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Abstract Lockmanagers are increasingly becoming a bot-
tleneck in database systems that use pessimistic concurrency
control. In this paper, we introduce very lightweight locking
(VLL), an alternative approach to pessimistic concurrency
control for main memory database systems, which avoids
almost all overhead associated with traditional lock manager
operations. We also propose a protocol called selective con-
tention analysis (SCA), which enables systems implement-
ingVLL to achieve high transactional throughput under high-
contention workloads. We implement these protocols both
in a traditional single-machine multi-core database server
setting and in a distributed database where data are parti-
tioned acrossmany commoditymachines in a shared-nothing
cluster. Furthermore, we show how VLL and SCA can be
extended to enable range locking. Our experiments show
that VLL dramatically reduces locking overhead and thereby
increases transactional throughput in both settings.

Keywords Lightweight locking · Main memory ·
Lock manager · Deterministic · Contention · Scalability

1 Introduction

As the price of main memory continues to drop, increas-
ingly many transaction processing applications keep the
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bulk (or even all) of their active datasets in main mem-
ory at all times. This has greatly improved performance of
OLTP database systems, since disk IO is eliminated as a
bottleneck.

As a rule, when one bottleneck is removed, others appear.
In the case of main memory database systems, one common
bottleneck is the lock manager, especially under workloads
with high contention. One study reported that 16–25% of
transaction time is spent interacting with the lock manager
in a main memory DBMS [12]. However, these experiments
were run on a single core machine with no physical con-
tention for lock data structures. Other studies show even
larger amounts of lock manager overhead when there are
transactions running on multiple cores competing for access
to the lock manager [14,22,29]. As the number of cores per
machine continues to grow, lock managers will become even
more of a performance bottleneck.

Although locking protocols are not implemented in a uni-
formway across all database systems, themost commonway
to implement a lock manager is as a hash table that maps
each lockable record’s primary key to a linked list of lock
requests for that record [2,4,5,11,34]. This list is typically
preceded by a lock head that tracks the current lock state for
that item. For thread safety, the lock head generally stores
a mutex object, which is acquired before lock requests and
releases to ensure that adding or removing elements from the
linked list always occurs within a critical section. Every lock
release also invokes a traversal of the linked list for the pur-
pose of determining what lock request should inherit the lock
next.

These hash table lookups, latch acquisitions, and linked
list operations are main memory operations and would there-
fore be a negligible component of the cost of executing
any transaction that accesses data on disk. In main mem-
ory database systems, however, these operations are not
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negligible. The additional memory accesses, cache misses,
CPU cycles, and critical sections invoked by lock manager
operations can approach or exceed the costs of executing
the actual transaction logic. Furthermore, as the increase
in cores and processors per server leads to an increase in
concurrency (and therefore lock contention), the size of the
linked list of transaction requests per lock increases—along
with the associated cost to traverse this list upon each lock
release.

We argue that it is therefore necessary to revisit the design
of the lock manager in modern main memory database sys-
tems. In this paper, we explore twomajor changes to the lock
manager. First, we move all lock information away from a
central locking data structure, instead co-locating lock infor-
mation with the raw data being locked (as suggested in the
past [8]). For example, a tuple in a main memory database is
supplementedwith additional (hidden) attributes that contain
information about the row-level lock information about that
tuple. Therefore, a single memory access retrieves both the
data and lock information in a single cache line, potentially
removing additional cache misses.

Second, we remove all information about which transac-
tions have outstanding requests for particular locks from the
lock data structures. Therefore, instead of a linked list of
requests per lock, we use a simple semaphore containing the
number of outstanding requests for that lock (alternatively,
two semaphores—one for read requests and one for write-
requests). After removing the bulk of the lock manager’s
main data structure, it is no longer trivial to determine which
transaction should inherit a lock upon its release by a previous
owner. One key contribution of our work is therefore a solu-
tion to this problem. Our basic technique is to force all locks
to be requested by a transaction at once, and order the trans-
actions by the order in which they request their locks.We use
this global transaction order to figure out which transaction
should be unblocked and allowed to run as a consequence of
the most recent lock release.

The combination of these two techniques—which we call
very lightweight locking (VLL)—incurs far less overhead
thanmaintaining a traditional lockmanager, but it also tracks
less total information about contention between transactions.
Under high-contention workloads, this can result in reduced
concurrency and poor CPU utilization. To ameliorate this
problem, we also propose an optimization called selective
contention analysis (SCA), which—only when needed—
efficiently computes the most useful subset of the contention
information that is tracked in full by traditional lock man-
agers at all times.

Our experiments show that VLL dramatically reduces
lock management overhead, both in the context of a tra-
ditional database system running on a single (multi-core)
server, and when used in a distributed database system that
partitions data across machines in a shared-nothing cluster.

In such partitioned systems, the distributed commit protocol
(typically two-phase commit) is often the primary bottle-
neck, rather than the lock manager. However, recent work
on deterministic database systems such as Calvin [36,37]
has shown how two-phase commit can be eliminated for
distributed transactions, increasing throughput by up to an
order of magnitude—and consequently reintroducing the
lock manager as a major bottleneck. Fortunately, deter-
ministic database systems like Calvin lock all data for a
transaction at the very start of executing the transaction.
Since this element of Calvin’s execution protocol satisfies
VLL’s lock request ordering requirement, VLL fits natu-
rally into the design of deterministic systems. When we
compare VLL (implemented within the Calvin framework)
against Calvin’s native lock manager, which uses the tradi-
tional design of a hash table of request queues, we find that
VLL enables an even greater throughput advantage than that
which Calvin has already achieved over traditional nonde-
terministic execution schemes in the presence of distributed
transactions.

We also propose an extension of VLL (called VLLR) that
locks ranges of rows rather than individual rows. Experi-
ments show that VLLR outperforms two traditional range
locking mechanisms.

2 Very lightweight locking

The category of “main memory database systems” encom-
passes many different database architectures, including
single-server (multi-processor) architectures and a plethora
of emerging partitioned system designs. The VLL protocol
is designed to be as general as possible, with specific opti-
mizations for the following architectures:

– Multiple threads execute transactions on a single-server,
shared memory system.

– Data are partitioned acrossprocessors (possibly spanning
multiple independent servers). At each partition, a single
thread executes transactions serially.

– Data are partitioned arbitrarily (e.g., across multiple
machines in a cluster); within each partition, multiple
worker threads operate on data.

The third architecture (multiple partitions, each running
multiple worker threads) is the most general case; the first
two architectures are in fact special cases of the third. In the
first, the number of partitions is one, and in the second, each
partition limits its pool of worker threads to just one. For
the sake of generality, we introduce VLL in the context of
the most general case in the upcoming sections, but we also
point out the advantages and trade-offs of running VLL in
the other two architectures.
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2.1 The VLL algorithm

The biggest difference between VLL and traditional lock
manager implementations is that VLL stores each record’s
“lock table entry” not as a linked list in a separate lock table,
but rather as a pair of integer values (CX ,CS) immediately
preceding the record’s value in storage, which represents the
number of transactions requesting exclusive and shared locks
on the record, respectively. When no transaction is accessing
a record, its CX and CS values are both 0.

In addition, a global queue of transaction requests (called
TxnQueue) is kept at eachpartition, tracking all active trans-
actions in the order in which they requested their locks.

When a transaction arrives at a partition, it attempts to
request locks on all records at that partition that it will access
in its lifetime. Each lock request takes the form of increment-
ing the corresponding record’s CX or CS value, depending
whether an exclusive or shared lock is needed. Exclusive
locks are considered to be “granted” to the requesting trans-
action if CX = 1 and CS = 0 after the request, since this
means that no other shared or exclusive locks are currently
held on the record. Similarly, a transaction is considered to
have acquired a shared lock if CX = 0, since that means that
no exclusive locks are held on the record.

Once a transaction has requested its locks, it is added to
the TxnQueue. Both the requesting of the locks and the
adding of the transaction to the queue happen inside the same
critical section (so that only one transaction at a time within
a partition can go through this step). In order to reduce the
size of the critical section, the transaction attempts to figure
out its entire read set and write set in advance of entering
this critical section. This process is not always trivial and
may require some exploratory actions. Furthermore, multi-
partition transaction lock requests have to be coordinated.
This process is discussed further in Sect. 2.4.

Upon leaving the critical section, VLL decides how to
proceed based on two factors:

– Whether or not the transaction is local or distributed. A
local transaction is one whose read and write sets include
records that all reside on the same partition; distributed
transactionsmay access a set of records spanningmultiple
data partitions.

– Whether or not the transaction successfully acquired all of
its locks immediately upon requesting them. Transactions
that acquire all locks immediately are termed free. Those
which fail to acquire at least one lock are termed blocked.

VLL handles each transactions differently based on whether
they are free or blocked:

– Free transactions are immediately executed. Once com-
pleted, the transaction releases its locks (i.e., it decre-

ments every CX or CS value that it originally incre-
mented) and removes itself from the TxnQueue.1 Note,
however, that if the free transaction is distributed, then it
may have to wait for remote read results, and therefore
may not complete immediately.

– Blocked transactions cannot execute fully, since not all
locks have been acquired. Instead, these are tagged in
the TxnQueue as blocked. Blocked transactions are
not allowed to begin executing until they are explicitly
unblocked by the VLL algorithm.

In short, all transactions—free and blocked, local and
distributed—are placed in the TxnQueue, but only free
transactions begin execution immediately.

Since there is no lockmanagement data structure to record
which transactions are waiting for data locked by other trans-
actions, there is noway for a transaction to hand over its locks
directly to another transactionwhen it finishes.An alternative
mechanism is therefore needed to determine when blocked
transactions can be unblocked and executed. One possible
way to accomplish this is for a background thread to exam-
ine each blocked transaction in the TxnQueue and examine
the CX and CS values of each data item for which the trans-
action requested a lock. If the transaction incremented CX

for a particular item, and now CX is down to 1 and CS is
0 for that item (indicating that no other active transactions
have locked that item), then the transaction clearly has an
exclusive lock on it. Similarly, if the transaction incremented
CS and now CX is down to 0, the transaction has a shared
lock on the item. If all data items that it requested are now
available, the transaction can be unblocked and executed.

The problem with this approach is that if another trans-
action entered the TxnQueue and incremented CX for the
same data item that a transaction blocked in the TxnQueue
already incremented, then both transactions will be blocked
forever since CX will always be at least 2.

