
Quantum Information Processing in Continuous Time

by

Andrew MacGregor Childs

B.S. in Physics, California Institute of Technology, 2000

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Physics

16 April 2004

Certified by. .
Edward H. Farhi

Professor of Physics
Thesis Supervisor

Accepted by .
Thomas J. Greytak
Professor of Physics

Associate Department Head for Education

2

Quantum Information Processing in Continuous Time
by

Andrew MacGregor Childs

Submitted to the Department of Physics
on 16 April 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract

Quantum mechanical computers can solve certain problems asymptotically faster than any
classical computing device. Several fast quantum algorithms are known, but the nature
of quantum speedup is not well understood, and inventing new quantum algorithms seems
to be difficult. In this thesis, we explore two approaches to designing quantum algorithms
based on continuous-time Hamiltonian dynamics.

In quantum computation by adiabatic evolution, the computer is prepared in the known
ground state of a simple Hamiltonian, which is slowly modified so that its ground state
encodes the solution to a problem. We argue that this approach should be inherently robust
against low-temperature thermal noise and certain control errors, and we support this claim
using simulations. We then show that any adiabatic algorithm can be implemented in a
different way, using only a sequence of measurements of the Hamiltonian. We illustrate how
this approach can achieve quadratic speedup for the unstructured search problem.

We also demonstrate two examples of quantum speedup by quantum walk, a quantum
mechanical analog of random walk. First, we consider the problem of searching a region
of space for a marked item. Whereas a classical algorithm for this problem requires time
proportional to the number of items regardless of the geometry, we show that a simple
quantum walk algorithm can find the marked item quadratically faster for a lattice of
dimension greater than four, and almost quadratically faster for a four-dimensional lattice.
We also show that by endowing the walk with spin degrees of freedom, the critical dimension
can be lowered to two. Second, we construct an oracular problem that a quantum walk can
solve exponentially faster than any classical algorithm. This constitutes the only known
example of exponential quantum speedup not based on the quantum Fourier transform.

Finally, we consider bipartite Hamiltonians as a model of quantum channels and study
their ability to process information given perfect local control. We show that any interaction
can simulate any other at a nonzero rate, and that tensor product Hamiltonians can simulate
each other reversibly. We also calculate the optimal asymptotic rate at which certain
Hamiltonians can generate entanglement.

Thesis Supervisor: Edward H. Farhi
Title: Professor of Physics

3

4

Acknowledgments

First and foremost, I would like to thank my advisor, Eddie Farhi, for invaluable advice
and support. Eddie has been a great teacher and friend. I have also been fortunate to
work with and learn from Jeffrey Goldstone and Sam Gutmann. I have enjoyed interacting
with many other quantum information colleagues at the Center for Theoretical Physics,
especially Wim van Dam, Enrico Deotto, Jason Eisenberg, and Andrew Landahl. And I
would also like to thank the members of the greater quantum information community at
MIT, especially Ken Brown, Ike Chuang, Aram Harrow, Bill Kaminsky, Seth Lloyd, and
Peter Shor. In particular, I would like to thank Aram Harrow for commenting on Chapter 6
of this thesis.

During my thesis research, I enjoyed extended visits to the University of Queensland
and the IBM T. J. Watson Research Center. I would like to thank many individuals at
those institutions: at UQ, Michael Nielsen, Mick Bremner, Chris Dawson, Jennifer Dodd,
Henry Haselgrove, Gerard Milburn, and Tobias Osborne; and at IBM, Nabil Amer, Charlie
Bennett, Igor Devetak, Debbie Leung, Anthony Ndirango, and John Smolin.

The work described in this thesis is the product of collaborations with many people
(as detailed in Section 0.4). I am grateful to Mick Bremner, Richard Cleve, Chris Dawson,
Enrico Deotto, Jennifer Dodd, Eddie Farhi, Jeffrey Goldstone, Sam Gutmann, John Preskill,
Andrew Landahl, Debbie Leung, Michael Nielsen, Daniel Spielman, Guifré Vidal, and Frank
Verstraete for their contributions to this work.

I would also like to thank the many members of the quantum information community,
in addition to those mentioned above, with whom I have had numerous illuminating discus-
sions. I would especially like to thank Scott Aaronson, Dorit Aharonov, Andris Ambainis,
Dave Bacon, Peter Høyer, Julia Kempe, Mike Mosca, Roman Orus, Jérémie Roland, Mario
Szegedy, John Watrous, and Ronald de Wolf.

I would like to thank my fellow graduate students at the Center for Theoretical Physics,
especially Michael Forbes, for four great years. I would also like to thank the staff of the
CTP, Joyce Berggren, Scott Morley, Marty Stock, and Charles Suggs, for their generous
help.

Finally, I would like to thank Sidney and Mom, Dad, and Ryan for their love and
support.

My graduate studies were supported by a Fannie and John Hertz Foundation Fellowship.
This work was also supported in part by the Cambridge–MIT Institute, by the Department
of Energy under cooperative research agreement DE-FC02-94ER40818, and by the National
Security Agency and Advanced Research and Development Activity under Army Research
Office contract DAAD19-01-1-0656.

5

6

Contents

0 Introduction 9
0.1 Quantum information processing . 9
0.2 Continuous time . 10
0.3 Quantum algorithms . 11
0.4 Summary of results . 12

1 Simulating Hamiltonian dynamics 15
1.1 Introduction . 15
1.2 Simulation rules . 16
1.3 Sparse Hamiltonians . 19
1.4 Simulating physical systems . 21
1.5 Time-independent local Hamiltonians are universal 23

2 Adiabatic quantum computation 25
2.1 Introduction . 25
2.2 Review of adiabatic quantum computation 26
2.3 An example: The exact cover problem . 28
2.4 Robustness . 29

2.4.1 Decoherence . 30
2.4.2 Unitary control error . 34
2.4.3 Discussion . 38

2.5 Search by measurement . 39
2.5.1 The measurement algorithm . 40
2.5.2 Running time . 42
2.5.3 The measurement process . 44
2.5.4 The unstructured search problem . 46
2.5.5 Eigenstates in the unstructured search problem 49
2.5.6 Discussion . 50

3 Quantum walk 51
3.1 Introduction . 51
3.2 From random walk to quantum walk . 52
3.3 Examples . 53

3.3.1 Quantum walk on a hypercube . 53
3.3.2 Quantum walk on a line . 54

3.4 Discrete-time quantum walk . 55
3.5 Discussion . 56

7

4 Spatial search by quantum walk 57
4.1 Introduction . 57
4.2 Quantum walk algorithm . 58
4.3 High dimensions . 59

4.3.1 Complete graph . 59
4.3.2 Hypercube . 60

4.4 Finite dimensions . 61
4.4.1 Preliminaries . 62
4.4.2 Phase transition . 67
4.4.3 Failure of the algorithm away from the critical point 68
4.4.4 The critical point in four dimensions and higher 71
4.4.5 The critical point below four dimensions 72

