Conventions

Shankar

March 11, 2014

Sets and Bags

m Sets
= set(2,5,5,4): enumerated set
» set(expr: param in domain; pred)

m For set x

m X.Size: # of entries in x
m X.add(m)
= X.remove(m)

m Set types

m Set x
m Set<U> x // set of entries of U

m Bags

/] €2,5,4)
/] domain: set, bag, seq

/] x < x U {m}
/] x < x\ {m}

// multisets

= all the above constructs, with “set” — “bag”
m e.g., bag(expr: param in domain; pred)

Sequences

m Sequences
w [2,3,4,2,1]1: enumerated sequence // [head, ..., last]
m [expr: param in domain; pred] // domain: sequence

m For sequence x

» X[j1: jth entry // x[01 is head

m X.keys: [0..x.size-11]

= X.append(m) // to tail

= X.remove(k) // x[k1
m o: concatenation // [1,21ola,b] = [1,2,a,b]
m Sequence types m Tuples: fixed-length seqs

= Seq s Tuple<.,>

» Seq<U> // entries in U = Tuple<U,V> /] Ux\V

Maps

m Map
= set of [key, value] tuples, with distinct keys
= map([2,100], [3,2001) // map with 2 entries

m map(2tuple: param in domain; pred)

m For map x

= X.keys // sequence of keys

m X[j] // value in [j,-]

= remove(j) // delete [J,-1 (if any)

m x[j] < e // remove(J), add [j,el
m Map types:

= Map

= Map<U,V>

Miscellaneous

m Set/sequence S can serve as a “type” for defining vars
= S X: var x can range over current values of S

m Type T can serve as a “set” for membership predicates

mXinT
IT(X)

m Don't-care value “*" in predicate P

m (thread in fn(.): forsome(x: thread in fn(x))
m (thread in v[.1.fn(.): forsome(x,y: thread in vLlyl.fn(x))
= ‘forsome” applies to smallest predicate in P enclosing -

m ongoing(S): short for “(thread in S)”