Fortunately, this situation can be resolved by a simple
observation: a blocked transaction that reaches the front of
the TxnQueue will always be able to be unblocked and
executed—no matter how large CX and CS are for the data
items it accesses. To see why this is the case, note that each
transaction requests all locks and enters the queue all within
the same critical section. Therefore, if a transaction makes it
to the front of the queue, this means that all transactions that
requested their locks before it have now completed. Further-
more, all transactions that requested their locks after it will
be blocked if their read and write set conflict.

Since the front of theTxnQueue can alwaysbeunblocked
and run to completion, every transaction in the TxnQueue

1 The transaction is not required to be at the front of the TxnQueue
when it is removed. In this sense, TxnQueue is not, strictly speaking,
a queue.
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will eventually be able to be unblocked. Therefore, in addi-
tion to reducing lock manager overhead, this technique also
guarantees that there will be no deadlock within a partition.
(We explain how distributed deadlock is avoided in Sect.
2.4). Note that a blocked transaction now has two ways to
become unblocked: either it makes it to the front of the queue
(meaning that all transactions that requested locks before it
have finished completely), or it becomes the only transaction
remaining in the queue that requested locks on each of the
keys in its read set and write set. We discuss a more sophis-
ticated technique for unblocking transactions in Sect. 2.6.

One problem that VLL sometimes faces is that as the
TxnQueue grows in size, the probability of a new transac-
tion being able to immediately acquire all its locks decreases,
since the transaction can only acquire its locks if it does not
conflict with any transaction in the entire TxnQueue.

We therefore artificially limit the number of transactions
that may enter the TxnQueue—if the size exceeds a thresh-
old, the system temporarily ceases to process new transac-
tions, and shifts its processing resources to finding transac-
tions in the TxnQueue that can be unblocked (see Sect. 2.6).
In practice, we have found that this threshold should be tuned
depending on the contention ratio of the workload. High-
contention workloads run best with smaller TxnQueue size
limits since the probability of a new transaction not conflict-
ing with any element in the TxnQueue is smaller. A longer
TxnQueue is acceptable for lower contention workloads. In
order to automatically account for this tuning parameter, we
set the threshold not by the size of the TxnQueue, but rather
by the number of blocked transactions in the TxnQueue,
since high-contention workloads will reach this threshold
sooner than low contention workloads.

Figure 1 shows the pseudocode for the basic VLL algo-
rithm (for simplicity, this pseudocode only considers local
transactions). Each worker thread in the system executes the
VLLMainLoop function. Figure 2 depicts an example exe-
cution trace for a sequence of transactions.

2.2 Arrayed VLL

As discussed above, VLL usually prefers to colocate the CX

and CS values for each record with the record itself. Unlike
traditional lock management data structures, which are tra-
ditionally implemented as linked lists, CX and CS are both
simple integers and are therefore much easier to integrate
into the data records themselves. This leads to improved
cache/memorybandwidthutilization, as a single request from
memory brings both the record and the lock information
about the record into cache.

On the other hand, one disadvantage of this approach is
that it spreads out lock information across the entire dataset.
If there is code that only accesses lock information (with-
out accessing the data itself), it is better to have all the

Fig. 1 Pseudocode for the VLL algorithm

lock information stored together, rather than interspersed
with the data. One example of this is the deterministic lock
manager of Calvin. In order to implement the deterministic
locking algorithm described in previous work [35], Calvin
sometimes puts its lock manager in a separate thread that is
dedicated to just lock management. Since this thread never
touches the raw data, it would be preferable to keep all lock
management data together in order to ensure that the cache
local to the core that this lock manager thread is running
is filled with lock data and not polluted with record data as
well.
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Fig. 2 Example execution of a sequence of transactions
{A, B,C, D, E} using VLL. Each transaction’s read and write set
is shown in the top left box. Free transactions are shown with white
backgrounds in the TxnQueue, and blocked transactions are shown

as black. Transaction logic and record values are omitted, since VLL
depends only on the keys of the records in transactions’ read and write
sets

We therefore designed another implementation of VLL,
which we call “arrayed VLL”, which uses a vector or array
data structure to store integer lock information consecutively.
For example in C++, we store all CX information in one
vector and all Cs information in a second vector to represent
read–write locks and read locks, respectively. The i th element
of each vector corresponds to the CX and Cs values for the
i th record.

The overhead of arrayed VLL is a little larger than the
colocated version of VLL, since data and lock information
are accessed in two separate requests; however,when the lock
manager is running in a separate thread, this implementation
is preferable, since the memory request for the lock is often
in the cache of the core running the lock manager (especially
when the number of records is small, or when the records
which are accessed are skewed).

We will further compare the performance differences
between arrayed VLL and colocated VLL in Sect. 3.

2.3 Single-threaded VLL

Thus far, we have discussed themost general version ofVLL,
in which multiple threads may process different transactions
simultaneously within each partition. It is also possible to

run VLL in single-threaded mode. Such an approach would
be useful in H-Store style settings [33], where data are parti-
tioned across cores within a machine (or within a cluster of
machines), and there is only one thread assigned to each par-
tition. These partitions execute independently of one another
unless a transaction spans multiple partitions, in which case
the partitions need to coordinate processing.

In the general version of VLL described above, once a
thread begins executing a transaction, it does nothing else
until the transaction is complete. For distributed transactions
that perform remote reads, thismay involve sleeping for some
period of time while waiting for another partition to send
the read results over the network. If single-threaded VLL
was implemented simply by running only one thread (on
each partition) according to the previous specification, the
result would be a serial execution of transactions (within each
partition). This results in wasted resources, since when the
threadneeds to sleep,waiting for amessage fromadistributed
node, and no other progress can bemadewithin that partition.

In order to improve concurrency in single-threaded VLL
implementations, we allow transactions to enter a third state
(in addition to “blocked” and “free”). This third state, “wait-
ing”, indicates that a transaction was previously executing
but could not complete without the result of an outstanding
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remote read request. When a transaction triggers this condi-
tion and enters the “waiting” state, the main execution thread
puts it aside and searches for a new transaction to execute.
Conversely, when the main thread is looking for a transac-
tion to execute, in addition to considering the first transac-
tion on the TxnQueue and any new transaction requests, it
may resume execution of any “waiting” transaction which
has received remote read results since entering the “waiting”
state.

In other words, while there is still only one thread per
partition, this thread now has the capability to work on more
than one transaction at once—switching over to a different
transaction (instead of sleeping) when waiting for messages
from distributed nodes. Since there is still only one thread per
partition, this implementation shares the H-Store advantage
of not requiring latches/critical sections around lock acqui-
sition. Figure 3 shows the pseudocode for the distributed
single-threaded VLL algorithm (note the lack of critical sec-
tions relative to Fig. 1).

2.4 Impediments to acquiring all locks at once

As discussed in Sect. 2.1, in order to guarantee that the head
of the TxnQueue is always eligible to run (which has the
added benefit of eliminating deadlocks), VLL requires that
all locks for a transaction be acquired together in a critical
section. There are two possibilities that make this nontrivial:

– The read andwrite sets of a transactionmay not be known
before running the transaction. An example of this is a
transaction that updates a tuple that is accessed through a
secondary index lookup. Without first doing the lookup,
it is hard to predict what records the transaction will
access—and therefore what records it must lock.

– Since each partition has its own TxnQueue and the crit-
ical section in which it is modified is local to a partition,
different partitionsmay not begin processing transactions
in the same order. This could lead to distributed dead-
lock, where one partition gets all its locks and activates
a transaction, while that transaction is “blocked” in the
TxnQueue of another partition.

In order to overcome the first problem, before the trans-
action enters the critical section, we allow the transaction
to perform whatever reads it needs to (at no isolation) for
it to figure out what data it will access (for example, it
performs the secondary index lookups). This can be done
in the GetNewTxnRequest function that is called in the
pseudocode shown in Figs. 1 and 3. After performing these
exploratory reads, it enters the critical section and requests
those locks that it discovered it would likely need. Once the

Fig. 3 Pseudocode for the single-threaded VLL algorithm
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transaction gets its locks and is handed off to an execution
thread, the transaction runs as normal unless it discovers
that it does not have a lock for something it needs to access
(this could happen if, for example, the secondary index was
updated immediately after the exploratory lookup was per-
formed and now returns a different value). In such a scenario,
the transaction aborts, releases its locks, and submits itself
to the database system to be restarted as a completely new
transaction.

There are two possible solutions to the second problem.
The first is simply to allow distributed deadlocks to occur and
to run a deadlock detection protocol that aborts deadlocked
transactions. The second approach is to coordinate across
partitions to ensure thatmulti-partition transactions are added
to the TxnQueue in the same order on each partition.

As will be discussed further in Sect. 3, we tried both
approaches and found that for high-contention workloads,
the first solution is problematic, since the overhead of han-
dling and detecting distributed deadlock completely negates
theVLL advantage of reducing the overhead of lockmanage-
ment. Meanwhile, the second approach, while adding non-
trivial coordination overhead, is still able yield improved per-
formance. For low-contention workloads, both approaches
are possibilities.

However, recent work on deterministic database systems
[35–37] shows that the coordination overhead of the sec-
ond approach can be reduced by performing it before begin-
ning transactional execution. In short, deterministic database
systems such as Calvin order all transactions across parti-
tions, and this order can be leveraged by VLL to avoid dis-
tributed deadlock. Furthermore, since deterministic systems
have been shown to be a particularly promising approach
in main memory database systems [35], the integration of
VLL and deterministic database systems seems to be a par-
ticularly goodmatch.We therefore used the second approach
with coordination happening before transaction execution for
our implementation in most experiments of this paper.

2.5 Trade-offs of VLL

VLL’s primary strength lies in its extremely low overhead
in comparison with that of traditional lock management
approaches. VLL essentially “compresses” a standard lock
manager’s linked list of lock requests into two integers. Fur-
thermore, by placing these integers inside the tuple itself,
both the lock information and the data itself can be retrieved
with a single memory access, minimizing total cache misses.

The main disadvantage of VLL is a potential loss in con-
currency. Traditional lockmanagers use the information con-
tained in lock request queues to figure out whether a lock
can be granted to a particular transaction. Since VLL does
not have these lock queues, it can only test more selective
predicates on the state: (a) whether this is the only lock in the

queue, or (b) whether it is so old that it is impossible for any
other transaction to precede it in any lock queue.

