
Lock using Peterson's Algorithm

Shankar

April 15, 2014

Overview

Classical mutual exclusion problem

given program with �critical sections� and threads 0..N−1

obtain �entry� and �exit� code for each critical section st

at most one thread in a critical section

thread in entry code eventually enters critical section
if no thread stays in critical section forever

assume only atomic reads and writes

Any solution provides a SimpleLock(N) implementation

Here we use Peterson's solution for N = 2

hungry: ongoing request for the lock
eating: holds the lock; in critical section
thinking: neither hungry nor eating

// conventions

Peterson's algorithm

Threads 0 and 1

Share three binary variables

th0 // true i� thrd 0 thinking
thi // " " 1 "
turn // 0..1: winner if both hungry

Thread i becomes hungry: i, j in 0..1, i 6=j

thi ← false; turn ← j;
busy wait while not thj and turn is i

Thread i becomes thinking:

thi ← true;

Program LockPeterson() � 1

Main

boolean[2] th ← true;
int turn ← 0; // 1 is ok also
return mysid;

input mysid.acq()

s1: th[mytid] ← false;
s2: int j ← 1 − mytid;
s3: • turn ← j;

while
s4: (• not th[j]
s5: and • turn = j);

return;

Program LockPeterson() � 2

input mysid.rel()

s6: th[mytid] ← true;
return;

input void mysid.end()

endSystem();

atomicity assumption: reads and writes of turn, th0, th1

progress assumption: weak fairness for every thread

LockPeterson() implements SimpleLockService(2)

SimpleLockService(N) and its inverse: de�ned in chapter 2

program Z()
lck ← startSystem(LockPeterson());
lsi ← startSystem(SimpleLockServiceInverse(2,lck));

Assertions to establish

Y1 : Inv (thrd at doAcq.ic) ⇒ (not acqd0 and not acqd1)

Y2 : (thrd i in lck.rel) leads-to (not i in lck.rel)

Y3 : (thrd i in lck.end) leads-to (not i in lck.end)

Y4 : forall(i: acqdi leads-to not acqdi) ⇒
forall(i: (thread i on lck.acq) leads-to acqdi)

Y2, Y3 hold trivially // lck.rel, lck.end non-blocking

Proofs of Y1 and Y4 follow

Safety proof: Y1

Y1 : Inv (thrd at doAcq.ic) ⇒ (not acqd0 and not acqd1)

Intermediate assertions

A1(i) : (thread i on s4..s5) and (th[j] or turn 6= j)
⇒ (not acqd[0] and not acqd[1])

A2(i) : th[i] ⇒ not acqdi
A3(i) : (i on s3..s5) ⇒ not acqdi

A4 : turn in 0..1

A5(i) : ((i on s4..s5) and (turn 6= j)) ⇒ not acqd[j]

Y1 equivalent to Inv A1 // e�ective atomicity

A2, A3, A4 each satisfy invariance rule

A5 satis�es invariance rule assuming Inv A2�A4

A2�A5 ⇒ A1

Progress proof: Y4 � 1

Y4 : P0(0) and P0(1) ⇒ P1(0) and P1(1) // P0, P1 below

P0(i) : acqdi leads-to not acqdi
P1(i) : (i on lck.acq) leads-to acqdi

P2(i) : (i on s4..s5) leads-to acqd[i] // equiv to P1(i)

P3(i) : (i on s4..s5) and turn=i leads-to acqd[i] // via i

α(i) : (i on s4..s5) and turn=j

P4(i) : α(i) and th[j] leads-to (acqd[i] or turn=i) // via i

P5(i) : α(i) and th[j] leads-to acqd[i] // via i, P3(i), P4(i)

Progress proof: Y4 � 2

P6(i) : α(i) and not th[j]

leads-to α(i) and ((j on s3..s5) or acqd[j])

leads-to (α(i) and acqd[j]) // P3(j)

leads-to (α(i) and th[j]) // P0(j)

leads-to acqd[i] // P5(i)

P1(i) follows from P6(i), P5(i), and P3(i)