4.5 The Dirac equation and an improved algorithm in low dimensions 74
4.6 Simulation in the local unitary model . 79
4.7 Discussion . 80

5 Exponential speedup by quantum walk 83
5.1 Introduction . 83
5.2 Speedup over classical random walk . 84
5.3 Algorithmic speedup . 88

5.3.1 The problem . 88
5.3.2 Quantum walk algorithm . 91
5.3.3 Upper bound on the traversal time 93
5.3.4 Classical lower bound . 97

5.4 Discussion . 101

6 Bipartite Hamiltonians as quantum channels 103
6.1 Introduction . 103
6.2 Simulation rules . 105
6.3 Qualitative equivalence of all interaction Hamiltonians 108
6.4 Reversible simulation of product Hamiltonians 113
6.5 Entanglement capacity . 118
6.6 Discussion . 124

Bibliography 127

Index 139

8

Chapter 0

Introduction

0.1 Quantum information processing

The fact that our world is quantum mechanical enables technologies that could not exist
in an entirely classical world. In one sense, we are already surrounded by such wonders,
from the transistors that make up our computers to the superconducting magnets that drive
nuclear magnetic resonance imaging. But even these devices, while quantum mechanical
at base, still operate using an old-fashioned, classical notion of information. In fact, quan-
tum mechanics has the potential to revolutionize technology in a more fundamental way
through a uniquely quantum mechanical concept of what information is and how it can be
manipulated.

The notion of quantum information processing is an inevitable consequence of physical
law. As Landauer put it, information is physical [122]: since information is stored and pro-
cessed by physical systems, its basic properties must be consequences of physical principles.
But physics, as we know from decades of experiment, is fundamentally quantum mechani-
cal in nature. Therefore the notion of information, its representation and its manipulation,
should be founded on quantum mechanics.

The ultimate apparatus for processing quantum information is the universal quantum
computer, a quantum mechanical analog of the ubiquitous classical computer. The es-
sential idea of a quantum computer was suggested in the early 1980s by Manin [137] and
Feynman [84], who observed that an inherently quantum mechanical computer would be
well-suited to the simulation of quantum systems, a problem that seems to be hard for clas-
sical computers. The notion of a quantum computer as a universal computational device
was introduced in 1985 by Deutsch [63], who also gave the first example of a problem that
could be solved faster by a quantum computer than by a classical computer. Deutsch’s
work was followed by a steady sequence of advances (described in Section 0.3), culminating
in 1994 with Shor’s discovery of efficient quantum algorithms for factoring integers and
calculating discrete logarithms [165]. Since the security of most present-day cryptosystems
is based on the presumed difficulty of factoring, Shor’s algorithm demonstrates that the
construction of a quantum computer would have significant practical applications.

The universal quantum computer is an abstract device, and could potentially be real-
ized in wide variety of physical systems, just as classical computers can in principle be built
using, for example, transistors, vacuum tubes, biological molecules, or mechanical compo-
nents. Just a few of the proposed implementations of quantum computers include trapped
ions [51], quantum dots [135], nuclear spins [55, 92], and Josephson junctions [147]. All

9

of the current proposals for building quantum computers have their own advantages and
disadvantages, and it is presently not clear which proposals will ultimately yield workable
large-scale quantum computers, or if a fundamentally new idea is needed.

One of the problems that must be dealt with in any realistic implementation of a quan-
tum computer is the inevitable occurrence of errors. No system can be perfectly isolated
from its environment, and for quantum mechanical systems, such interactions will lead
to a loss of quantum coherence. Furthermore, unless a system can be controlled exactly,
simply performing computational operations will lead to errors. Fortunately, the concepts
of quantum error correction [166, 170] and fault-tolerant quantum computation [167] have
been introduced to cope with these problems. For the most part we will not address this
issue, assuming that fault-tolerant techniques can be used to build a quantum device with
essentially no errors. (One exception occurs in Section 2.4, where we consider a quantum
computational paradigm with a certain intrinsic robustness against faults.)

Of course, the applications of quantum information processing are not limited to com-
putation. There are many other kinds of tasks that can be performed better quantum
mechanically, or that are impossible without the use of quantum systems. For example,
relatively simple quantum devices can be used to securely distribute a secret key over long
distances [21], a task that is impossible classically. As another example, entanglement
between two separated quantum systems—a kind of uniquely quantum correlation with no
classical counterpart—can be used to perform a variety of information processing tasks, such
as increasing the rate at which classical information can be transmitted through a noiseless
quantum channel [30]. Examples such as these also demonstrate that the development of
quantum information processing technologies could have a significant impact.

This thesis is an exploration of the extent of the quantum information processing rev-
olution: what can we do with quantum mechanical systems that we could not do without
them? The presently known quantum algorithms show that quantum computers would
be useful special-purpose devices, but the full power of quantum computation is not well
understood. We approach this question by considering two recent approaches to quantum
algorithms, quantum computation by adiabatic evolution (Chapter 2) and quantum walks
on graphs (Chapters 3–5). We also explore some non-algorithmic information processing
applications in bipartite quantum systems (Chapter 6).

0.2 Continuous time

Most of the algorithms and other information processing protocols presented in this thesis
are described in terms of continuous time evolution. In quantum mechanics, states evolve
according to the Schrödinger equation, the linear, first-order differential equation

i~
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉 (0.1)

where ~ = 1.054× 10−34 J · s is Planck’s constant divided by 2π, |ψ(t)〉 is the state vector
at time t, and H(t) is a time-dependent Hermitian operator with units of energy, the
Hamiltonian. Throughout, we use units in which ~ = 1. If the Hamiltonian is in fact time-
independent, then the time evolution is simply given by |ψ(t)〉 = e−iHt|ψ(0)〉. Otherwise,
one must in general integrate (0.1) to determine the state at an arbitrary time.

Why do we consider continuous time evolution? Primarily, it is a matter of convenience.
In keeping with the idea that information is physical, we will try to discover quantum ad-

10

vantages by considering physical effects that lend themselves to quantum speedup. Physical
systems are naturally described by their Hamiltonians, and evolve continuously in time.

For the most part, the distinction between continuous and discrete is essentially seman-
tic. Continuous processes can be approximated by discrete ones, so we certainly do not
gain any computational power by considering continuous time evolution. However, certain
processes may be more naturally defined in terms of Hamiltonian dynamics. The most dra-
matic example of this will be seen in Chapter 3, where we discuss a quantum analog of the
classical notion of random walk. Whereas a continuous-time classical random walk can be
viewed as a limiting case of a discrete-time random walk, the same is not true in the quan-
tum case: continuous- and discrete-time quantum walks must be defined in fundamentally
different ways, as we will see.