As a result, it is common for scenarios to arise under VLL
where a transaction cannot run even though it “should” be
able to run (and would be able to run under a standard lock
manager design). Consider, for example, the sequence of
transactions:

txn Write set

A x
B y
C x, z
D z

Suppose A and B are both running in executor threads
(and are therefore still in the TxnQueue) when C and D
come along. Since transaction C conflicts with A on record
x and D conflicts withC on z, both are put on theTxnQueue
in blocked mode. VLL’s “lock table state” would then look
like the following (as compared to the state of a standard lock
table implementation):

VLL Standard

Key Cx Cs Key Request queue

x 2 0 x A, C
y 1 0 y B
z 2 0 z C, D
TxnQueue
A, B, C, D

Next, suppose that A completes and releases its locks. The
lock tables would then appear as follows:

VLL Standard

Key Cx Cs Key Request queue

x 1 0 x C
y 1 0 y B
z 2 0 z C, D
TxnQueue
B, C, D

Since C appears at the head of all its request queues, a
standard implementation would know that C could safely be
run, whereas VLL is not able to determine that.

When contention is low, this inability of VLL to immedi-
ately determine possible transactions that could potentially
be unblocked is not costly. However, under higher contention
workloads, and especially when there are distributed trans-
actions in the workload, VLL’s resource utilization suffers,
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and additional optimizations are necessary. We discuss such
optimizations in the next section.

2.6 Selective contention analysis (SCA)

For high-contention and high-percentage multi-partition
workloads, VLL spends a growing percentage of CPU cycles
in the state described in Sect. 2.5 above, where no transaction
can be found that is known to be safe to execute—whereas
a standard lock manager would have been able to find one.
In order to maximize CPU resource utilization, we introduce
the idea of SCA.

SCA simulates the standard lock manager’s ability to
detect which transactions should inherit released locks. It
does this by spending work examining contention—but only
when CPUswould otherwise be sitting idle (i.e., TxnQueue
is full and there are no obviously unblockable transactions).
SCA therefore enables VLL to selectively increase its lock
management overhead when (and only when) it is beneficial
to do so.

Any transaction in the TxnQueue that is in the ’blocked’
state, conflicted with one of the transactions that preceded
it in the queue at the time that it was added. Since then,
however, the transaction(s) that caused it to become blocked
may have completed and released their locks. As the trans-
action gets closer and closer to the head of the queue,
it therefore becomes much less likely to be “actually”
blocked.

In general, the i th transaction in the TxnQueue can
only conflict now with up to (i − 1) prior transactions,
whereas it previously had to contend with (up to) the num-
ber of TxnQueueSizeLimit prior transactions. There-
fore, SCA starts at the front of the queue and works its
way through the queue looking for a transaction to exe-
cute. The whole while, it keeps two- bit arrays, DX and
DS , each of size 100kB (so that both will easily fit inside
an L2 cache of size 256kB) and initialized to all 0s. SCA
then maintains the invariant that after scanning the first i
transactions:

– DX [ j] = 1 iff an element of one of the scanned transac-
tions’ write sets hashes to j

– DS[k] = 1 iff an element of one of the scanned transac-
tions’ read sets hashes to k

Therefore, if at any point the next transaction scanned (let’s
call it Tnext ) has the properties:

– DX [hash(key)] = 0 for all keys in Tnext ’s read set
– DX [hash(key)] = 0 for all keys in Tnext ’s write set
– DS[hash(key)] = 0 for all keys in Tnext ’s write set

Fig. 4 SCA pseudocode

then Tnext does not conflict with any of the prior scanned
transactions and can safely be run.2

In other words, SCA traverses the TxnQueue starting
with the oldest transactions and looking for a transaction that
is ready to run and does not conflict with any older transac-
tion. Pseudocode for SCA is provided in Fig. 4.

SCA is actually “selective” in two different ways. First,
it only gets activated when it is really needed (in contrast
to traditional lock manager overhead which always pays the
cost of tracking lock contention even when this information
will not end up being used). Second, rather than doing an
expensive all-to-all conflict analysis between active transac-
tions (which is what traditional lock managers track at all
times), SCA is able to limit its analysis to those transactions

2 Although there may be some false negatives (in which an “actually”
runnable transaction is still perceived as blocked) due to the need to
hash the entire key space into a 100kB bitstring, this algorithm gives
no false positives.
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that are (a) most likely to be able to run immediately and (b)
least expensive to check.

In order to improve the performance of our implementa-
tion of SCA, we include a minor optimization that reduces
the CPU overhead of running SCA. Each key needs to be
hashed into the 100kB bitstring, but hashing every key for
each transaction as we iterate through the TxnQueue can be
expensive. We therefore cache (inside the transaction state)
the results of the hash function the first time SCA encounters
a transaction. If that transaction is still in the TxnQueue the
next time SCA iterates through the queue, the algorithmmay
then use the saved list of offsets that corresponds to the keys
read and written by that transaction to set the appropriate bits
in the SCA bitstring, rather having to re-hash each key.

2.7 Very lightweight locking of ranges (VLLR)

For workloads that frequently read, write, or delete many
consecutive rows within the same transaction, it can be use-
ful to lock ranges of rows rather thanmany individual “point”
rows. This technique is particularly useful in avoiding phan-
toms [26] and in the common use case of deleting an entity
whose data rows all share a common prefix of their primary
key. Somedatabase systems, such as Spanner, use range locks
exclusively in place of hash table-based “point” locks [7].
This section describes an extension of VLL (called VLLR
for brevity) that locks ranges of rows rather than individual
rows.

VLLR works by locking bitstring prefixes. When locking
a range of primary keys, the range is represented first as a
range R of (lexicographically sorted) bitstrings, and then a set
P of bitstrings is generated such that for each bitstring K of
the range, there exists an element p ∈ P that is a prefix of K .
One simple way to generate P is to choose the set consisting
of the longest common prefix of the minimum andmaximum
bitstrings in R.3

Given a set P of prefixes to lock, VLLR proceeds in a
manner similar to hierarchical locking [10]. In traditional
hierarchical locking, intention locks are acquired from course
to fine granularity before the actual lock is acquired on the
target key—for example, intention locks may be acquired

3 This can sometimes result in locking a much larger part of the key
space than needed. For example, in an 8-bit key space, locking the
range R =[00111100,01000010] with this method results in
locking all keys with prefix 0xxxxxxx—half the key space rather
than the necessary 7/256 of the key space. In this particular case, P
could instead consist of the prefixes 001111xx, 0100000x, and
01000010, thus locking exactly the rows in R. Or P could consist of
001111xx and 010000xx, locking the rows in R, plus one additional
row (010000011). Under some workloads, locking larger ranges than
necessary may incur expensive and unnecessary contention costs, jus-
tifying the costs of finer-grained R → P transformations. Under other
workloads, coarser-grained prefix locking may be acceptable and users
may profit from the reduced locking overhead.

Cx Cs Ix Is
Cx X X X X
Cs X X
Ix X X
Is X

Fig. 5 Lock mode conflicts for VLLR (Xs indicate conflict)

on database, then table, then page before an actual lock for
a row is requested. VLLR’s approach is analogous in that
it requests intention locks on all nonempty prefixes of each
element in P .

To manage lock states, VLLR uses four counters per key:
Cx , Cs, Ix , and Is . When requesting a lock on a prefix
p ∈ P, Cx [p] or Cs[p] is incremented (depending whether
the request is for an exclusive or shared lock) and for each
nonempty strict prefix p j of p, Ix [p j ] or Is[p j ] is incre-
mented, respectively. For each incremented counter, all con-
flicting counters are checked (see Fig. 5 for a table of which
pairs of counters conflict) to see whether the lock is acquired.

Note that the lock management overhead of VLLR is
bounded to one increment/decrement for each bit in the com-
bined elements of the union of P sets for each transaction.
Overlapping lock ranges incur no extra lock management
work as they do in traditional range locking mechanisms
where ranges may have to be split.

The primary difference between VLLR and VLL is the
maintenance of two extra counters, corresponding to Ix and
Is . Therefore, it is straightforward to apply SCA to VLLR
in an analogous way to how it is applied for VLL—SCA
simply has to add two extra bitmaps corresponding to Ix and
Is (note, however, that SCA for VLLR will have to update
more bits within the bitstrings per transaction to account for
the additional prefixes that must be locked). Figure 6 shows
the pseudocode for VLLR. Figure 7 depicts an example exe-
cution trace for a sequence of transactions.

3 Experimental evaluation

To evaluate VLL and SCA, we ran several experiments
comparing VLL (with and without SCA) against alternative
schemes in a number of contexts. We describe our experi-
mental setup in Sect. 3.1, and the remainder of this section
presents our experimental results.

3.1 Experimental setup

In this section, we describe our experimental setup. In order
to fully evaluate the VLL protocol, we implement three dif-
ferent versions of VLL (one single-machine version and two
distributed versions) and compare each version to systems of
corresponding designs using traditional locking methods. In
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Fig. 6 Pseudocode for the VLLR algorithm

total, we implemented and evaluated nine systems. Section
3.1.1 describes each of these nine systems. After describing
these systems, we describe the benchmarks used to evaluate
these systems in Sect. 3.1.2.

3.1.1 Compared systems

We separate our experiments into two groups: single-
machine experiments and experiments in which data are par-
titioned acrossmultiplemachines in a shared-nothing cluster.

In our single-machine experiments, we ran VLL (exactly
as described in Sect. 2.1) in a multi-threaded environment
on a multi-processor machine. As a comparison point, we
implemented a traditional two-phase locking (2PL) protocol
inside the same main memory database system prototype.
This allows for an apples-to-apples comparison in which the
only difference is the locking protocol.

For our distributed, shared-nothing cluster experiments,
we considered two different partitioning implementations:
one where each multicore machine in the cluster contains a
partition, and themulti-threaded version ofVLL runs on each
machine (as described in Sect. 2.4); and one “H-Store-style”
implementationwhere each core on eachmachine has its own
separate partition, and each partition runs all transactions in
a single worker thread (as described in Sect. 2.3).

As discussed earlier, distributed versions of VLL are sus-
ceptible to entering distributed deadlock states.We presented
two potential solutions to this problem: (a) detecting dead-
locks by analyzing transaction dependencies and aborting
transactions to break cycles and (b) avoiding deadlocks via
global coordination of lock acquisition order. We built and
experimented with both options.

