
HadoopDB in Action: Building Real World Applications

Azza Abouzied, Kamil Bajda-Pawlikowski, Jiewen Huang,
Daniel J. Abadi, Avi Silberschatz

Yale University
{azza, kbajda, huang-jiewen, dna, avi}@cs.yale.edu

ABSTRACT
HadoopDB is a hybrid of MapReduce and DBMS technolo-
gies, designed to meet the growing demand of analyzing mas-
sive datasets on very large clusters of machines. Our pre-
vious work has shown that HadoopDB approaches parallel
databases in performance and still yields the scalability and
fault tolerance of MapReduce-based systems. In this demon-
stration, we focus on HadoopDB’s flexible architecture and
versatility with two real world application scenarios: a se-
mantic web data application for protein sequence analysis
and a business data warehousing application based on TPC-
H. The demonstration offers a thorough walk-through of how
to easily build applications on top of HadoopDB.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Design, Performance

1. INTRODUCTION
As data volumes increase, so do requirements for effi-

ciently extracting value from data sets. With more and
more businesses reporting petabyte-sized data warehouses,
the system of choice for managing and analyzing massive
amounts of the data (“Big Data”) will be the one that (i)
provides high performance, (ii) scales over clusters of thou-
sands of heterogeneous machines and (iii) is versatile.

Versatility refers to the adaptability of a system to ana-
lytical queries of varying complexity. Versatility also refers
to system flexibility in terms of query languages supported,
and control in terms of data preparation, placement and
management.

Of these features, recent research in the data management
community has focused on evaluating the performance and
scalability of two major data analysis technologies: MapRe-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

duce (in particular, the Hadoop implementation) and paral-
lel databases [8, 5].

The inherent architectural and conceptual differences be-
tween these technologies has led to a variety of interface-level
hybrids such as Hive [9] and Pig [7] and systems-level hy-
brids such as HadoopDB [5], all of which attempt to bring
the best of both worlds into one system. HadoopDB com-
bines the scalability features of Hadoop with the high per-
formance of database systems for structured data analysis.
HadoopDB is an open-source project [1].

This demonstration focuses on HadoopDB’s versatility.
We answer the question, “How does one build real world ap-
plications with HadoopDB?”, by developing two applications:
a semantic web application that provides biological data
analysis of protein sequences, and a classical business data
warehouse. In previous work, we also employed HadoopDB
in web-log analysis [5].

The demonstration goes over the design of the applica-
tions in great detail, from data preparation to query inter-
face setup for data analysts. Our target audience therefore
includes system architects, application developers, and data
administrators, as well as data analysts and researchers deal-
ing with large data.

This paper begins with a description of HadoopDB’s ar-
chitecture and how it integrates with the traditional multi-
tier architecture of current software applications. In Section
3, we describe the two applications and highlight our moti-
vations for using these particular cases as a representative
sample of applications that could benefit from HadoopDB.
Finally, we describe the demonstration scenario in Section
4.

2. ARCHITECTURE AND DESIGN
The architecture of HadoopDB is illustrated in Figure

1. HadoopDB connects multiple independent single-node
database systems deployed across a cluster, using Hadoop as
a coordination layer that manages task execution and net-
work communication. To maximize performance, as much
of the data processing as possible is pushed into the un-
derlying database systems. HadoopDB therefore resembles
a shared-nothing parallel database with Hadoop providing
services necessary for scalability over thousands of nodes,
such as runtime task scheduling.

The key components of HadoopDB include:

1. A Database Connector that connects Hadoop with the
single-node database systems.

Figure 1: The HadoopDB Architecture

2. A Data Loader which partitions data and manages par-
allel loading of data into the database systems.

3. A Catalog which tracks locations of different data chunks,
including those replicated across multiple nodes.

4. The SQL-MapReduce-SQL (SMS) planner which ex-
tends Hive [9] to provide a SQL interface to HadoopDB.

See our previous work [5] for more details on the HadoopDB
architecture.