0.3 Quantum algorithms

The bulk of this thesis is concerned with the problem of discovering new quantum algo-
rithms. Perhaps the most important open problem in the theory of quantum information
processing is to understand the nature of quantum mechanical speedup for the solution
of computational problems. What problems can be solved more rapidly using quantum
computers than is possible with classical computers, and what ones cannot? To take full
advantage of the power of quantum computers, we should try to find new problems that are
amenable to quantum speedup. More importantly, we should try to broaden the range of
available algorithmic techniques for quantum computers, which is presently quite limited.

The first examples of problems that can be solved faster with a quantum computer than
with a classical computer were oracular, or black-box, problems. In standard computational
problems, the input is simply a string of data such as an integer or the description of a graph.
In contrast, in the black box model, the computer is given access to a black box, or oracle,
that can be queried to acquire information about the problem. The goal is to find the
solution to the problem using as few queries to the oracle as possible. This model has the
advantage that proving lower bounds is tractable, which allows one to demonstrate provable
speedup over classical algorithms, or to show that a given quantum algorithm is the best
possible.

Deutsch’s pioneering example of quantum speedup was an oracular problem that can be
solved on a quantum computer using one query, but that requires two queries on a classical
computer [63]. Deutsch and Jozsa generalized this problem to one that can be solved
exactly on a quantum computer in polynomial time, but for which an exact solution on a
classical computer requires exponential time [65]. However, the Deutsch-Jozsa problem can
be solved with high probability in polynomial time using a probabilistic classical algorithm.
Bernstein and Vazirani gave the first example of a superpolynomial separation between
probabilistic classical and quantum computation [31], and Simon gave another example in
which the separation is exponential [168]. This sequence of examples of rather artificial
oracular problems led to Shor’s aforementioned discovery of efficient quantum algorithms
for the factoring and discrete log problems [165], two non-oracular computational problems
with practical applications, for which no polynomial-time classical algorithm is known.

Shor’s algorithm, like its predecessors, is based on the ability to efficiently implement
a quantum Fourier transform [54]. More recently, numerous generalizations and variations
of Shor’s algorithm have been discovered for solving both oracular and non-oracular prob-
lems with superpolynomial speedup [118, 149, 62, 100, 58, 97, 109, 181, 99]. All of these

11

algorithms are fundamentally based on quantum Fourier transforms.
A second tool used in quantum algorithms comes from Grover’s algorithm for unstruc-

tured search [98]. In the unstructured search problem, one is given black box access to a
list of N items, and must identify a particular marked item. Classically, this problem clearly
requires Ω(N) queries, but Grover showed that it could be solved on a quantum computer
using only O(

√
N) queries (which had previously been shown to be the best possible result

by Bennett, Bernstein, Brassard, and Vazirani [19]). This speedup is more modest than the
speedup of Shor’s algorithm—it is only quadratic rather than superpolynomial—but the
basic nature of unstructured search means that it can be applied to a wide variety of other
problems. Grover’s algorithm was subsequently generalized to the concept of amplitude
amplification [33], and many extensions and applications have been found [37, 38, 107, 71].

The Shor and Grover algorithms and their relatives will surely be useful if large-scale
quantum computers can be built. But they also raise the question of how broadly useful
quantum computers could be. It appears to be difficult to design quantum algorithms, so
it would be useful to have more algorithmic techniques to draw from, beyond the quan-
tum Fourier transform and amplitude amplification. Here we investigate two such ideas,
quantum computation by adiabatic evolution and quantum walks on graphs. Both are
naturally described in terms of Hamiltonian dynamics. Adiabatic quantum computation,
discussed in Chapter 2, works by keeping the quantum computer near the ground state of
a slowly time-varying Hamiltonian. It can be used to approach a wide variety of combina-
torial search problems, although its performance is typically difficult to analyze. Quantum
walks on graphs, introduced in Chapter 3, are quantum analogs of Markov chains, which
are extensively used in classical algorithms. Using quantum walks, we give two examples of
algorithmic speedup: a quadratic speedup for a spatial version of the unstructured search
problem in Chapter 4, and an exponential speedup for a carefully constructed oracular
problem in Chapter 5.

0.4 Summary of results

This section summarizes the original results described in this thesis. Most of these results
have previously appeared in published articles, as indicated.

In Chapter 1, we discuss the simulation of Hamiltonian dynamics on a universal quantum
computer. After presenting some standard techniques for Hamiltonian simulation, we prove
that any sufficiently sparse Hamiltonian can be efficiently simulated. This idea follows
from results of [40] (joint work with Richard Cleve, Enrico Deotto, Edward Farhi, Sam
Gutmann, and Daniel Spielman) together with classical results on graph coloring, and was
also presented in [6].

In Chapter 2, we consider the idea of quantum computation by adiabatic evolution,
a general approach to combinatorial search with a quantum computer. In Section 2.4, we
argue that adiabatic quantum computation should be inherently robust against certain kinds
of errors, and we investigate this claim through numerical simulations [45] (joint work with
Edward Farhi and John Preskill). In Section 2.5, we show that a variant of the adiabatic
algorithm can be implemented using only a sequence of measurements, which can be realized
dynamically by Hamiltonian evolution. We also show that this measurement algorithm can
solve the unstructured search problem in a similar way to Grover’s algorithm [41] (joint
work with Enrico Deotto, Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Andrew
Landahl).

12

In Chapter 3, we describe the continuous-time quantum walk, a quantum analog of the
classical continuous-time random walk. We present some basic examples and review some
related work.

In Chapter 4, we apply quantum walk to the problem of locally searching a d-dimensional
space for a single marked item. We show in Section 4.4 that the simplest approach finds
the marked item in time O(

√
N) for d > d∗ and in time O(

√
N logN) for d = d∗, where the

critical dimension is d∗ = 4 [46] (joint work with Jeffrey Goldstone). In Section 4.5, we show
that by adding a spin degree of freedom, the critical dimension can be lowered to d∗ = 2 [47]
(joint work with Jeffrey Goldstone). In Section 4.6, we describe how such algorithms can
be implemented with the same run times in a model of local unitary transformations.

In Chapter 5, we explain how quantum walk can be used to achieve exponential speedup
over classical processes. We begin in Section 5.2 with a simple example of a graph on
which a quantum walk propagates between two designated vertices exponentially faster
than the corresponding classical random walk [44] (joint work with Edward Farhi and Sam
Gutmann). Then, in Section 5.3, we modify this example to construct an oracular problem
that can be solved exponentially faster by quantum walk than by any classical algorithm [40]
(joint work with Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel
Spielman). This algorithm constitutes the only known example of exponential quantum
speedup that is not based on the quantum Fourier transform.

Finally, in Chapter 6, we consider a bipartite Hamiltonian as a model of a quantum
channel connecting two parties. In Section 6.3, we show that all nontrivial interactions
can simulate each other at a nonzero rate [152] (joint work with Michael Nielsen, Michael
Bremner, Jennifer Dodd, and Christopher Dawson). In Section 6.4, we show that further-
more, all tensor product Hamiltonians can simulate each other reversibly, i.e., with no loss
of efficiency [50] (joint work with Debbie Leung and Guifré Vidal). Finally, in Section 6.5,
we study the rate at which bipartite Hamiltonians can generate entanglement between the
two parties. We compute the maximum possible rate for the Ising interaction [49] (joint
work with Debbie Leung, Guifré Vidal, and Frank Verstraete), and consequently, for any
product Hamiltonian.

