
SESF for Time-Constrained Programs

Shankar

April 14, 2014



Overview � 1

Time-constrained program

statements are subject to time constraints

Distributed program: local time constraints cause global e�ects

Statement A can have two kinds of time constraints

only-within: A executed only within a given time interval
deadline: A executed within a given time

Timing assumptions: time constraints enforced by platform

eliminate some evolutions of the program

Timing properties: time constraints to be satsi�ed by program



Overview � 2

Let S be a time-constrained program

Sτ : explicit-time version of S
�regular� program whose evolutions satisfy timing assumptions
�regular� reasoning/compositionality applies to Sτ

Sτ is S with following added to environment

τnow: real-valued �current time� variable, readable by all
τage(δ): �ageing� function that increases τnow by δ
Sτ -transitions: S-transitions and ageing transitions

Epoch variables: added to S to store times of step executions

Timing assumptions: guards in epoch variables

only-within: guard on S-step
deadline: guard on τage(δ)

Timing properties: assertions in epoch variables



Explict-time program of S

Time-constrained program S
statements can simultaneously record value of τnow
statements can have �only-within� blocking conditions in τnow
S can have a deadline assumption, a predicate in τnow

Explicit-time version of S

program Sτ (.)
real τnow ← 0;
sys ← startSystem(S(.)); // only-within: guards in S
return mysid

output τage(δ)
oc {δ > 0 and <deadline[τnow | τnow + δ]>}
τnow ← τnow + δ
ic {true}



Implements and Compositionality

Let A and B be time-constrained programs

�A implements B� is now �Aτ implements Bτ �

Compositionality theorem holds

Program-based implements holds

Typical timing assumptions for implementation programs

delay(L,U): pass within [L,U] secs from arrival
ddl{U}: reach next timing assumption within U
<blocking construct>(U):
pass within U secs since arrival or since last unblocked


