Welcome to SESF

Correctness branch

A. Udaya Shankar
May 21, 2021

Sesf is a framework to write provably-correct multi-threaded distributed programs, test them
in distributed execution, and prove their correctness. At the core of sesf is a convenient way to
specify the intended behaviour of a multi-threaded distributed program. The resulting specifica-
tion, referred to as a “service”, yields a program for testing implementations of the service as well
as a program for testing users of the service. In a distributed system, any distributed subsystem
can be replaced by another distributed subsystem satisfying the same service without disturbing
correctness.

Sesf can be applied in any programming language. Here, we focus on proofs of correctness, using
assertional reasoning on programs in Python-like pseudocode. There is a parallel testing branch
that focuses on testing of programs in Python.

Multi-threaded distributed programs

An executing multi-threaded distributed program consists of one or more processes, each with
one or more threads. Threads within a process typically interact via shared memory. Threads
in different processes interact via message passing. Each process executes a program, and these
programs together constitute the distributed program.

The illustration below shows a distributed program AB consisting of multiple processes, each
executing a program ab. In addition to the infernal interactions between its ab processes, the
distributed program has external inputs and outputs via which it provides a distributed service X.
For example, ab could be a TCP program and X could be stream internet sockets.

external inputs and outputs distributed

istribute

22 A R 7 2 R P service X

ab ab * * o | ab ab j distributed
— — “— — program AB

The illustration below shows a distributed program CD, consisting of processes each executing a
program cd, that makes use of the service X provided by the distributed program AB, and in turn
provides a distributed service Y (eg, file transfer).


https://www.cs.umd.edu/users/shankar/sesf

A. Udaya Shankar sesf_correctness branch

S e 1 )

c cd * *°* cd cd girsggrba%e(d:D
e ML, Sy
) () o (w] (@) ) e

Services

A key step in writing a correct program is to come up with a precise description of what the
program is supposed to do, that is, its intended service. Fundamentally, this amounts to a precise
description of the acceptable sequences of the external inputs and outputs of the program.
The program is correct if every one of its possible input-output sequences is acceptable to the
service: that is, at any point in the program’s execution, it can take in any acceptable input and
only generate an acceptable output. (This is made precise later.)

Defining the service for a multi-threaded program is more complicated than for a single-threaded
program. Because of concurrent threads in the program, a variety of outputs can happen at any
point. Similarly, because of concurrent threads in the environment, a variety of inputs can happen
at any point. The service must allow for these possibilites when defining the set of acceptable
input-output sequences.

We have additional requirements of a service. It should be easily understandable to humans, in
particular, much more so than a typical implementation. It should enable testing and verification
of programs that implement the service and programs that use the service.

In Sesf, a service is defined by a special kind of program, referred to as a service program. There
are actually two versions of the service program: an “abstract” version, where the set of possible
outputs are defined by predicates; and a “concrete” version, where these predicates are replaced by
code that randomly selects a possible output. Only the abstract version is used in this correctness
branch. The concrete version is for testing.

Correctly using a service: Given an application program that makes use of a service, the compos-
ite program of the application program and the abstract service program can be analyzed to prove
that the application correctly uses the service. For the above example of application program CD
using service X, this composite program is illustrated below.

distributed
program CD

i\\\ \Tﬁ ’ '. °. //C/d/ //C/f¥ remote

. rocedure calls
X.service program P

Because of its special structure, a service program can be “inverted” to yield a so-called ser-
vicetester program, which can send arbitrary acceptable inputs to an implementation and check
whether the implementation’s outputs are acceptable. The servicetester program also comes in
abstract and concrete versions, and only the abstract version is relevant for correctness.

Correctly implementing a service: Given an implementation program for a service, the compos-

2/4



A. Udaya Shankar sesf_correctness branch

ite program of the abstract servicetester program and the implementation program can be analyzed
to prove the correctness of the implementation. For the above example of implementation program
AB for service X, this composite program is illustrated below.

X.servicetester program

@ L Ny e

Compositionality is the payoff for correctly using services and correctly implementing services.
If a distributed program correctly uses a service X to achieve a correctness property, which could
include implementing another service Y, then replacing the service X by any correct implementa-
tion of X preserves the correctness property. In our example above, program CD will implement
service Y correctly if service X is replaced by any program that implements X correctly.

Establishing correctness

A typical multi-threaded program, whether in one process or multiple processes, has an unbounded
number of possible executions. Testing can examine only a small subset of these executions. To
claim correctness requires program analysis.

There are various analysis methods. We use assertional reasoning. Here, one invents a sequence
of assertions, ultimately ending with assertions that imply the intended service. Each assertion
is shown to hold for the program given previous assertions, via operational arguments or proof-
rule applications. The latter can be mechanically checked (by theorem provers or, in the case of
finite-state programs, by model checkers).

An assertion is a boolean condition evaluated on an execution of the program. It can relate
variables within a process and also across processes, eg, an account balance displayed in a web
client tracks the account balance stored in the server’s database. An assertion holds for the program
if it holds for every possible execution. (There are different kinds of assertions: we mostly use
“invariant” assertions and “leads-to” assertions.)

Assertions are useful even if they are not formally proved. They are an unambiguous and con-
venient way of stating properties of the program. Furthermore, assertions, even global assertions
relating variables across different processes, can be checked in the servicetester during testing.

Background

The theory and proofs here are extracted, with some changes in treatment and terminology, from
the text Distributed Programming: Theory and Practice.

Sesf stands for “Services and Systems Framework™. The term service has been introduced above.
We use the term system to refer to an executing program, a part of an executing program, or a
(perhaps dynamic) collection of executing programs. So unlike a process in operating systems
terminology, a system may span a part of one address space or multiple address spaces.

3/4


https://www.springer.com/us/book/9781461448808

A. Udaya Shankar sesf_correctness branch

What’s next

The rest of the correctness branch is made up of the following documents. The first two give back-
ground. The remainder are applications of sesf. Each application gives a service program defining
a service, the corresponding servicetester program, and one or more implementation programs and
proofs of correctness.

* Sesf basics (sesf_basics.pdf) (background material)
* Assertional reasoning (a.pdf) (background material)
e Read-write lock (rwlock/rwlock. pdf)

4/4


sesf_basics.pdf
a.pdf
rwlock/rwlock.pdf