13

14

Chapter 1

Simulating Hamiltonian dynamics

1.1 Introduction

In subsequent chapters, we present quantum algorithms defined in terms of continuous-time
quantum dynamics according to the Schrödinger equation (0.1) with some specified Hamil-
tonian H(t). But before doing so, we must pause to consider what Hamiltonians correspond
to allowed computations. Surely not just any Hamiltonian can be allowed, since there are
perfectly well-defined Hamiltonians that quickly produce solutions to uncomputable prob-
lems, not to mention intractable ones.

One reasonable definition of the set of allowed Hamiltonians is to allow any Hamiltonian
that can be “easily” constructed as the Hamiltonian of an actual physical system. Such a
definition is not entirely desirable since the details of what constitutes an easily constructible
Hamiltonian will vary depending on the particular apparatus used. Nevertheless, this idea
might naturally lead to a definition along the following lines. Suppose we consider a quantum
system consisting of n two-level atoms. Then we might allow Hamiltonians of the form

H =
∑
j

Hj (1.1)

where each term Hj acts on a small number of atoms (e.g., no more than some constant
number, independent of n). In addition, we might impose certain locality constraints, such
as only allowing a coupling between atoms that are nearest neighbors in a two-dimensional
or three-dimensional array.

Although such a definition may be reasonable, we will find it more convenient to use
an equivalent definition expressed in terms of the quantum circuit model introduced by
Deutsch [64]. In the quantum circuit model, the computer again consists of n two-level
quantum systems (or qubits). The qubits are acted on by a sequence of unitary transforma-
tions acting on at most two qubits at a time [67]. Finally, the result of the computation is
determined by measuring the qubits in the standard basis {|0〉, |1〉}⊗n, known as the compu-
tational basis. The quantum circuit model is universal in the sense that any unitary operator
acting on the 2n-dimensional Hilbert space of the n qubits can be realized to arbitrary pre-
cision by some (not necessarily short) sequence of two-qubit unitary transformations. In
fact, the model can be universal even if the unitary transformations are chosen from a finite
set. Of course, just as for Hamiltonians, generic unitary transformations are very difficult
to implement. A sequence of poly(n) two-qubit unitary gates can only approximate a tiny
fraction of the possible unitary transformations on n qubits.

15

The quantum circuit model has become the standard model of quantum computation
because it is straightforward and easy to work with. It is certainly not unique, but any rea-
sonable model of quantum computation is equivalent to the quantum circuit model. Many
equivalent models of quantum computation are known; a few examples include the quantum
Turing machine [63, 31, 188], quantum cellular automata [138, 180, 57], topological quan-
tum field theories [88, 89], the one-way quantum computer [157], and adiabatic quantum
computation [6, 5].1

Since the quantum circuit model is the standard model of quantum computation, we
will find it useful to define the set of reasonable Hamiltonians as those that can be efficiently
simulated using quantum circuits. More precisely, we define the set of efficiently simulable
Hamiltonians as follows:

Definition 1.1. A Hamiltonian H can be efficiently simulated if for any t > 0, ε > 0 there
is a quantum circuit U consisting of poly(n, t, 1/ε) gates such that

∥∥U − e−iHt∥∥ < ε.

In Sections 1.2 and 1.3, we present a collection of basic tools for efficiently simulating Hamil-
tonians. Using these techniques, the Hamiltonian for a continuous-time quantum algorithm
can be viewed as a convenient shorthand for a sequence of unitary transformations. But we
should stress that the Hamiltonian perspective may be useful for designing algorithms, as
we will show through several examples.

The approach of simulating Hamiltonian dynamics using quantum circuits has the ad-
vantage that it can easily accommodate oracular problems. This setting will be useful in
Section 5.3, where we use an oracular problem to prove an exponential separation between
classical and quantum computers using a quantum walk.

The simulation techniques presented below only explicitly address time-independent
Hamiltonians. However, time-dependent Hamiltonian dynamics can easily be simulated
by discretizing the evolution into sufficiently small time steps (as will typically be nec-
essary even when the Hamiltonian is time-independent), over which the Hamiltonian is
approximately constant. Simulations of time-dependent Hamiltonians may be useful in
an algorithmic context, for example in adiabatic quantum computation, as discussed in
Chapter 2.

In this thesis, we are primarily interested algorithms for computational problems. How-
ever, the techniques described here may also be useful for simulating physical systems. We
discuss this application briefly in Section 1.4.

Finally, in Section 1.5, we present a result of Feynman showing that even simple, time-
independent Hamiltonians of a form such as (1.1) have at least as much computational power
as the quantum circuit model. Therefore, we do not lose anything (at least in principle) by
considering continuous-time quantum algorithms. Together with the simulations described
in Section 1.2, Feynman’s result shows that time-independent Hamiltonian dynamics can
be viewed as a model of quantum computation in its own right, since it is computationally
equivalent to the quantum circuit model.

1.2 Simulation rules

In this section, we present some standard techniques for efficiently simulating Hamiltonians
using quantum circuits.

1The abundance of models of quantum computation parallels the situation in classical computation, which
can equivalently be defined in terms of, for example, classical circuits, Turing machines, cellular automata,
or the lambda calculus.

16

First, note that local Hamiltonians are easy to simulate.

Rule 1.1 (Local Hamiltonians). If H acts on O(1) qubits, then it can be efficiently
simulated.

This follows simply because any unitary evolution on a constant number of qubits can be
approximated using a constant number of one- and two-qubit gates.

We can also rescale a Hamiltonian by any real constant, as long as that constant is not
too large.

Rule 1.2 (Rescaling). If H can be efficiently simulated, then cH can be efficiently simu-
lated for any c = poly(n).

Note that there is no restriction to c > 0, since any efficient simulation is expressed in terms
of quantum gates, and can simply be run backward.

In addition, we can rotate the basis in which a Hamiltonian is applied using any unitary
transformation with an efficient decomposition into basic gates.

Rule 1.3 (Unitary conjugation). If H can be efficiently simulated and the unitary trans-
formation U can be efficiently implemented, then UHU † can be efficiently simulated.

This rule follows from the simple identity

e−iUHU
†t = Ue−iHtU † . (1.2)

Given two or more simulable Hamiltonians, we can produce further simulable Hamilto-
nians from them. For example, we have

Rule 1.4 (Addition). If H1 and H2 can be efficiently simulated, then H1 + H2 can be
efficiently simulated.

