for lemma 7.1, outlines for the rest

m Conventions
» for C: evolutions x, y, transition t
wfor C': X,y t
w for A1 xa, ya, ta:
w for At x4, ya, th

Lemma 7.1 - 1 proof compositionality thm

’Lemma 7.1: if X' is safe wrt D, then x'. A’ is safe wrt A

Proof: induction on # transitions in x’

m Base case: C’ instantiation is fault-free

= holds if C’ instantiation does not start A’ // C-impl-D
= holds if C’ instantiation starts A’ // C-impl-D, A’-impl-A

mlety = x'o(t') besafewrtD
= x’ safe wrt D
n XA’ safe wrt A // induction hyp
m 3 xa st ext(xa) = ext(x".A) // swrt defn

m Ixstx.A=x4and x.C =x.C // stitching x4 and x'.C

Lemma 7.1 - 2 proof compositionality thm

m Consider different cases of t’

m t’ not involving A’

t’.(z enabled at x’.(_A".end, hence at x.C.end

» t'.C ff if output or internal // C-impl-D, x" swrt D
= t'.C ff if input // C-impl-D, y" swrt D
m so y' ff, so y’. A" ff and swrt A

m output t’ involving A’

= t'.A output transition of A’
n YA ff and swrt A /] A-impl-A, x".A” swrt A

m internal t’ involving A’: same as t’ output

Lemma 7.1 - 3 proof compositionality thm

m input t’ involving A’, rcving input e

= x' o (e) swrt D, hence x o (e) swrt D /]y swrt D
= so A accepts e at x.A.end // C-impl-D
so A" accepts e at x".A’.end /] A-impl-A

= so t'.A ff, so y. A" swrt A

m composite internal t': A’ outputs e to c
» t'.A’ output transition of A’
s XA o (e) swrt A /] A-impl-A
at'.Cff // A can output e at x.end, C-impl-D
mso t'.A ff, so y. A swrt A

m composite internal t’: A’ inputs e from c
» similar

Theorem 7.1 proof proof compositionality thm

m Let X’ be swrt D
m Let x4 be st ext(xa) = ext(x".A’) // 3 by lemma 7.1

m Let x be stitch of x4 and x.C

m Suppose x’ o t’ violates C'-impl-D safety
a if t' of C: not C-impl-D // due to C at x.C.end
mift' of A
= if due to A”: not A-impl-A
= if not due to A: not C-impl-D
w if t' is C-A' interaction: similar

m Suppose x’ satisfies C’-impl-D safety but not progress
= then x satisfies C-impl-D safety but not progress

Outine i e o s

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Theoren i e o s

m B: service program without internal params

m A candidate implementation program
m B: service inverse program
m AB: closed program of A-system a and B-system b

m Theorem 7.2

= “A implements B” safety condition holds
iff AB is fault-free
iff AB satisfies for every ic{P} in b
Inv (thread at b.ic{P}) = b.P
= ‘A implements B" progress condition holds
iff AB satisfies b.progress

Outine et it e gt s

Definitions and Conventions
Implements: evolution-based definition
Compositionality theorem

Program-based implements: internally-deterministic service
Proof of program-based implements theorem
Program-based implements: internally-nondeterministic service

1 safety et it e gt s

if AB ff then “A implements B” safety holds

m assume “A implements B” safety does not hold

m exists finite x, swrt B with a faulty extension t,

= A cannot accept input e swrt B, or
= A does faulty internal /output transition, or
= A outputs f not swrt B

m exists finite xg with same ioseq as x, // swrt defn
m exchange inputs and outputs in xg to get X3

m stitch X3 and x) to get X5
at the end of which the faulty t, is doable

m so AB is faulty

Only f” safety ottt s o s

if “A implements B safety holds then AB ff

m assume AB has ff evolution X\g and faulty extension thg

m x,=.ais ff evol of A

AB
n XAE.B is ff evol of B

m exchange inputs and outputs in XAE.B to get xg of B

mif tyg-a is faulty (input, internal, output) transition:
“A implements B" does not hold

m if tyz.a is ff but outputs e not accepted by B:
B does not accept e at xg.end
no other B-evolution with ioseq of x3 // internally deterministic
so output not swrt B, so “A implements B” does not hold