HadoopDB supports any JDBC-compliant database server
as an underlying DBMS layer, giving application designers
a lot of flexibility to choose the most efficient database tech-
nology for a given application. In the original HadoopDB
paper [5] we evaluated our prototype with PostgreSQL. In
this demonstration, we utilize a column-oriented database
instead.

Applications built on top of HadoopDB generally use the
three-tier architecture commonly found in today’s software
applications. In a three-tier architecture, the data tier stores
and retrieves data, the business logic tier performs data pro-
cessing and the presentation tier provides an interface to
users. In the classic three-tier architecture, the business
logic tier performs much of the necessary computation on
the data retrieved from the data tier. However, for typi-
cal HadoopDB applications, given the size of data and the
amount and complexity of data analysis tasks, this arrange-
ment is no longer optimal. HadoopDB therefore pushes com-
putation closer to data (into the data tier) to achieve max-
imum parallelization in a multi-node cluster. The business
logic layer becomes a simple application server, providing
only query translation and connectivity services between the
presentation tier and the data tier.

From the application perspective, HadoopDB is a black
box. The complexity of the data tier and its parallel na-
ture is hidden from the application developer: applications
interact with HadoopDB through a JDBC interface which
supports submission of SQL queries as well as invocation of
stored procedures implemented using HadoopDB’s API.

3. EXAMPLE APPLICATIONS
We demonstrate the versatility of HadoopDB using two

different applications: a semantic web/biological data anal-
ysis application and a business data warehousing applica-
tion.

Both applications involve complex analytical queries in-
volving multiple relations. In each case, analysts expect
small response times for their queries. Moreover, the se-
lected data sets do not simplify the problem of data prepara-
tion. Instead, they highlight the importance and complexity
of data preparation. In our demonstration, we describe in
detail how HadoopDB allows for query optimization through
appropriate data preparation techniques that are not possi-
ble in Hadoop alone. For example, through careful use of co-
partitioning multiple tables, HadoopDB can push joins into
the single-node database systems, leveraging the high perfor-
mance join implementations within these systems. Hadoop’s
join implementation is substantially slower (especially if the
join is performed in the Reduce phase). Careful indexing
can also significantly improve performance.

3.1 Semantic Web — Biological Data Analysis
The semantic web is an effort by the W3C to enable in-

tegration and sharing of data across different applications
and organizations. Unlike the relational data model, the se-
mantic web uses the Resource Description Framework [10]
(RDF) data model. RDF data consist of statements about
resources and can be queried using the SPARQL query lan-
guage [11].

Abadi et al. have demonstrated that semantic web data
can be stored and queried very efficiently in a column-oriented
database [4]. As the size of the semantic web continues to
grow, however, single-node data management systems are
quickly becoming inadequate. Effective parallelization of se-
mantic web querying and inference is critical to the survival
of semantic web technology.

HadoopDB, in conjunction with a column-oriented database,
is a promising solution for supporting efficient and scalable
semantic web applications. We utilize the UniProt [3] com-
prehensive catalog of protein sequence, function, and anno-
tation data to validate this hypothesis. The data set con-
tains over 600 million statements and continues to grow as
more proteins are sequenced.

Our implementation allows analysts to specify queries in
SPARQL. For example, to find all proteins whose existence
in the ‘Human’ organism is uncertain, the following query
can be submitted:

SELECT ?prot ?name
WHERE {

?prot <organism> <9606> ; # 9606 means Human
<name> ?name ;
<existence> <Uncertain_Existence> .

}

Figure 2 illustrates the overall application architecture.
The presentation layer consists of a web-based interface where
analysts specify queries and view results. The logic layer
consists of a SPARQL to SQL conversion tool [6]. Finally,
the data tier consists of HadoopDB maintaining and process-
ing the full data set. The logic and data layer communicate
through JDBC.

We demonstrate how the data administrator should pre-
pare the dataset. The analyst, however, is shielded from the
complexity of the actual implementation of the RDF stor-

Figure 2: The UniProt Application Architecture

age layer. A final motivation for choosing this application
to demonstrate HadoopDB is that by making our implemen-
tation publicly available, we can enhance the infrastructure
for life sciences research.