We implement the first solution in the context of a tra-
ditional System-R* design [27], using two-phase commit
(2PC) for distributed transactions, but with the lock manager
on each machine being replaced by our VLL implementation
from Sect. 2.1. As a comparison point, we compare against
the same exact traditional System-R* design, with the same
mechanisms for detecting and resolving distributed deadlock
(discussed later in this section), but using a traditional hash
table-based lock manager implementing the two-phase lock-
ing protocol instead of VLL.

The second option can leverage the Calvin design (which,
as described in Sect. 2.4, also avoids distributed deadlock by
creating a global order of all transactions). Since globally
ordering transactions also has the nice property of enabling
deterministic transaction execution and 2PC is not necessary
in deterministic systems [37], we allow our implementation
of the second option also to take advantage of this property
and eschew 2PC. Therefore, we compare this implemen-
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Fig. 7 Example execution of a sequence of transactions {A, B,C, D} using the VLLR algorithm. Each transaction requests an exclusive lock on
a range. Currently executing transactions are shown with white backgrounds in the TxnQueue, and blocked transactions are shown as black

tation with the original version of Calvin. The two imple-
mentations use the exact same code for everything but lock
management—including the code for choosing the global
order of transactions, the code for deterministic transactional
execution without two-phase commit, and code for schedul-
ing transactions to run in worker threads once all locks have
been successfully acquired. The only difference is that we
replaced Calvin’s hash table-based lock manager with our
VLL implementation. Since Calvin runs all lock manage-
ment operations in a separate thread from the worker threads
that execute transaction logic, we use the array-based imple-
mentation of VLL described in Sect. 2.2.

In summary, we compare four different distributed sys-
tems that contain multiple threads per partition: a traditional
R* design (1) with and (2) without VLL, and a Calvin design
(3) with and (4) without VLL. The traditional R* design
uses 2PC and implements deadlock detection and resolution
(using a waits-for graph—see below), whereas the Calvin
design avoid deadlocks and processes distributed transac-
tions without 2PC.

For the distributed “H-Store”-style designwhere each core
on each machine has its own separate partition and each par-
tition contains just one thread, we implement and compare
three different implementations. First, we implement VLL
(exactly as described in Sect. 2.3) directly into Calvin code-

base. Each partition, running on each core, runs the single-
threaded version of VLL whose pseudocode was given in
Fig. 3.

We compare our single-threaded VLL implementation
against two similar alternatives. First, we compare against an
H-Store implementation4 [33] that also partitions data across
cores (so that an 8-server cluster, where each server has five
cores devoted to processing transactions, is partitioned into
40 partitions) and executes all transactions at each partition
serially within a single thread, removing the need for locking
or latching of shared data structures. H-Store therefore has
the advantage of not requiring any overhead for lockmanage-
ment, but the disadvantage of not allowing any concurrency
within a partition (and for distributed transactions must sit
and wait for remote messages instead of working on other
transactions in the interim).

Second, we compare against a less extreme version of H-
Store that uses a traditional lock manager inside each par-
tition to enable concurrent transaction execution within a
partition, so that the system does not need to wait and do
nothing while waiting for remote messages as part of dis-

4 Although we refer to this system as “H-Store” in the discussion
that follows, we actually implemented the H-Store protocol within the
Calvin framework in order to provide as fair a comparison as possible.
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tributed transactions. This implementation should therefore
see improved performance for workloads that contain many
distributed transactions, at the cost of increased overhead for
lock management.

Since we built each of these three “H-Store-style” imple-
mentations inside the Calvin code base, they are all determin-
istic, and all can avoid 2PC for distributed transactions (just
like the latter two implementations for the multi-threaded
experiments). The only difference is lock management. Reg-
ular H-Store uses no locks and serializes transactions within
each partition, lock manager-based H-Store uses a tradi-
tional lock manager in each partition, and VLL-based H-
Store uses the single-threaded VLL implementation from
Sect. 2.3.

We spent a lot of time investigating multiple different
deadlock detection and resolution protocols. Although we
used a timeouts-based protocol in an earlier version of this
paper [30], we found that the waits-for graphs implementa-
tion from Gray [9] and Stonebraker [32] performs better in
practice. We therefore carefully implemented the waits-for
graphs protocol for deadlock detection and also optimized
the “blocked transactions threshold” in our system in order
to reduce deadlock by limiting the number of blocked trans-
actions allowed in the system. We therefore managed to sub-
stantially improve the performance of our prototype for those
implementations in which deadlock is possible relative to our
previous work [30].

Our prototype is implemented in C++. All the experi-
ments measuring throughput were conducted on Amazon
EC2usingDoubleExtraLarge instances (m3.2xlarge),which
promise 30GB of memory and 26 EC2 Computer Units—
eight virtual coreswith 3.25EC2ComputeUnits each (where
eachEC2ComputeUnit provides the roughly theCPUcapac-
ity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.
Experiments were run on a shared-nothing cluster of eight
of these Double Extra Large EC2 instances, unless stated
otherwise.

In order to minimize the effects of irrelevant compo-
nents of the database system on our results, we devote
three out of eight cores on every machine to those com-
ponents that are completely independent of the locking
scheme (e.g., client load generation, performancemonitoring
instrumentation, intra-process communications, input log-
ging, etc.) and devote the remaining five cores to worker
threads and lock management threads. For all techniques
that we compare in the experiments, we tuned the worker
thread pool size by hand by increasing the number of worker
threads until throughput decreased due to too much thread
contention.

For single-threaded systems implementations, we lever-
aged these five virtual cores by creating five data partitions
per machine, so every execution engine used one core to han-
dle transactions associated with its partition.

For configurations where data were not partition within a
machine, we devoted all five virtual cores to worker threads
when running the distributed 2PL protocol with deadlock
detection. In the Calvin-based deadlock-free mechanisms,
dedicated one core entirely to the lock manager thread, leav-
ing four cores for worker threads.

3.1.2 Benchmarks

The first set of experiments we present in this paper use the
samemicrobenchmark experimented with in several recently
published papers [30,37]. Each microbenchmark transaction
reads 10 records and updates a value at each record. Of the
10 records accessed, one is chosen from a small set of ‘hot’
records, and the rest are chosen from a larger set of ‘cold’
records. Contention levels between transactions can be finely
tuned by varying the size of the set of hot records. In the sub-
sequent discussion, we use the term contention index to refer
to the probability of any two transactions conflictingwith one
another. Therefore, for this microbenchmark, if the number
of the hot records is 1,000, the contention index would be
0.001. If there is only one hot record (which would then be
modified by every single transaction), the contention index
would be 1. The set of cold records is always large enough
such that transactions are extremely unlikely to conflict due
to accessing the same cold record.

The transactions in this microbenchmark are short and
simple—reading and updating 10 records can be performed
very quickly. A relatively high percentage of transaction time
is spent acquiring locks, since 10 separate data items must be
locked, and once the lock is acquired, very little time is spent
performing the required actions on the locked item (a sim-
ple read and update). We therefore refer to this transactional
workload as our “short” microbenchmark.

In order to experiment with workloads where a smaller
percentage of transaction time is spent acquiring locks, we
introduce an altered version of the microbenchmark where
10 ms of CPU computation must be performed on each data
item (in addition to the read and update). We call this ver-
sion of the microbenchmark the “long” microbenchmark,
and each transaction in the benchmark takes approximately
150 ms in total (which is similar to the New Order transac-
tion in the TPC-C benchmark). Transactions in the “long”
microbenchmark take approximately three times longer than
“short” microbenchmark transactions (150 vs. 50 ms).

To expand our experiments beyond our simple microben-
chmarks, we also implement the full TPC-C benchmark. The
TPC-C benchmark models the OLTP workload of an eCom-
merce order processing system. TPC-C consists of a mix of
five transactions (NewOrder 45%, Payment 43%,Order Sta-
tus 4%, Stock Level 4%, and Delivery 4%) with different
properties, and it contains both read–write heavy transac-
tions and read-only transactions. Since the transaction logic
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of TPC-C is complex and the contention index is high, our
TPC-C experiments are most similar to our experiments on
the “long” microbenchmark, under high contention.

3.2 Multi-core, single-server experiments

This section compares the performance of VLL against
two-phase locking. For VLL, we analyze performance with
and without the SCA optimization. We also implement
two versions of 2PL: a “traditional” implementation that
detects deadlocks and aborts deadlocked transactions, and
a deadlock-free variant of 2PL in which a transaction places
all of its lock requests in a single atomic step (where the data
that must be locked are determined in an identical way as
VLL, as described in Sect. 2.4). However, this modified ver-
sion of 2PL still differs from VLL in that it uses a traditional
lock management data structure.

As a baseline for all four systems, we include a “no lock-
ing” scheme, which represents the performance of the same
system with all locking completely removed (and any isola-
tion guarantees completely forgone). This allows us to clearly
see the overhead of acquiring and releasing the locks, main-
taining lock management data structures for each scheme,
and waiting for blocked transactions when there is con-
tention.

We benchmark our system using both the “long”
microbenchmark transactions and “short” microbenchmark
transactions described in Sect. 3.1.2.

Figure 8a shows the transactional throughput the system
is able to achieve under the four alternative locking schemes
for “long” microbenchmark transactions, and Fig. 8c shows
the throughput for “short” microbenchmark transactions.

When contention is low (below 0.02), VLL (with and
without SCA) yields near-optimal throughput. As contention
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(a) “Long” transactions under a deadlock-free
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Fig. 8 Transactional throughput versus contention under various microbenchmark workloads
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increases, however, the TxnQueue starts to fill up with
blocked transactions, and the SCA optimization is able to
improve performance relative to the basic VLL scheme
by selectively unblocking transactions and “unclogging”
the execution engine. This effect is much stronger for the
“long” transaction microbenchmark (where SCA boosts
VLL’s performance by up to 41%) than the “short” trans-
action microbenchmark, where the benefit of SCA is more
muted. This is explained by the fact that transactions in
the “short” microbenchmark are being executed so fast that
SCA’s ability to remove transactions from the TxnQueue
slightly earlier than they would otherwise be removed when
reaching the head of the queue yields a very small improve-
ment.