If the two Hamiltonians commute, then this rule is trivial, since in that case e−iH1te−iH2t =
e−i(H1+H2)t. However, in the general case where the two Hamiltonians do not commute, we
can still simulate their sum as a consequence of the Lie product formula

e−i(H1+H2)t = lim
m→∞

(
e−iH1t/me−iH2t/m

)m
. (1.3)

A simulation using a finite number of steps can be achieved by truncating this expression to
a finite number of terms, which introduces some amount of error that must be kept small.
Writing

e−iHt = 1− iHt+O(‖H‖2 t2) , (1.4)

we find (
e−iH1t/me−iH2t/m

)m
=
(
1− i(H1 +H2)t/m+O(h2t2/m2)

)m (1.5)

=
(
e−i(H1+H2)t/m +O(h2t2/m2)

)m
(1.6)

= e−i(H1+H2)t +O((ht)2/m) , (1.7)

where h = max{‖H1‖ , ‖H2‖}. To achieve error ε, the total number of steps used in this
simulation should be 2m = O((ht)2/ε), which is indeed polynomial in n, t, and 1/ε.2

2The requirement that H1 and H2 be efficiently simulable means that h can be at most poly(n).

17

However, it is somewhat unappealing that to simulate an evolution for time t, we need
a number of steps proportional to t2. Fortunately, the situation can be improved if we use
higher-order approximations of (1.3). For example, a second-order expansion gives(

e−iH1t/2me−iH2t/me−iH1t/2m
)m

= e−i(H1+H2)t +O((ht)3/m2) . (1.8)

To achieve error ε, this approximation requires 2m+ 1 = O((ht)3/2/
√
ε) steps. In general,

using a pth order approximation (which can be constructed systematically [171, 36]), the
error is ε = O((ht)p+1/mp), so that O((ht)p/(p−1)/ε1/(p−1)) steps suffice to give error ε. In
this expression, the big-O constant depends on p. Nevertheless, for any desired δ > 0, there
is a sufficiently large (but constant) p such that the number of steps in the simulation is
O(t1+δ).3 Whether the simulation can be done in truly linear time in the general case seems
to be an open question.

Note that using the Baker-Campbell-Hausdorff formula, the error estimate in the first-
order approximation (1.7) can be improved to use h2 = ‖[H1,H2]‖. In certain cases this
allows for a more efficient simulation. We will see an example of such a case in Section 4.6.

A Hamiltonian that is a sum of polynomially many terms can be efficiently simulated
by composing Rule 1.4. However, it is more efficient to directly use an approximation to
the identity

e−i(H1+···+Hk)t = lim
m→∞

(
e−iH1t/m · · · e−iHkt/m

)m
. (1.9)

For example, in the first-order approximation, O(k(ht)2/ε) steps suffice to give error ε,
where h2 = maxj,j′

∥∥[Hj ,Hj′]
∥∥. Just as in the case with only two terms, such approxima-

tions can be constructed systematically to arbitrarily high order, giving a simulation using
O(k(ht)p/(p−1)/ε1/(p−1)) steps, where h = maxj ‖Hj‖ [171, 36].

Combining Rules 1.2 and 1.4, we see that any real linear combination of Hamiltonians
can be efficiently simulated. Another way of combining Hamiltonians comes from commu-
tation:

Rule 1.5 (Commutation). If H1 and H2 can be efficiently simulated, then i[H1,H2] can
be efficiently simulated.

This rule is a consequence of the identity

e[H1,H2]t = lim
m→∞

(
e−iH1t/

√
me−iH2t/

√
meiH1t/

√
meiH2t/

√
m
)m

, (1.10)

which can be approximated with a finite number of terms in a similar way to the approxima-
tion of (1.3). Using Rules 1.2, 1.4, and 1.5, it is possible to simulate any Hamiltonian in the
Lie algebra generated by a set of Hamiltonians (although this simulation is not necessarily
efficient).

Finally, we present a simple rule for the simulation of diagonal Hamiltonians:

Rule 1.6 (Diagonal Hamiltonians). If H is diagonal in the computational basis and
the diagonal element d(a) = 〈a|H|a〉 can be efficiently computed for any a, then H can be
efficiently simulated.

This rule follows from the simple quantum circuit shown in Figure 1-1. We assume that the
diagonal element d(a) is expressed as a binary number with k bits of precision. This circuit

3This result can be improved, but only very slightly, by using an order p that increases with t.

18

|0〉

|0〉

|0〉

ppp

|a〉 s

d

e−2k−1it|1〉〈1|

e−2it|1〉〈1|

e−it|1〉〈1|

ppp

s

d

|0〉

|0〉

|0〉

ppp

e−id(a)t|a〉

Figure 1-1: A circuit for implementing Rule 1.6.

transforms a computational basis state |a〉, together with a k-qubit ancilla state |0〉, as

|a, 0〉 → |a, d(a)〉 (1.11)

→ e−itd(a)|a, d(a)〉 (1.12)

→ e−itd(a)|a, 0〉 (1.13)

= e−iHt|a〉|0〉 , (1.14)

which shows that the circuit simulates H. Together with Rule 1.3, this allows us to sim-
ulate any Hamiltonian that can be efficiently diagonalized, and whose eigenvalues can be
efficiently computed.

1.3 Sparse Hamiltonians

By combining some of the simple rules described above with classical results on local graph
coloring, we arrive at a rule that allows us to simulate any Hamiltonian that is sufficiently
sparse. This rule will be especially useful for implementing quantum walks on graphs, as
discussed in Chapter 3, but it can also be applied to the simulation of physical systems and
the implementation of other continuous-time quantum algorithms. The rule is

Rule 1.7 (Sparse Hamiltonians). Suppose that for any a, one can efficiently compute
all the values of b for which 〈a|H|b〉 is nonzero. Then H can be efficiently simulated.

This rule was first explicitly stated by Aharonov and Ta-Shma [6]; it also follows imme-
diately from Theorem 1 of [40] together with older (and stronger) classical results on local
graph coloring [93, 128, 129, 173]. Coloring the graph of nonzero matrix elements of H
allows us to break the Hamiltonian into simple pieces that can be easily simulated on their
own. The classical result we need to prove Rule 1.7 is the following:

Lemma 1.1 (Linial [128, 129]). Suppose we are given an undirected graph G with N
vertices and maximum degree d, and that we can efficiently compute the neighbors of a given
vertex. Then there is an efficiently computable function c(a, b) = c(b, a) taking O(d2 log2N)
values such that for all a, c(a, b) = c(a, b′) implies b = b′. In other words, c(a, b) is a
coloring of G.

In fact, Linial proves that O(d2 logN) colors are sufficient if we do not require c(a, b)
to be efficiently computable, and comments that Example 3.2 from [74] gives an efficient
construction with O(d2 log2N) colors. Instead, we prove this result using an argument
along the lines of [6], streamlined to use only O(d2 log2N) colors instead of O(d2 log6N).

19

Proof. Number the vertices of G from 1 through N . For any vertex a, let index(a, b) denote
the index of vertex b in the list of neighbors of a. Also, let k(a, b) be the smallest k such
that a 6= b (mod k). Note that k(a, b) = k(b, a), and k = O(logN).