Progress ot it snces ro-asd lemens

Given AB ff: -
AB satisfies B.progress iff “A implements B” progress holds

m if "A implements B” safety but not progress holds
then AB does not satisfy B.progress

= similar to “if” safety proof

m if AB does not satisfy B.progress
then “A implements B" progress does not hold

= similar to “only if" safety proof

Outine it s o s

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Approach it s o s

m Given

= B: service program with internal params (in output parts)
= A: candidate implementation program

m Construct B-externalized (B)

= augment output with any internal parameter values
m call/ret (extparam) — call/ret (extparam, intparam)

m Construct A-externalized (A)

m call/ret (extparam) — call/ret (extparam, intparam)
» add auxiliary code to compute intparam value

= i.e., augment A with an auxiliary externalizer fn W
= call/ret (extparam) — call/ret (extparam, V)

m Check for “A implements B” using theorem 7.2

Theorems it s o s

m Theorem 7.3
= if safety condition of “A implements B” holds
then safety condition of “A implements B" holds

= if progress condition of “A implements B” holds
then progress condition of “A implements B” holds

m Theorem 7.4

= if A implements B then
there is an externalizer W s.t. A implements B

Outine e 1 ks e o s

Definitions and Conventions
Implements: evolution-based definition
Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service
Proof of externalizer theorem 7.3

Theorem 7.3: if A implements B then A implements B

m Externalizer V is auxiliary
= 5o evol x of A maps 1-1 to evol X of A«

m Let x be evolution of A swrt B

= Show that % is swrt B // lemma 7.6
m So extension of % is swrt B // A-impl-8
m So extension of x is swrt B /] *

m Similarly for x cwrt B

m x: evolution of A _
// conventions

® quantity z in A <— quantity Z in A

Lemma 76 o 7 kot s o e s

Let A implement B. If evol x of A swrt B then X swrt B

Proof

m Let evol x be swrt B

m x is ff // swrt defn
m % Aff /] *
m inputs in X swrt B // x swrt B, inputs same in x and X

m X swrt B // A<impl-B, % inputs swrt B

Safety 13 it e o s

if A-impl-8 safety holds then A-impl-B safety holds

m let x be swrt B

m X swrt B // lemma 7.6
m let e be input of B st x o (e) swrt B
= o (e) swrt B // % swrt B, inputs same for B and B
= A accepts e at X.end // A-impl-B
m let u be an output transition enabled at x.end
= 0 enabled at X.end /] *
= X0 (D) swrt B /] % swrt B, A-impl-B
= x o (u) swrt B /] X o ({) swrt B

m let u be an internal transition enabled at x.end
= like output transition w/o output e

if A-impl-8 holds then A-impl-B progress holds

m let x be swrt B

m X swrt B // lemma 7.6
m let x satisfy A.progress

m X satisfies A.progress // A and A have same progress
m £ cwrt B // % satisfies A.progress, A-impl-8

® x cwrt B // B and B have same progress

Outine 74 ks e o s

Definitions and Conventions

Implements: evolution-based definition

Compositionality theorem

Program-based implements: internally-deterministic service

Program-based implements: internally-nondeterministic service

Proof of externalizer theorem 7.4

Overview proof 7.4 int.nondet service: prog-based implements

Theorem 7.4: if A implements B then 3 W st A implements B

m Let ¥ maintain an instance b of B,
kept synchronized to A’s ioseq thus far
= initially, when A instantiated, instantiate b
= when A rcvs input &, execute corresponding input part of b

= when A does an output whose “unhatted” part is e
set € to any output that b can output
= at least one such exists // A-impl-B, ioseq thus far is swrt B

m Such an externalizer ensures that A-impl-B holds

	Definitions and Conventions
	Implements: evolution-based definition
	Compositionality theorem
	Proof of compositionality theorem

	Program-based implements: internally-deterministic service
	Proof of program-based implements theorem

	Program-based implements: internally-nondeterministic service
	Proof of externalizer theorem 7.3
	Proof of externalizer theorem 7.4