Interestingly, although SCA is able to improve throughput
relative to basic VLL at high contention levels, at extremely
high contention levels SCA once again approaches basic
VLL in performance (this effect is seen for both “long”
transactions and “short” transactions). The is because at
extremely high contention, almost every transactions con-
flicts with every other transaction, and SCA becomes unable
to find transactions that can be removed early from the
TxnQueue. Therefore, the shape of the SCA graph rela-
tive to the basic VLL graph is a bubble, with close to identi-
cal performance at low and extremely high contentions, and
improvement only observable at medium-to-high contention
levels.

At the very left-hand side of the figure, where contention
is very low, transactions are always able to acquire all their
locks and run immediately. Therefore, the difference between
the “no locking” throughput and the throughput of each of
the other implementations can be completely explained by
the overhead of acquiring locks in each implementation. For
the standard 2PL implementation, for “long” microbench-
mark transactions, we see that the locking overhead of 2PL
is about 22%. This number is consistent with previous mea-
surements of locking overhead in main memory databases
[12,22]. However, the overhead reaches 43% for the 2PL
implementation for “short” microbenchmark transactions.
This is because, as described in Sect. 3.1.2, for the “short”
microbenchmark, a greater percentage of transaction time is
spent acquiring locks. (The “long” transaction benchmark is
more similar to real-world workloads with which the above-
cited studies experimented.)

Meanwhile, the overhead of VLL is only 1.5% for the
“long” microbenchmark transactions and 10.2% for the
“short” microbenchmark transactions, providing evidence
of VLL’s lighter-weight lock manager implementation rel-
ative to 2PL. By colocating lock information with data to
increase cache locality and by representing lock information
in only two integers per record, VLL is able to lock data with
extremely low overhead. However, the multi-threaded ver-
sion of VLL still must acquire and release locks in a critical

section, and this caused a bottleneck which become visible
for the “short” microbenchmark transactions.

The deadlock-free 2PL implementation also acquires
and releases locks in a critical section. However, the crit-
ical section of the deadlock-free 2PL implementation is
more expensive than the corresponding critical section
of VLL since the process of acquiring or releasing a
lock in the deadlock-free 2PL implementation uses the
much heavier-weight traditional hash-based lock manager
data structure. For the “short” transaction microbench-
mark, this critical section becomes such a bottleneck,
that this implementation consistently yielded extremely
poor performance, and was unaffected by the contention
index.

As contention increases, the throughput of both VLL and
2PL decreases (since the system is “clogged” by blocked
transactions), and the two schemes approach one another
in performance as the additional information that the 2PL
scheme keeps in the lock manager becomes increasingly
useful (as more transactions block). However, even at high
contention, the performance of VLL with SCA is similar
to 2PL, since SCA can quickly construct the relevant part
of transactional data dependencies on the fly. Therefore,
VLL with the SCA optimization has the advantage that it
eliminates the lock manager overhead when possible, while
still reconstructing the information stored in standard lock
tables when this is needed to make progress on transaction
execution.

Since this workload involved locking only one hot item
per transaction, there is (approximately) no risk of transac-
tions deadlocking.5 This hides a major disadvantage of 2PL
relative to VLL, since 2PL must detect and resolve dead-
locks, while VLL does not, since VLL is always deadlock-
free regardless of the transactional workload (due to the way
it orders its lock acquisitions). In order to model other types
of workloads where multiple records per transaction can be
contested (which can lead to deadlock for the traditional lock
schemes), we increase the number of hot records per transac-
tion and present the results in Fig. 8b, d. Although the pres-
ence of deadlocks reduces the performance of 2PL-based
locking implementations at high contention indexes (when
deadlock becomes likely), our careful optimizations of the
deadlock detection and resolution protocols in our prototype
kept the effect of deadlock relatively small compared to the
previous experiments. Therefore, Fig. 8b is similar to Fig.
8a, and Fig. 8d is similar to Fig. 8c. However, it is clear that
the modified workload that allows deadlocks does reduce the
performance of 2PL, but VLL is unaffected by the change in
workload.

5 The exception is that deadlock is possible in this workload if trans-
actions conflict on cold items. This was rare enough, however, that we
observed no deadlocks in our experiments.
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(a) “Short” transactions under low contention.
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(b) “Short” transactions under high contention.
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(c) “Long” transactions under low contention.
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(d) “Long” transactions under high contention.

Fig. 9 Microbenchmark throughput of partition-per-core systems, varying how many transactions span multiple partitions

3.3 Distributed database experiments

In this section, we examine the performance of VLL in a dis-
tributed (shared-nothing) database architecture.We startwith
some experiments on the microbenchmark and then analyze
performance on TPC-C.

As described in Sect. 3.1.1, we implemented VLL both
for systems with one partition per machine and for systems
with one partition per core (in the style of H-Store). Section
3.3.1 presents our experiments with the partition-per-core
systems, and Sect. 3.3.2 presents our experiments with the
partition-per-machine systems. Section 3.3.3 then presents
our experiments on TPC-C.

3.3.1 Partition-per-core experiments

In our first set of distributed experiments, we used the
microbenchmark (both “long” transactions and “short” trans-
actions) and varied both lock contention and the percentage
of multi-partition transactions.

These experiments ran on eight machines, each of which
had five cores devoted to transaction processing, so the
partition-per-core systems (H-Store, per-core VLL, per-core
lock manager) split data across 40 partitions, while the
partition-per-machine systems (Calvin, 2PL + 2PC, Nonde-
terministic VLL + 2PC, Deterministic VLL) split data across
eight partitions. For the low-contention test, each partition
contained 1,000,000 records ofwhich 10,000were hot, yield-
ing a contention index of 0.0001. For the high-contention
tests, we reduced the number of hot records to 100 per parti-
tion, resulting in a contention index of 0.01.

Figure 9 presents the results of these experiments. When
comparing the performance of VLL with and without the
SCA optimization, it is clear that for both “short” transac-
tions and “long” transactions, SCA is extremely important
under high contention, and VLL’s throughput is poor without
it. SCA optimization outperforms basic VLL by up to about
100%with “long” transactions and about 130%with “short”
transactions. The benefit of SCA is thus much larger for
these distributed systemexperiments than the single-machine
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experiments presented in Sect. 3.2. This is because for the
single-machine experiments, the head of the TxnQueue can
always run (the only reason why a transaction will enter the
TxnQueue is if it blocks waiting for locks and once a trans-
action reaches the head of the queue, it is guaranteed to be
able to acquire all of its locks), so progress can always be
made by running transactions from the head of the queue.
For the distributed database experiments, the head of the
queue can be stalled, waiting for a remote message. With-
out SCA, the entire TxnQueue must wait, waiting for this
remote message. However, SCA is able to find other trans-
actions in the TxnQueue to run, while the first transaction
is waiting for remote data.

Under low contention, however, the SCA optimization
actually hinders performance slightly when there are more
than 60%multi-partition transactions. We observe three rea-
sons for this effect. First, under low contention, very few
transactions are blocked waiting for locks, so SCA has a
smaller number of potential transactions to unblock.

Second, since multi-partition transactions take longer
than single-partition transactions, the TxnQueue typically
contains many multi-partition transactions waiting for read
results from other partitions. The higher the percentage of
multi-partition transactions, the longer the TxnQueue tends
to be (recall that the queue length is limited by the number of
blocked transactions, not the total number of transactions).
Since SCA iterates through the TxnQueue each time that it
is called, the overhead of each SCA run therefore increases
with multi-partition percentage.

Third, since low-contention workloads typically have
more multi-partition transactions per blocked transaction in
the TxnQueue, each blocked transaction has a higher prob-
ability of being blocked behind a multi-partition transaction.
This further reduces the effectiveness of SCA’s ability to find
transactions to unblock, sincemulti-partition transactions are
slower to finish, and there is nothing that SCAcan do to accel-
erate a multi-partition transaction.

Despite all these reasons for the reduced effectiveness of
SCA for low-contention workloads, SCA is only slower than
regular VLL by a very small amount. This is because SCA
runs are only ever initiatedwhen theCPUwould otherwise be
idle, so SCA only comes with a cost if the CPU would have
left its idle state before SCA finishes its iteration through
the TxnQueue. Overall, VLL with the SCA optimization
performs similarly to regular VLL under low contention and
up to 130% faster under high contention.

When comparing colocated (where the lock information
is stored inside the records themselves) and arrayed VLL
(where the lock information is stored in separate vectors as
described in Sect. 2.2), we see that with fewer multi-partition
transactions, the colocated version VLL outperforms arrayed
VLL since arrayed VLL’s extra memory accesses represent
approximately 10% of the cost of each “short” microbench-

mark transaction (and approximately 3–4% overhead for
each “long” microbenchmark transaction) when the transac-
tion executes entirely locally. However, as distributed trans-
actions are added into themix, the overhead of cross-partition
communication and coordination begins to dominate execu-
tion costs, and the benefit of colocating lock counters with
data becomes much less visible.

Although the difference between arrayed VLL and colo-
cated VLL is small, the difference between either VLL
scheme and the non-VLL schemes is much larger. When
comparing to the per-core lock manager scheme, the VLL
scheme can improve performance by 10–30% when there
are few distributed transactions, but the difference becomes
smaller as more distributed transactions are added to the
workload. Both the per-core lock manager implementation
and VLL implementation use locking to enable a transac-
tion processing thread to work on other transactions while
waiting for remote messages during a distributed transac-
tion. Therefore, the only difference between these schemes
is the locking overhead. This locking overhead difference is
a greater percentage of total transaction execution time for
local transactions and “short” transactions, but becomes less
noticeable as transactions become longer or distributed.

The H-Store (serial execution) implementation performs
extremely poorly as more multi-partition transactions are
added to the workload. This is because H-Store partitions
have no mechanism for concurrent transaction execution
within a partition, and so must sit idle any time it depends
on an outstanding remote read result to complete a multi-
partition transaction.6 Since H-Store is designed for parti-
tionable workloads (fewer than 10%multi-partition transac-
tions), it is most interesting to compare H-Store and VLL at
the left-hand side of the graph. Even at 0% multi-partition
transactions, H-Store is unable to significantly outperform
VLL, despite the fact that VLL acquires locks before execut-
ing a transaction, while H-Store does not. This observation
further highlights the extremely low overhead of lock man-
agement with VLL.

Since Fig. 9 measured throughput at only two different
contention levels, Fig. 10 presents the throughput of these
systems when contention is varied more directly. We fix the
percentage of multi-partition transactions to be 20% for this
experiment.