For a < b, define the color of the edge ab to be the 4-tuple

c(a, b) :=
(
index(a, b), index(b, a), k(a, b), b mod k(a, b)

)
. (1.15)

For a > b, define c(a, b) := c(b, a).
Now suppose c(a, b) = c(a, b′). There are four possible cases:

1. Suppose a < b and a < b′. Then the first component of c shows that index(a, b) =
index(a, b′), which implies b = b′.

2. Suppose a > b and a > b′. Then the second component of c shows that index(a, b) =
index(a, b′), which implies b = b′.

3. Suppose a < b and a > b′. Then from the third and fourth components of c, k(a, b) =
k(a, b′) and a = b (mod k(a, b)), which is a contradiction.

4. Suppose a > b and a < b′. Then from the third and fourth components of c, k(a, b) =
k(a, b′) and a = b′ (mod k(a, b′)), which is a contradiction.

Each case that does not lead to a contradiction gives rise to a valid coloring, which completes
the proof.

This result uses more colors than are absolutely necessary, since any graph can be colored
with at most d + 1 colors [178]. In practice, graphs with regular structure can typically
be colored more efficiently than the above lemma suggests. Also, note that in Lemma 1.1,
the color of a given vertex only depends on information about its nearest neighbors. By
considering neighbors at a distance O(log∗N),4 Linial shows how to color G using only
O(d2) colors [128, 129], which yields an improved simulation of general sparse Hamiltonians
[8].

Given Lemma 1.1, we can now complete the proof of Rule 1.7.

Proof. Write H as a diagonal matrix plus a matrix with zeros on the diagonal. The diagonal
part can be simulated using Rule 1.6 and combined with the off-diagonal part using Rule 1.4.
Therefore, we can assume H has zeros on the diagonal without loss of generality.

Now let G be the graph of nonzero matrix elements of H. The vertices of this graph
consist of all the computational basis states, and two vertices have an edge between them
if they are connected by a nonzero matrix element of H. Use Lemma 1.1 to color the edges
of this graph, and let vc(a) be the vertex connected to a by an edge of color c (if there is
no such vertex, it does not matter how vc(a) is defined). Also, let

xc(a) := Re 〈a|H|vc(a)〉 (1.16)
yc(a) := Im 〈a|H|vc(a)〉 (1.17)

when the vertex a has an incident edge of color c; otherwise, let xc(a) = yc(a) = 0.

4The extremely slowly growing function log∗ x is defined to be the smallest integer y such that
log log · · · log︸ ︷︷ ︸

y

x ≤ 1.

20

Consider the state space |a, b, z〉, where the space on which H acts corresponds to states
of the form |a, 0, 0〉. By assumption, we can efficiently implement unitary operators Vc,Wc

defined by

Vc|a, b, z〉 := |a, b⊕ vc(a), z ⊕ xc(a)〉 (1.18)
Wc|a, b, z〉 := |a, b⊕ vc(a), z ⊕ yc(a)〉 , (1.19)

where ⊕ denotes bitwise addition modulo 2. We can also efficiently implement the inverse
operations V †

c ,W
†
c , since they are simply V †

c = Vc and W †
c = Wc. Furthermore, we can

efficiently simulate the Hamiltonians S, T where

S|a, b, x〉 := x|b, a, x〉 (1.20)
T |a, b, y〉 := iy|b, a,−y〉 (1.21)

using Rules 1.3 and 1.6, since S and T are easily diagonalized. Therefore, we can efficiently
simulate the Hamiltonian

H̃ :=
∑
c

(V †
c SVc +W †

c TWc) . (1.22)

When restricted to the subspace of states of the form |a, 0, 0〉, H̃ acts as H:

H̃|a, 0, 0〉 =
∑
c

[V †
c S|a, vc(a), xc(a)〉+W †

c S|a, vc(a), yc(a)〉] (1.23)

=
∑
c

[xc(a)V †
c |vc(a), a, xc(a)〉+ iyc(a)W †

c |vc(a), a,−yc(a)〉] (1.24)

=
∑
c

[xc(a) + iyc(a)]|vc(a), 0, 0〉 (1.25)

= H|a〉|0, 0〉 , (1.26)

where in the third line we have used the fact that vc(vc(a)) = a when a has an incident
edge of color c, and that xc(a) = yc(a) = 0 otherwise. This shows that H can be efficiently
simulated.

1.4 Simulating physical systems

In addition to implementing continuous-time quantum algorithms, the tools described above
can also be useful for simulating quantum physics on a quantum computer. In fact, the
simulation of quantum systems was the original inspiration for quantum computation, as ad-
vocated by Manin [137] and Feynman [84]. We briefly review some results on the simulation
of physical systems to illustrate the utility of the rules presented above.

Lloyd pointed out that universal quantum computers can efficiently simulate the dy-
namics of quantum systems with local interactions [130]. This result follows from Rules 1.1
and 1.4 above. For example, a Hamiltonian of the form (1.1) can be efficiently simulated
using quantum circuits. This also shows that we have not lost computational power by
considering Hamiltonians satisfying Definition 1.1 rather than the “physically reasonable”
Hamiltonians (1.1).

21

In [130], Lloyd comments that even with the first-order approximation (1.7), the amount
of time for which the Hamiltonians H1 and H2 act is equal to twice the total simulation
time t; in other words, it is linear in t. However, this remark is not entirely satisfying from a
computational perspective since the total number of steps of the simulation is proportional to
t2. As discussed above, higher-order approximations can bring the number of computational
steps down to O(t1+δ) for any arbitrarily small positive δ, but it is not clear if a general
simulation can be performed in only O(t) steps.

Further quantum simulation results were obtained by Weisner and Zalka, who considered
the problem of simulating the dynamics of quantum mechanical particles [184, 189]. Their
essential idea can be understood by looking at the simplest case, a single particle of mass
m in a one-dimensional potential, with the Hamiltonian

H =
p2

2m
+ V (x) . (1.27)

Here p2 = − d2

dx2 is the square of the momentum operator, and the potential V (x) is an arbi-
trary (but known) function of position. To simulate this Hamiltonian on a digital quantum
computer, we must approximate the continuous degree of freedom x using a lattice. For
example, we can let an n-qubit computational basis state |x〉 be the binary representation
of the point at location lx, where l is the lattice spacing. Then we can approximate p2 by
the operator

P 2|x〉 :=
1
l2

(2|x〉 − |x+ 1〉 − |x− 1〉) , (1.28)

a discrete approximation to minus the second derivative. The operator P 2 becomes a good
approximation to the continuum operator p2 in the limit l → 0. The momentum operator
(as well as its discretization) is diagonal in the Fourier basis, and the Fourier transform can
be implemented efficiently using quantum circuits [54]. Therefore, the dynamics according
to (1.27) can be simulated using Rules 1.3, 1.4, and 1.6.

