Lock using Peterson’s Algorithm

Shankar

April 15, 2014

Overview

m Classical mutual exclusion problem
= given program with “critical sections” and threads 0..N-1

= obtain “entry” and “exit” code for each critical section st
= at most one thread in a critical section

= thread in entry code eventually enters critical section
if no thread stays in critical section forever

= assume only atomic reads and writes

m Any solution provides a SimpleLock(N) implementation
m Here we use Peterson’s solution for N = 2

= hungry: ongoing request for the lock
= eating: holds the lock; in critical section // conventions
= thinking: neither hungry nor eating

Peterson’s algorithm

m Threads 0 and 1

m Share three binary variables

= thy // true iff thrd 0 thinking

- th-i // 1] 1 1

= turn // 0..1: winner if both hungry
m Thread i becomes hungry: ’1’, jin0..1, 1#j]

th; « false; turn < j;
busy wait while not th; and turnis i

m Thread i becomes thinking:
thy < true;

Program LockPeterson() - 1

m Main
booleanl[2] th <+ true;

int turn < 0; // 1 is ok also
return mysid;

m input mysid.acq()
sl: thlmytidl < false;
s2: int j < 1-mytid;
s3: e turn « j;:

while
s4: (e not thLjl
s5: and e turn = j);

return;

Program LockPeterson() - 2

m input mysid.rel()

s6: thlmytidl < true;
return;

m input void mysid.end()
endSystem() ;

m atomicity assumption: reads and writes of turn, thy, thy

m progress assumption: weak fairness for every thread

LockPeterson() implements SimpleLockService(2)

m SimpleLockService(N) and its inverse: defined in chapter 2

m program Z()
1ck <« startSystem(LockPeterson());
1si <« startSystem(SimplelLockServicelnverse(2,1ck));

m Assertions to establish
Y1 : Inv (thrd at doAcq.ic) = (not acqdy and not acqdy)
Y, : (thrd i in 1ck.rel) leads-to (not i in Tck.rel)
Y3 : (thrd i in Ick.end) Ieads-to (not i in Tck.end)

Yy : forall(i: acqd; leads-to not acqdi) =
forall(i: (thread i on lck.acq) leads-to acqd;)

m Y5, Y3 hold trivially // 1ck.rel, 1ck.end non-blocking
m Proofs of Y; and Y, follow

Safety proof: Y;

Y1 : Inv (thrd at doAcq.ic) = (not acqdy and not acqdy)

m Intermediate assertions

Ai(i) : (thread i on s4..s5) and (th[jl or turn # j)
= (not acqdl0] and not acqd[11)

Ay(1) : th[il = not acqd;
As(i) : (i on s3..s5) = not acqd;
Az turn in 0..1
As(1) : ((i on s4..s5) and (turn # j)) = not acqdlj]

m Y] equivalent to Inv A; // effective atomicity
m A, As, A, each satisfy invariance rule

m As satisfies invariance rule assuming Inv A,—A,

m A-As = A

Progress proof: Y, — 1

Yy : Po(O) and Po(].) = Pl(O) and Pl(].) // Po, Py below

: acqd; leads-to not acqdj

(1)

(i) : (i on Tck.acq) Ieads-to acqd;

(1) : (i on s4..s5) leads-to acqdli] // equiv to Py(i)
(1)

: (i on s4..s5) and turn=i leads-to acqdlil // via i

a(i): (i on s4..s5) and turn=j

Ps(1) : «(i) and th[jl leads-to (acqdlil or turn=1) // via i
Ps(i) - o(i) and thljl leads-to acqdlil // via i, Ps(i), Pa(i)

Progress proof: Y, — 2

Pe(i) : (i) and not thL[j]
leads-to «(i) and ((Jj on s3..s5) or acqdl[jl)

leads-to (a(i) and acqdlj1) /] P3(3)
leads-to («a(i) and thLj1) /] Po(d)
leads-to acqdl[i] // Ps(i)

m P;(i) follows from Pg(i), Ps(i), and Ps(1)