When comparing VLL with and without the SCA opti-
mization, it is clear that SCA becomes increasingly impor-

6 Subsequent versions of H-Store proposed to speculatively execute
transactions during this idle time [16], but this can lead to cascading
aborts and wasted work if there would have been a conflict. We do
not implement speculative execution in our H-Store prototype since
H-Store is designed for workloads with small percentages of multi-
partition transactions (when speculative execution is not necessary), and
our purpose for including it as a comparison point is only to analyze
how it compares to VLL on these target single-partition workloads.
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Fig. 10 Throughput of partition-per-core systems while varying con-
tention

tant as the contention increases. However, SCA always out-
performs basic VLL, even at low contention. Interestingly,
we do not see the decrease in effectiveness of the SCA opti-
mization at extremely high contention levels that we saw for
the single-machine experiments in Fig. 8. This is because, as
explained above, in the presence of distributed transactions,
the head of theTxnQueuemay stall waiting for remotemes-
sages, and SCA’s ability to find other transactions to work on
while the head of the queue is stalled is extremely important.

As contention increases, the throughput difference betwe-
en VLL/SCA and the per-core lock manager becomes
smaller, and under very high contention, the per-core lock
manager eventually slightly outperforms VLL/SCA. This
inflection point exemplifies the conditions under which the
benefits of fully tracking contention data at all times out-
weighs the costs of maintaining standard lock queues. To the
right of this point, information contained in the lockmanager
can be used to unblock transactions much more quickly than
VLL—and this advantage outweighs the additional locking
costs.

H-Store is unaffected by contention, since it processes
transactions serially.

3.3.2 Partition-per-machine experiments

Figure 11 shows the results of our partition-per-machine
experiments. As described in Sect. 3.1.1, we experiment with
four systems: (1) a traditional System-R* design for a dis-
tributed database system that uses two-phase locking (with
distributed deadlock detection and resolution) for concur-
rency control, and two-phase commit for committing dis-
tributed transactions—we call this system “2PL + 2PC”; (2)
an identical version of the System-R* implementation with
the traditional hash-based lock manager replaced with VLL
(and the SCA optimization)—we call this “Nondeterminis-
tic VLL with SCA + 2PC”; (3) an implementation of Calvin

that uses determinism to avoid deadlock and 2PC for dis-
tributed transactions—we call this “Deterministic Locking
(Calvin)”; and (4) an identical version of Calvin with its tra-
ditional hash-based lock manager replaced with VLL (with
the SCA optimization)—which we call “Deterministic VLL
with SCA”.

When comparing the nondeterministic System-R* design
systems (“2PL + 2PC” vs. “Nondeterministic VLL with
SCA + 2PC”), it is clear that VLL provides a greater ben-
efit for “short” transactions than “long” transactions. This
is because, as explained above, “short” transactions spend a
greater percentage of transaction time acquiring and releas-
ing locks, so reducing theoverheadof the lockmanager yields
greater benefits for “short” transactions. This difference is
only visible at low contention and low percentage of dis-
tributed transactions. At high contention, both nondetermin-
istic systems have problems with distributed deadlock and
perform similarly poorly. At high percentage of distributed
transactions, both systems are limited by 2PC and costs of
generating and processing network messages, and again the
locking overhead is less of a bottleneck.

When comparing the deterministic systems to each other
(“DeterministicLocking (Calvin)” vs. “DeterministicVLL”),
the benefit of VLL is much greater for “short” transactions.
This is because Calvin devotes an entire core to lock man-
agement and serializes lock acquisitions within one thread
running on this core (to ensure the deterministic guarantees).
For short transactions, the worker threads running on the
other cores overwhelm the lock manager thread with lock
requests, and this thread is unable to keep up with demand,
becoming a massive bottleneck. Therefore, Calvin is almost
totally unaffected by the percentage of distributed transac-
tions in Fig. 11a—the lock manager is the bottleneck. By
eliminating this bottleneck, VLL results in up to a factor of
2.3 performance improvement. However, for long transac-
tions, the lockmanager thread in Calvin is never a bottleneck.
Therefore, the performance of Calvin and VLL is identical
for “long” transactions (although the core running the lock
manager thread is significantly under-utilized for the VLL
implementation).

At high-contention and high-percentage ofmulti-partition
transactions, the performance of “Deterministic Locking
(Calvin)” and “Deterministic VLL” become more similar,
since throughput is limited by contention on data instead of
lock manager overhead.

Although this paper does not focus on comparing deter-
ministic andnondeterministic database systems, it is nonethe-
less interesting to note that the deterministic systems gen-
erally perform better than the nondeterministic systems—
especially when there are large numbers of distributed trans-
actions, since the deterministic systems avoid two-phase
commit and distributed deadlock. One exception to this rule
is for short transactions at low contention, where Calvin is
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(a) “Short” transactions under low contention.
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(b) “Short” transactions under high contention.
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(c) “Long” transactions under low contention.
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(d) “Long” transactions under high contention.

Fig. 11 Microbenchmark throughput of partition-per-machine systems, varying how many transactions span multiple partitions

significantly outperformed by traditional 2PL + 2PC because
of its bottleneck in the lock manager. However, VLL com-
pletely removes this bottleneck and enables Calvin to outper-
form the nondeterministic system at almost every data point.
Although VLL is a very good fit for Calvin’s deterministic
locking scheme, it clearly improves performance of nonde-
terministic designs as well. Even at high contention levels,
VLL is not outperformed by the traditional hash-based lock
management schemes due to the SCA optimization.

3.3.3 TPC-C experiments

Although our microbenchmark allowed us to carefully vary
the length, complexity, contention, and amount of multi-
partition transactions in a transaction processing workload,
we now present results on the better-known TPC-C bench-
mark. We keep the length, complexity, and contention levels
identical to the TPC-C benchmark specifications, but vary
the percentage ofmulti-partition transactions from0 to 100%
(the TPC-C specification is for 10% of transactions to access

remote warehouses, and not every remote warehouse is in a
different partition, so in practice, the actual percentage of
distributed transactions in TPC-C is less than 10%).

Just like themicrobenchmark experiments, we experiment
with partition-per-core and partition-per-machine systems.
The partition-per-core systems partition the TPC-C data
across 40 10-warehouse partitions (each machine contains
five partitions, and each partition has 10 warehouses), while
partition-per-machine systems partitioned the data across
eight 20-warehouse partitions (20 warehouses per machine).
The average contention index for the partition-per-core setup
is approximately 0.02, and for the partition-per-machine
setup is approximately 0.01.

Figure 12a shows the throughput results for the partition-
per-core systems. At first glance, the shape and relative per-
formance of each implementation in this figure is very sim-
ilar to the same implementations in Fig. 9d. This is because
TPC-C transactions are similar in terms of length to the
“long” transactions of our microbenchmark (TPC-C New
Order transactions are slightly longer), and similar in terms
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(a) Throughput of “partition-per-core” systems
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Fig. 12 TPC-C experiments

of contention index to the .01 contention index used in
Fig. 9d. Therefore, the results (and analysis) are similar to
“long”, high-contention microbenchmark.

There are two important results to reiterate. First, the
SCA optimization improves performance relative to regu-
lar VLL by 40–145% when there are many multi-partition
transactions. This is because, as described in Sect. 3.3.1,
SCA finds other transactions to unblock when the head of
the TxnQueue is stalled, waiting for a remote message, and
this function is critical when there are many multi-partition
transactions in the workload.

Second, since TPC-C transactions are slightly longer than
“long” microbenchmark transactions, the performance of
VLL (with SCA) and the per-core lock manager implemen-
tation (which uses a traditional hash table lock manager) are
closer to each other in Fig. 12a than in Fig. 9d. In general,
when contention is high and there are many distributed trans-
actions, the lock manager is not a bottleneck (for the reasons
discussed in Sect. 3.3.1). Therefore, switching from a hash-
based lock manager to VLL does not lead to large improve-
ment in throughput (andwithout the SCAoptimization, leads
to a large decrease in throughput).

However, one should not conclude from these results
that VLL is not beneficial for TPC-C. As mentioned above,
the actual TPC-C specification for percentage of distributed
transactions is less than 10%. At that point in Fig. 12a, VLL
(with SCA) outperforms the hash-based locking scheme by
8%.

Figure 12b shows the throughput results for the partition-
per-machine systems. Once again, the shape and relative
performance of the implementations in this figure is simi-
lar to the “long”, high-contention microbenchmark (in this
case, Fig. 11d for the partition-per-machine microbench-
mark). One difference between TPC-C and the microbench-

mark experiment is that the throughput drops less signifi-
cantly as the percentage of distributed transactions increases.
This is because in our microbenchmarks, each distributed
transaction touches one “hot” key per partition, whereas
in TPC-C, each distributed transaction in TPC-C touches
one “hot” key total (not per partition). Therefore, with
more distributed transactions, the contention index actually
decreases.

When there are no distributed transactions, the 2PL +
2PC implementation (the System-R*-design) outperforms
the deterministic systems. This is because, as mentioned
above, TPC-C transactions are comparable to the “long”
transactions of our microbenchmark, which, as described
in Sect. 3.3.2, leads to a relatively small number of lock
requests per second, and thus reduced work for the lock
acquisition thread. Therefore, the deterministic design of
devoting an entire core to lock acquisition (see Sect. 3.3.2) is
costly—this core is significantly under-utilized, and poten-
tial CPU resources are therefore wasted. In contrast, the
2PL + 2PC implementation is able to fully utilize all CPU
resources. However, as there are more distributed transac-
tions, the disadvantages of the System-R* design around
2PC and distributed deadlock present themselves, and the
deterministic systems begin to outperform the 2PL + 2PC
system.

3.3.4 Scalability experiments

Figure 13 shows the results of an experiment in which
we test the scalability of the different schemes when there
are 20% multi-partition transactions. We scale from two
to 48 machines in the cluster. We used the microbench-
mark with “long” transactions under both low contention
and high contention. We experimented with both partition-
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(b) Scalability per-node throughput.

Fig. 13 Scalability experiments (both partition-per-machine and partition-per-core systems are included)

per-core and partition-per-machine systems; in particular,
we experimented with the H-Store and per-core VLL (with
SCA) schemes from the partition-per-core systems, and with
the 2PL + 2PC and Calvin schemes from the partition-per-
machine systems.