Note that the simulation of the discretization of (1.27) also follows immediately from
Rule 1.7, since the Hamiltonian is quite sparse. The graph of nonzero matrix elements is
simply a line, so it can be colored using only two colors, corresponding to the momentum
operator acting on even and odd sites. The resulting simulation does not make explicit use
of the Fourier transform, and is actually more efficient than the one proposed in [184, 189].

This approach can be straightforwardly generalized to many-particle quantum dynamics,
including interactions, in any number of dimensions. In principle, one can even simulate
the dynamics of a quantum field theory, but the technicalities of such a simulation have not
been worked out in detail. Although there is a substantial savings in memory over classical
simulation, there are still technical obstacles to overcome. For example, the problem of
fermion doubling is a discretization effect, and does not simply disappear by using a quantum
computer. (We will encounter a phenomenon related to fermion doubling in Section 4.5.)

In this chapter, we have focused on the simulation of Hamiltonian dynamics, assuming
that the final measurement of the system is a simple one such as a measurement in the
computational basis. However, especially in a simulation of a physical system, one may
be interested in measuring a more complicated observable. Fortunately, any Hermitian
operator that can be efficiently simulated (viewing it as the Hamiltonian of a quantum sys-
tem) can also be efficiently measured using von Neumann’s formulation of the measurement
process [150]. In fact, this idea is one of the essential ingredients in many of the known
fast quantum algorithms, including Shor’s factoring algorithm [165]. We will describe this

22

connection in greater detail in Section 2.5, where we explain how measurement can be used
to realize adiabatic quantum algorithms.

1.5 Time-independent local Hamiltonians are universal

In [85], Feynman presented a quantum mechanical model of a computer using local, time-
independent Hamiltonian dynamics.5 The motivation for this model was to show that
quantum mechanics does not pose barriers to building a classical computer, despite quantum
effects such as the uncertainty principle. Feynman showed that any sequence of reversible
classical logic gates can be efficiently simulated using local Hamiltonian dynamics. However,
his model applies equally well to simulate any quantum circuit.

Given a k-gate quantum circuit on n qubits, Uk · · ·U2U1, let

H :=
k∑
j=1

Hj (1.29)

where
Hj := Uj ⊗ |j〉〈j − 1|+ U †

j ⊗ |j − 1〉〈j| . (1.30)

Here the first register consists of n qubits, and the second register stores a quantum state in
a (k + 1)-dimensional space spanned by states |j〉 for j ∈ {0, 1, . . . , k}. The second register
acts as a counter that records the progress of the computation. Later, we will show how to
represent the counter using qubits, but for now, we treat it as a convenient abstraction.

If we start the computer in the state |ψ〉|0〉, then the evolution remains in the subspace
spanned by the k + 1 states |ψj〉 := Uj · · ·U1|ψ〉|j〉. In this subspace, the nonzero matrix
elements of H are

〈ψj |H|ψj±1〉 = 1 , (1.31)

so the evolution is the same as that of a free particle propagating on a discretized line seg-
ment. Such a particle moves with constant speed, so in a time proportional to k, the initial
state |ψ0〉 will evolve to a state with substantial overlap on the state |ψk〉 = Uk · · ·U1|ψ〉|k〉,
the final state of the computation. Arguments given in Sections 3.3.2 and 5.2 show that for
large k,

|〈ψk|e−iHk/2|ψ0〉|2 = O(k−2/3) , (1.32)

so that after time k/2, a measurement of the counter will yield the result k, and hence give
the final state of the computation, with a substantial probability.

The success probability of Feynman’s computer can be made close to 1 by a variety of
techniques. The simplest approach is to repeat the process O(k2/3) times. Alternatively,
as Feynman suggests, the success probability can be made arbitrarily close to 1 in single
shot by preparing the initial state in a narrow wave packet that will propagate ballistically
without substantial spreading. But perhaps the best approach is to make the process perfect

5Feynman’s model has also been useful for two other quantum computing applications, formulating a
complete problem for a quantum analog of the complexity class NP [120] and showing the universality of
adiabatic quantum computation [6, 5].

23

by changing the Hamiltonian to [95]

H ′ :=
k∑
j=1

√
j(k + 1− j)Hj . (1.33)

In this case, the choice t = π gives the exact transformation e−iH
′t|ψ0〉 = |ψk〉. This result

can be understood by viewing |ψj〉 as a state of total angular momentum k
2 (k2 + 1) with z

component j− k
2 . Then H ′ is simply the x component of angular momentum, which rotates

between the states with z component ±k
2 in time π. Alternatively, in the terminology of

Section 5.2, H ′ can be viewed as the Hamiltonian of the column subspace of a hypercube.
In the Hamiltonians (1.30) and (1.33), the counter space is not represented using qubits.

However, we can easily create a Hamiltonian expressed entirely in terms of k + 1 qubits
using a unary representation of the counter. Let

|j〉 := | 0 · · · 0︸ ︷︷ ︸
j

1 0 · · · 0︸ ︷︷ ︸
k−j

〉 ; (1.34)

then
|j + 1〉〈j| = σ

(j+1)
+ σ

(j)
− (1.35)

where

σ+ :=
(

0 0
1 0

)
, σ− :=

(
0 1
0 0

)
. (1.36)

With these definitions, the action of Hj is unchanged. If the quantum circuit consists of
one- and two-qubit gates, then the Hamiltonians (1.30) and (1.33) are local in the sense that
the interactions involve at most four qubits. In other words, the Hamiltonian is “physically
reasonable” in the spirit of (1.1) (albeit without spatial locality).

This construction shows that even a time-independent Hamiltonian of a particularly
simple form can be universal for quantum computation. Of course, this does not mean
that it is always best to think about quantum algorithms in such terms. However, it is not
surprising that certain problems are naturally approached in a Hamiltonian formulation, as
we will see.

24

Chapter 2

Adiabatic quantum computation

2.1 Introduction

In this chapter, we consider a class of Hamiltonian-based quantum algorithms known col-
lectively as quantum computation by adiabatic evolution. This approach was proposed by
Farhi, Goldstone, Gutmann, and Sipser as a general way of solving combinatorial search
problems on a quantum computer [80].1 Whereas a conventional quantum circuit is imple-
mented as a sequence of discrete unitary transformations whose physical realization involve
many energy levels of the computer, an adiabatic algorithm works by keeping the state of
the quantum computer close to the instantaneous ground state of a Hamiltonian that varies
continuously in time.

The adiabatic algorithm works by applying a time-dependent Hamiltonian that interpo-
lates smoothly from an initial Hamiltonian whose ground state is easily prepared to a final
Hamiltonian whose ground state encodes the solution to the problem. If the Hamiltonian
varies sufficiently slowly, then the quantum adiabatic theorem guarantees that the final
state of the quantum computer will be close to the ground state of the final Hamiltonian, so
a measurement of the final state will yield a solution of the problem with high probability.
This method will surely succeed if the Hamiltonian changes slowly. But how slow is slow
enough?