3.2 Business Data Warehousing
Business data warehousing is a natural target application

for HadoopDB. Due to superior fault-tolerance, HadoopDB
scales to very large data sets much more gracefully than
existing parallel databases [5]. Moreover, common business
data warehousing workloads are read-mostly and involve an-
alytical queries over a complex schema. To achieve good
query performance, the dataset requires significant prepara-
tion through data partitioning and replication to optimize
for join queries.

We use the data and queries from the TPC-H bench-
mark [2]. TPC-H models a global distribution company. It
contains information on suppliers, products, customers and
orders in different regions. The benchmark consists of vari-
ous complex business analysis queries that aid with decision
making, pricing and revenue management.

For example, the following query asks for the ten highest-
revenue unshipped orders:

SELECT l_orderkey, o_orderdate, o_shippriority,
SUM(l_extendedprice * (1 - l_discount)) AS revenue

FROM customer, orders, lineitem
WHERE c_mktsegment = ‘BUILDING’ AND c_custkey = o_custkey
AND l_orderkey = o_orderkey AND o_orderdate < ‘1995-03-15’
AND l_shipdate > ‘1995-03-15’

GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue DESC, o_orderdate LIMIT 10;

4. DEMONSTRATION SCENARIO
The audience is invited to query both data sets through

HadoopDB. The data sets are located in a remote cluster.
To allow multiple users to interact concurrently with the
cluster, we provide two client machines that connect to the
clusters. In case of limited connectivity in the demo room, a
local two-machine mini-cluster housing subsets of both data
sets is also available. Each instance operates independently
of the other.

The user first selects from a web-browser interface the
data set they wish to query. An animation of the behind-
the-scenes data preparation and loading is then presented.
In the case of TPC-H, the animation provides details on the
partitioning scheme, the interaction between the loader and

catalog components, and a summary of the configuration
parameters. The UniProt animation also includes details on
the tools used for data conversion from RDF to relational
form. These presentations provide our audience with an idea
of the effort required for data preparation in HadoopDB.

The interface then invites the user to select and parametrize
a query to execute from sets of predefined queries for both
applications. The user can then monitor the progress of
query execution before finally being presented with the re-
sults in a tabular form for TPC-H or XML form for UniProt.
In addition, we demonstrate HadoopDB’s fault-tolerance with
the introduction of a node failure.

For a subset of the predefined queries, as the query exe-
cutes in the background, an animation of the flow of data
and control through the HadoopDB system is simultane-
ously presented, highlighting which parts of the query exe-
cution are run in parallel.

5. ACKNOWLEDGEMENTS
We thank Alexander Thomson for his suggestions regard-

ing this demonstration.
This work was sponsored by the NSF under grants IIS-

0845643 and IIS-0844480. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation (NSF).

6. REFERENCES
[1] HadoopDB Project. http://hadoopdb.sourceforge.net.

[2] TPC-H. http://www.tpc.org/tpch/.

[3] Universal Protein Resource. http://www.uniprot.org/.

[4] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. SW-Store: A Vertically Partitioned
DBMS for Semantic Web Data Management. VLDB
Journal, 18(2), April 2009.

[5] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,
A. Silberschatz, and A. Rasin. HadoopDB: An
Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. In VLDB,
2009.

[6] K. Bajda-Pawlikowski. Querying RDF data stored in
DBMS: SPARQL to SQL Conversion. Yale CS
Technical Report TR-1409, 2008.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proc. of SIGMOD, 2008.

[8] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. R. Madden, and M. Stonebraker. A
Comparison of Approaches to Large Scale Data
Analysis. In SIGMOD, 2009.

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murth. Hive —
A Petabyte Scale Data Warehouse Using Hadoop. In
Proc. of ICDE, 2010.

[10] W3C. Resource Description Framework.
http://www.w3.org/RDF/.

[11] W3C. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