Figure 13a shows total throughputmeasurements, andFig.
13b shows per-node throughput measurements. These fig-
ures show that VLL is able to achieve similar linear scalabil-
ity as Calvin and is therefore able to maintain (and extend)
its performance advantage at scale. However, both the VLL
and Calvin schemes did not achieve perfect linear scalability
under high contention. This is because both systems experi-
enced increased execution progress skew with an increased
number ofmachines. Eachmachine occasionally falls behind
briefly in execution due to random variation in workloads,
randomfluctuations in RPC latency, etc., slowing down other
machines; the more machines there are, the more likely that
at least one machine is experiencing this at any time. Under
higher contention and with more distributed transactions, the
more sensitivity there is to other machines falling behind and
being slow to serve those reads, so the effects of execution
progress skewaremorepronounced in these scenarios, result-
ing in performance degradation as more machines are added.

The 2PL + 2PC scheme scales as gracefully as the VLL
and Calvin schemes under low contention. However, per-
formance degrades more steeply under high contention. In
addition to being affected by execution progress skew, the
2PL + 2PC scheme was vulnerable to an increase in distrib-
uted deadlocks with increasing contention. These deadlocks
further increase the contention and significantly degrade the
scalability of the system.

H-Store also scales poorly, since all distributed transac-
tions need to be executed serially.

3.4 VLLR evaluation

In this section, we evaluate the performance VLLR (as
described in Sect. 2.7), with and without SCA. We first com-
pare VLLR to traditional mechanisms for locking ranges.
Then, we compare VLLR to the basic VLL algorithm that
requests one lock per element in the range.

3.4.1 VLLR versus traditional mechanisms for locking
ranges

This section compares VLLR against two traditional mecha-
nisms for locking ranges.Our first baseline (“StandardRange
Lock Manager”) explicitly maps key ranges to lock request
queues—fragmenting ranges when needed if new ranges are
inserted that partially overlap existing ranges. Since this tech-
nique requires ranges to be sorted, the underlying data struc-
ture uses a std::map (which internally implements a red-
black tree). Our second baseline (“Hierarchical Lock Man-
ager”) is a hash table-based lock manager that also does the
same bitwise-prefix hierarchical locking as VLLR, acquiring
intention locks for each nonempty prefix of each element of
P .

To compare the performance and contention character-
istics of these techniques in isolation of other factors,7 we
implemented a single-machine, single-threaded benchmark
in which each transaction locked a single range—and then
imposed artificial waits on a varying fraction of transactions

7 For example, distributed deadlock detection mechanisms differ for
Standard Range Locking than for the other mechanisms, because par-
tially overlapping ranges must be split, so the number of lock queues
that a transaction’s requests are in may increase over time without the
transaction requesting new locks.
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(a) 100-microsecond “distributed transaction” de-
lays, low contention.
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(b) 100-microsecond “distributed transaction” de-
lays, high contention.
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(c) 500-microsecond “distributed transaction” de-
lays, low contention.
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(d) 500-microsecond “distributed transaction” de-
lays, high contention.

Fig. 14 Range locking throughput with different artificial delays for distributed transactions

to simulate remote reads. Tovary contention,we chose ranges
whose start and end points, when represented as bitstrings,
had shared prefixes of varying length. We chose two scenar-
ios: a low-contention scenario in which the start and limit
of each range shared a prefix of on average 15 bits, and a
high-contention scenario in which the start and limit of each
range shared a prefix of on average 6 bits. For VLLR and the
Hierarchical Lock Manager, we translated each key range to
a singleton prefix set consisting of only the longest shared
prefix between the start and limit. As a result, the Standard
Range Lock Manager observed contention rates of 0.0001
and 0.0125, respectively, while VLLR and the Hierarchi-
cal Lock Manager observed significantly higher contention
rates: 0.0002 and 0.0178. However, under high contention,
VLLR and the Hierarchical Lock Manager required signif-
icantly fewer intention locks, which resulted in lower CPU
overhead. Figure 14 shows ourmeasured results with 100-ms
(Fig. 14a, b) and 500-ms (Fig. 14c, d) delays, and with low
(Fig. 14a, c) and high (Fig. 14b, d) contention.

Before comparing VLLR to the other schemes, we exam-
ine VLLR with and without SCA. Under high contention,
SCA proves similarly critical to VLLR as to VLL; it costs
little and VLLR’s throughput drops significantly without it
when there are distributed transaction delays. As with VLL,
VLLR benefits little from SCA when transaction stalls are
short or infrequent.

The Standard Range Lock Manager incurred higher CPU
overhead than VLLR due to red-black tree operations and
range splitting, but its performance declined more gracefully
when distributed transaction delays were simulated because
it experienced lower contention than the prefix-based VLLR
implementation (recall that it locks exact key ranges rather
than prefixes that represent conservative estimates of key
ranges).

The Hierarchical Lock Manager, on the other hand,
incurred very high CPU overhead when enqueuing and
dequeuing requests for many, many intention locks, signifi-
cantly limiting throughput. This CPU cost is so severe that it
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(a) Short Transactions.
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(b) Longer Transactions.

Fig. 15 VLLR versus basic VLL algorithm

remains the sole throughput bottleneck in Figs. 14a–c, even
when 100% of transactions incur delays during execution.
Only under high contentionand frequent long delays (exactly
when theStandardRangeLockManager outperformsVLLR,
illustrating extreme contention costs) is throughput limited
by contention.

3.4.2 VLLR versus basic VLL algorithm

We now examine the performance of VLLR versus the per-
formance of the basic VLL algorithm that implements range
locks by simply acquiring locks on all records inside the
range. In this experiment, we use the same VLLR implemen-
tation and experimental transaction from Sect. 3.4.1, with
100% single-partition transactions. The bitstring size we use
in this experiment is 16, andwevary the longest commonpre-
fix of the bitstring range from 16 to 7. For example, if the
shared prefix is 11, then the five least-significant bits are not
shared, which enables 25 = 32 unique values within that
range. Since the average range is half of the total possible
range size, the average size range for a shared prefix of 11
bits is 16 records. Therefore, by varying the longest common
prefix of the bitstring range from 16 to 7, we are in effect
experimenting with ranges of average size between 1 and
256 records.

Figure 15a shows the results of our experiment for short
transactions and Fig. 15b shows the results for long transac-
tions.When ranges are short, basic VLL outperforms VLLR.
This is because VLL only has to lock a few records in the
range, while VLLR has to acquire all the hierarchical prefix
locks. In other words, VLLRmust performmore overall lock
acquisitions than VLL. However, when the range gets larger,
VLL must acquire more individual record locks, and thus its

performance degrades with larger ranges. In contrast, VLLR
actually has to acquire fewer locks as the range size increases,
since longer ranges result in shorter shared prefixes, and thus
fewer hierarchical prefix locks that VLLR needs to acquire.
For shorter transactions, the cost of the additional locks that
VLLmust acquire is a larger relative percentage of the trans-
action costs, and thus the difference betweenVLL andVLLR
for short transactions with large ranges is more pronounced.

In summary, when the ranges are short, especially in the
extreme case of a range of size one (i.e., a “point” access),
basic VLL performs well. However, VLLR results in signif-
icantly larger throughput for longer range accesses.

3.5 CPU costs

The above experiments show the performance of the differ-
ent locking schemes by measuring total throughput under
different conditions. These results reflect both (a) the CPU
overhead of each scheme, and (b) the amount of concurrency
achieved by the system.

In order to tease apart these two components of perfor-
mance, wemeasured the CPU cost per transaction of request-
ing and releasing locks for each locking scheme.These exper-
iments were not run in the context of a fully loaded system—
rather, we measured the CPU cost of each mechanism in
complete isolation.

Figure 16 shows the results of our isolated CPU cost eval-
uation, which demonstrates the reduced CPU costs that VLL
achieves by eliminating the lock manager. We find that the
Calvin and 2PL schemes (which both use traditional lock
managers) have an order of magnitude higher CPU cost than
the VLL schemes. The CPU cost of multi-threaded VLL is
a little larger than the cost of single-threaded VLL, since
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per-transaction
locking mechanism CPU cost (µs)
Traditional 2PL 21.07
Deterministic Calvin 20.18
Multi-threaded VLL 1.83
Single-threaded VLL 0.69

Fig. 16 Locking overhead per transaction

multi-threaded VLL has the additional cost of acquiring and
releasing a latch around the acquisition of locks.

4 Related work

The System-R lockmanager described in [9] is the lockman-
ager design that has been adopted by most database systems
[13]. In order to reduce the cost of locking, there have been
several published methods for reducing the number of lock
calls [17,24,28].While these schemesmay partially mitigate
the cost of locking in main memory systems, but they do not
address the root cause of high lock manager overhead—the
size and complexity of the data structure used to store lock
requests.

Kimura et al. [20] presented a Lightweight Intent Lock
(LIL), which maintains a set of lightweight counters in a
global lock table. However, this proposal doesn’t colocate
the counters with the raw data (to improve cache locality),
and if the transaction doesn’t acquire all of its locks imme-
diately, the thread blocks, waiting to receive a message from
another released transaction thread. VLL differs from this
approach in using the global transaction order to figure out
which transaction should be unlocked and allowed to run as
a consequence of the most recent lock release.

The idea of colocating a record’s lock state with the record
itself in main memory databases was proposed almost two
decades ago [8,25]. However, this proposal involved main-
taining a linked list of “Lock Request Blocks” (LCBs) for
each record, significantly complicating the underlying data
structures used to store records, whereas VLL aims to sim-
plify lock tracking structures by compressing all per-record
lock state into a simple pair of integers.

There has been a lot of effort in improving the implemen-
tation of the lock manager in database systems. Horikawa
[38], Shore-MT [15], and Jung et al. [18] all improve mul-
ticore scalability by carefully optimizing the lock manager,
removing latching and critical sections wherever possible.
However, these systems all keep the basic two-phase lock-
ing design and improve performance by removing bottle-
necks in the lock manager. This differs from our design that
moves the lock data structures outside of the lock manager
and fundamentally changes what (and how) lock information
is tracked. DORA [29] partitions the lock manager across
cores on a multicore machine, which eliminates long chains

of lock waits on a centralized lock manager and increases
cache affinity. However, it doesn’t change the fundamental
hash-based lock manager data structure.

