Lock using Peterson's Algorithm

Shankar

April 15, 2014

Overview

- Classical mutual exclusion problem
 - given program with "critical sections" and threads 0...N-1
 - obtain "entry" and "exit" code for each critical section st
 - at most one thread in a critical section
 - thread in entry code eventually enters critical section if no thread stays in critical section forever
 - assume only atomic reads and writes
- Any solution provides a SimpleLock(N) implementation
 Here we use Peterson's solution for N = 2
 - hungry: ongoing request for the lock
 - eating: holds the lock; in critical section
 - thinking: neither hungry nor eating

// conventions

Peterson's algorithm

- Threads 0 and 1
- Share three binary variables
 - ∎ th₀
 - ∎ th_i
 - turn

// true iff thrd 0 thinking
// " " 1 "
// 0..1: winner if both hungry

- Thread i becomes hungry: th_i ← false; turn ← j; busy wait while not th_j and turn is i
- Thread i becomes thinking: th_i ← true;

i, j in 0..1,
$$i \neq j$$

Program LockPeterson() - 1

Main

```
boolean[2] th \leftarrow true;
int turn \leftarrow 0; // 1 is ok also
return mysid;
```

```
input mysid.acq()
s1: th[mytid] ← false;
s2: int j ← 1-mytid;
s3: • turn ← j;
while
s4: (• not th[j]
s5: and • turn = j);
return;
```

Program LockPeterson() - 2

- input mysid.rel()
 - s6: th[mytid] ← true;
 return;
- input void mysid.end()
 endSystem();
- atomicity assumption: reads and writes of turn, th_0 , th_1
- progress assumption: weak fairness for every thread

LockPeterson() implements SimpleLockService(2)

- SimpleLockService(N) and its inverse: defined in chapter 2
- program Z()
- Assertions to establish
 - $Y_1: Inv$ (thrd at doAcq.ic) \Rightarrow (not acqd $_0$ and not acqd $_1$)
 - Y_2 : (thrd i in lck.rel) leads-to (not i in lck.rel)
 - Y_3 : (thrd i in lck.end) leads-to (not i in lck.end)
 - Y_4 : forall(i: acqd_i leads-to not acqd_i) \Rightarrow forall(i: (thread i on lck.acq) leads-to acqd_i)
- Y₂, Y₃ hold trivially // lck.rel, lck.end non-blocking
 Proofs of Y₁ and Y₄ follow

Safety proof: Y_1

 $Y_1: Inv$ (thrd at doAcq.ic) \Rightarrow (not acqd₀ and not acqd₁)

Intermediate assertions

 $\begin{array}{l} A_1(\mathbf{i}): (\text{thread } \mathbf{i} \text{ on } \mathbf{s4..s5}) \text{ and } (\text{th[j] or } \text{turn } \neq \mathbf{j}) \\ \Rightarrow (\text{not } \operatorname{acqd[0]} \text{ and } \operatorname{not } \operatorname{acqd[1]}) \\ A_2(\mathbf{i}): \text{th[i]} \Rightarrow \text{ not } \operatorname{acqd}_{\mathbf{i}} \\ A_3(\mathbf{i}): (\mathbf{i} \text{ on } \mathbf{s3..s5}) \Rightarrow \text{ not } \operatorname{acqd}_{\mathbf{i}} \\ A_4: \text{ turn } \text{ in } 0..1 \\ A_5(\mathbf{i}): ((\mathbf{i} \text{ on } \mathbf{s4..s5}) \text{ and } (\text{turn } \neq \mathbf{j})) \Rightarrow \text{ not } \operatorname{acqd[j]} \end{array}$

- Y_1 equivalent to $Inv A_1$ // effective atomicity
- A_2 , A_3 , A_4 each satisfy invariance rule
- A₅ satisfies invariance rule assuming Inv A₂-A₄

 $\blacksquare A_2 - A_5 \Rightarrow A_1$

Progress proof: $Y_4 - 1$

$$Y_4: P_0(0)$$
 and $P_0(1) \Rightarrow P_1(0)$ and $P_1(1)$ // P_0 , P_1 below

 $\begin{array}{l} P_0(i): \mbox{ acqd}_i & \mbox{ leads-to not acqd}_i \\ P_1(i): (i \mbox{ on lck.acq}) & \mbox{ leads-to acqd}_i \\ P_2(i): (i \mbox{ on s4..s5}) & \mbox{ leads-to acqd}[i] & \mbox{ // equiv to } P_1(i) \\ P_3(i): (i \mbox{ on s4..s5}) & \mbox{ and turn}=i & \mbox{ leads-to acqd}[i] & \mbox{ // via i} \\ \hline \alpha(i): (i \mbox{ on s4..s5}) & \mbox{ and turn}=j \end{array}$

 $P_4(i) : \alpha(i)$ and th[j] leads-to (acqd[i] or turn=i) // via i $P_5(i) : \alpha(i)$ and th[j] leads-to acqd[i] // via i, $P_3(i)$, $P_4(i)$ • $P_1(i)$ follows from $P_6(i)$, $P_5(i)$, and $P_3(i)$