Given the high overhead of the lock manager when
a database is entirely in main memory [12,14,22], some
researchers observe that executing transactions serially that
without concurrency control can buy significant throughput
improvement in main memory database systems [16,19,33,
40]. Such an approach works well only when the workload
can be partitioned across cores, with very fewmulti-partition
transactions. VLL enjoys some of the advantages of reduced
locking overhead, while still performing well for a much
larger variety of workloads.

Other attempts to avoid locks in main memory data-
base systems include optimistic concurrency control schemes
and multi-version concurrency control schemes [1,3,5,21,
22,39], and some industry products also use the these con-
currency control schemes, for example, HANA uses MVCC
[23],Hekaton uses optimisticMVCC[6], andGoogle F1 uses
OCC (in addition to some pessimistic locking) [31]. While
these schemes eliminate locking overhead, they introduce
other sources of overhead. In particular, optimistic schemes
can cause overhead due to aborted transactionswhen the opti-
mistic assumption fails (in addition to data access tracking
overhead), andmulti-version schemes use additional (expen-
sive) memory resources to store multiple copies of data.

Key range locking, as pioneered by Lomet [26], has been
shown to be useful in workloads that frequently operate on
many consecutive rows within the same transaction. While
not all database systems have implemented key range lock-
ing, some of them, such as Spanner [7], use the range locking
technique exclusively.

5 Conclusion and future work

We have presented VLL, a protocol for main memory data-
base systems that avoid the costs of maintaining the data
structures kept by traditional lock managers, and therefore
yields higher transactional throughput than traditional imple-
mentations. VLL colocates lock information (two simple
semaphores) with the raw data, and forces all locks to be
acquired by a transaction at once. Although the reduced lock
information can complicate answering the question of when
to allow blocked transactions to acquire locks and proceed,
SCA allows transactional dependency information to be cre-
ated as needed (and only as much information as is needed
to unblock transactions). This optimization allows our VLL
protocol to achieve high concurrency in transaction execu-
tion, even under high contention.

We showed how VLL can be implemented in traditional
singer-server multi-core database systems and also in deter-
ministic multi-server database systems. The experiments we
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presented demonstrate that VLL can outperform standard
two-phase locking, deterministic locking, and H-Store style
serial execution schemes significantly—without inhibiting
scalability or interfering with other components of the data-
base system. Furthermore, VLL is highly compatible with
both standard (nondeterministic) approaches to transaction
processing and deterministic database systems like Calvin.

We also showed that VLL can be easily extended to sup-
port range locking by adding two extra counters and a prefix
locking algorithm, and we call this technique VLLR. Experi-
ments demonstrate that VLLR outperforms other alternative
range locking approaches.

Our focus in this paper was on database systems that
update data in place. In future work, we intend to investigate
multi-versioned variants of the VLL protocol and integrate
hierarchical locking approaches into VLL.

Acknowledgments Wewould like to thank the anonymous reviewers
for their detailed and insightful comments. This work was sponsored
by the NSF under grants IIS-0845643 and IIS-1249722, and by a Sloan
Research Fellowship.

References

1. Agrawal, D., Sengupta, S.:Modular synchronization in distributed,
multiversion databases: version control and concurrency control.
IEEE TKDE 5, 126–137 (1993)

2. Agrawal, R., Livny, M.J.C.M.: Concurrency control performance
modeling: alternatives and implications. ACM Trans. Database
Syst. 12, 609–654 (1987)

3. Mahmoud, H.A., Arora, V., Nawab, F., Agrawal, D., Abbadi, A.E.:
Maat: effective and scalable coordination of distributed transac-
tions in the cloud. In: Proceedings of PVLDB, vol. 7, no. 5, (2014)

4. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. 13(2), 185–221 (1981)

5. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, Reading
(1987)

6. Diaconu, C., Freedman, C., Ismert, E., ke Larson, P., Mittal, P.,
Stonecipher, R., Verma, N., Zwilling, M.: Hekaton: Sql server’s
memory-optimized oltp engine. In: SIGMOD (2013)

7. Corbett, J.C., et al.: Spanner: Googles globally-distributed data-
base. In: Proceedings of OSDI 2012 (2012)

8. Gottemukkala, V., Lehman, T.: Locking and latching in a memory-
resident database system. In: VLDB (1992)

9. Gray, J.: Notes onDatabase Operating Systems. Operating System,
An Advanced Course. Springer, Berlin (1979)

10. Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.L.: Granularity
of locks and degrees of consistency in a shared database. In: Pro-
ceedings of IFIP Working Conference on Modelling of Database
Management Systems (1975)

11. Gray, J., Reuter.: Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, New York (1993)

12. Harizopoulos, S., Abadi, D.J., Madden, S.R., Stonebraker, M.:
OLTP through the looking glass, and what we found there. In:
SIGMOD (2008)

13. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a
database system. Found. Trends Databases 1(2), 141–259 (2007)

14. Johnson, R., Pandis, I., Ailamaki, A.: Improving oltp scalability
using speculative lock inheritance. PVLDB 2(1), 479–489 (2009)

15. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.:
Shore-mt:a scalable storage manager for the multicore era. In: Pro-
ceedings of EDBT (2009)

16. Jones, E.P.C., Abadi, D.J., Madden, S.R.: Concurrency control for
partitioned databases. In: SIGMOD (2010)

17. Joshi, A.: Adaptive locking strategies in a multi-node data sharing
environment. In: VLDB (1991)

18. Jung, H., Han, H., Fekete, A.D., Heiser, G., Yeom, H.Y.: A scalable
lock manager for multicores. In: Proceedings of SIGMOD (2013)

19. Kemper, A., Neumann, T., Finis, J., Funke, F., Leis, V., Muhe, H.,
Muhlbauer, T., Rodiger, W.: Transaction processing in the hybrid
OLTP/OLAP main-memory database system hyper. IEEE Data
Eng. Bull. 36(2), 41–47 (2013)

20. Kimura, H., Graefe, G., Kuno, H.: Efficient locking techniques
for databases on modern hardware. In: Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage
Architectures (2012)

21. Kung, H.T., Robinson, J.T.: On optimisticmethods for concurrency
control. TODS 6(2), 213–226 (1981)

22. Larson, P., Blanas, S., Diaconu, C., Freedman, C., Patel, J., Zwill-
ing, M.: High-performance concurrency control mechanisms for
main-memory database. In: PVLDB (2011)

23. Lee, J., Muehle, M., May, N., Faerber, F., Sikka1, V., Plattner, H.,
Krueger, J., Grund, M.: High-performance transaction processing
in sap hana. IEEE Data Eng. Bull. 36(2), 28–33 (2013)

24. Lehman, T.: Design and performance evaluation of a mainmemory
relational database system. Ph.D. thesis, University of Wisconsin-
Madison (1986)

25. Lehman, T.J., Gottemukkala, V.: The Design and Performance
Evaluation of a Lock Manager for a Memory-Resident Database
System. Performance of ConcurrencyControlMechanisms in Cen-
tralised Database System. Addison-Wesley, Reading (1996)

26. Lomet, D.: Key range locking strategies for improved concurrency.
In: Proceedings of VLDB (1993)

27. Mohan, C., Lindsay, B.G., Obermarck, R.: Transaction manage-
ment in the r* distributed database management system. ACM
Trans. Database Syst. 11(4), 378–396 (1986)

28. Mohan, C., Narang, I.: Recovery and coherency-control protocols
for fast inter-system page transfer and fine-granularity locking in
shared disks transaction environment. In: VLDB (1991)

29. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-
oriented transaction execution. PVLDB 3(1), 928–939 (2010)

30. Ren, K., Thomson, A., Abadi, D.J.: Lightweight locking for main
memory database systems. In: PVLDB (2013)

31. Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, C.,
Rollins, E., Oancea, M., Littleeld, K., Menestrina, D., Ellner, S.,
Cieslewicz, J., Rae, I., Stancescu, T., Apte, H.: F1: a distributed sql
database that scales. In: VLDB (2013)

32. Stonebraker, M.: Concurrency control and consistency of multiple
copies of data in distributed ingres. IEEE Trans. Softw. Eng. SE-5,
188–194 (1979)

33. Stonebraker, M., Madden, S.R., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era (it’s time
for a complete rewrite). In: VLDB, Vienna, Austria (2007)

34. Thomasian, A.: Two-phase locking performance and its thrashing
behavior. TODS 18(4), 579–625 (1993)

35. Thomson, A., Abadi, D.J.: The case for determinism in database
systems. In: VLDB (2010)

36. Thomson, A., Abadi, D.J.: Modularity and scalability in calvin.
IEEE Data Eng. Bull. 36(2), 48–55 (2013)

37. Thomson, A., Diamond, T., Shao, P., Ren, K., Weng, S.-C., Abadi,
D.J.: Calvin: Fast distributed transactions for partitioned database
systems. In: SIGMOD (2012)

38. Horikawa, T.: Latch-free data structures for dbms: design, imple-
mentation, and evaluation. In: Proceedings of SIGMOD (2013)

123



VLL: a lock manager redesign 705

39. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy
transactions in multicore in-memory databases. In: Proceedings of
SOSP, SOSP ’13, pp. 18–32 (2013)

40. Whitney, A., Shasha, D., Apter, S.: High volume transaction
processing without concurrency control, two phase commit, SQL
or C++. In: HPTS (1997)

123


	VLL: a lock manager redesign for main memory database systems
	Abstract 
	1 Introduction
	2 Very lightweight locking
	2.1 The VLL algorithm
	2.2 Arrayed VLL
	2.3 Single-threaded VLL
	2.4 Impediments to acquiring all locks at once
	2.5 Trade-offs of VLL
	2.6 Selective contention analysis (SCA)
	2.7 Very lightweight locking of ranges (VLLR)

	3 Experimental evaluation
	3.1 Experimental setup
	3.1.1 Compared systems
	3.1.2 Benchmarks

	3.2 Multi-core, single-server experiments
	3.3 Distributed database experiments
	3.3.1 Partition-per-core experiments
	3.3.2 Partition-per-machine experiments
	3.3.3 TPC-C experiments
	3.3.4 Scalability experiments

	3.4 VLLR evaluation
	3.4.1 VLLR versus traditional mechanisms for locking ranges
	3.4.2 VLLR versus basic VLL algorithm

	3.5 CPU costs

	4 Related work
	5 Conclusion and future work
	Acknowledgments
	References