Unfortunately, this question has proved difficult to analyze in general. Some numer-
ical evidence suggests the possibility that the adiabatic algorithm might efficiently solve
computationally interesting instances of hard combinatorial search problems, outperform-
ing classical methods [77, 43, 79, 140, 106]. However, whether the adiabatic approach to
combinatorial optimization provides substantial speedup over classical methods remains an
interesting open question.2 As discussed below, the time required by the algorithm for a
particular instance can be related to the minimum gap ∆ between the instantaneous ground
state and the rest of the spectrum. Roughly speaking, the required time goes like 1/∆2.
Thus, if 1/∆2 increases only polynomially with the size of the problem, then so does the time
required to run the algorithm. However, determining ∆ has not been possible in general.

1Closely related techniques have been proposed by Kadowaki and Nishimori [112] and Hogg [105]. The
former approach has been tested experimentally (in conjunction with a cooling procedure) by Brooke, Bitko,
Rosenbaum, and Aeppli [35].

2As mentioned in Section 1.1, there is a sense in which adiabatic quantum computation is computationally
equivalent to any other model of quantum computation. However, while encouraging, this fact does not shed
light on the question of whether the algorithmic idea of using adiabatic quantum computation to perform
combinatorial search can provide speedup over classical methods.

25

Our goal in this chapter is not to address the computational power of adiabatic quantum
computation. Rather, we describe two related ideas that may prove useful in the imple-
mentation of the adiabatic algorithm. In Section 2.4, we argue that adiabatic quantum
computation enjoys an intrinsic robustness to certain kinds of errors, and we demonstrate
this phenomenon through numerical simulations. In Section 2.5, we show how the essential
idea of the adiabatic algorithm can be implemented in a conceptually simpler way using
only a sequence of measurements, which in turn can be realized dynamically by Hamilto-
nian evolution. We also show how the measurement-based approach can be used to achieve
quadratic speedup for unstructured search.

2.2 Review of adiabatic quantum computation

In this section, we briefly review the idea of adiabatic quantum computation. Let h(z) be a
function of n bits z = (z1, z2, . . . , zn), and consider the computational problem of finding a
value of z that minimizes h(z). We will typically be interested in the case where this value
of z is unique. We may associate with this function the Hermitian operator

HP =
2n−1∑
z=0

h(z)|z〉〈z| , (2.1)

so that the computational basis state |z〉 is an eigenstate of HP with eigenvalue h(z). Then
the problem is to determine which state |z〉 is the ground state (the eigenstate with lowest
eigenvalue) of HP . We refer to HP as the problem Hamiltonian.

The strategy for finding the ground state of HP is to prepare the ground state of some
other beginning HamiltonianHB and slowly interpolate toHP . In other words, we consider a
one-parameter family of Hamiltonians H̃(s) for s ∈ [0, 1] such that H̃(0) = HB, H̃(1) = HP ,
and H̃(s) is a smooth function of s. For example, one simple choice for H̃(s) is linear
interpolation,

H̃(s) = (1− s)HB + sHP . (2.2)

We prepare the ground state of HB at time t = 0, and then the state evolves from t = 0 to
t = T according to the Schrödinger equation (0.1), where the Hamiltonian is

H(t) = H̃(t/T) . (2.3)

At time T (the run time of the algorithm), we measure the state in the computational basis.
If we let |E0(1)〉 denote the (unique) ground state of HP for a given instance of the problem,
then the success probability of the algorithm for this instance is |〈E0(1)|ψ(T)〉|2.

Does the algorithm work? According to the quantum adiabatic theorem [115, 142], if
there is a nonzero gap between the ground state and the first excited state of H̃(s) for all
s ∈ [0, 1], then the success probability approaches 1 in the limit T →∞. Furthermore, level
crossings are non-generic in the absence of symmetries, so a non-vanishing gap is expected
if HB does not commute with HP . Thus, the success probability of the algorithm will be
high if the evolution time T is large enough. The question is, how large a T is large enough
so that the success probability is larger than some fixed constant?

We can reformulate this question in terms of the quantities

∆ := min
s∈[0,1]

∆(s) , Γ := max
s∈[0,1]

Γ(s) (2.4)

26

where

∆(s) := E1(s)− E0(s) (2.5)

Γ2(s) := 〈E0(s)|(dH̃
ds)2|E0(s)〉 − 〈E0(s)|dH̃ds |E0(s)〉2 . (2.6)

Here |Ej(s)〉 is the eigenstate of H̃(s) with eigenvalue Ej(s), with E0(s) ≤ E1(s) ≤ · · · ≤
E2n−1(s). By calculating the transition probability to lowest order in the adiabatic expan-
sion [142], one finds that the probability of a transition from ground state to first excited
state is small provided that the run time T satisfies

T � Γ
∆2

. (2.7)

Note that the quantity Γ accounts for the possibility of transitions to all possible excited
states. In general, the required run time T will be bounded by a polynomial in n so long
as ∆ and Γ are polynomially bounded. For most problems of interest, Γ is polynomially
bounded, so we only have to consider the behavior of ∆.

The proof of the adiabatic theorem is somewhat involved, and will not be presented
here. However, the basic idea can be understood as follows. By rescaling the time, we can
think of the evolution as taking place in the unit time interval between s = 0 and s = 1,
but in that case the energy eigenvalues are rescaled by the factor T . Roughly speaking,
we can think of dH̃(s)/ds as a perturbation that couples the levels of the instantaneous
Hamiltonian H̃(s), and that can drive a transition from |E0(s)〉 to |E1(s)〉. But if T is large,
the effects of this perturbation are washed out by the rapid oscillations of the relative phase
exp[−iT

∫ s
0 ds′(E1(s′)− E0(s′))].

To implement an adiabatic quantum computation, it is sufficient to build a universal
quantum computer and employ the simulation techniques discussed in Chapter 1, assuming
they apply to the desired Hamiltonian H(t). However, to take advantage of the robustness
properties we will describe in Section 2.4, it may be desirable to directly build a quantum
system whose Hamiltonian can be smoothly modified from HB to HP . In this case, the
Hamiltonian can be regarded as reasonable only if it is local, that is, if it can be expressed
as a sum of terms, where each term acts on a constant number of qubits (a number that
does not grow with n). Many combinatorial search problems (e.g., 3SAT) can be formulated
as a search for a minimum of a function that is local in this sense. Along with a local choice
of HB, this results in a full H(t) that is also local.

In fact, a direct physical implementation of the continuously varying H(t) would pre-
sumably be possible only under a somewhat stronger locality condition. We might require
that each qubit is coupled to only a few other qubits, or perhaps that the qubits can be
physically arranged in such a way that the interactions are spatially local. Fortunately,
there are interesting computational problems that have such forms, such as 3SAT restricted
to having each bit involved in only three clauses or the problem of finding the ground state
of a spin glass on a three-dimensional lattice [14]. However, for the purposes of the sim-
ulations described in Section 2.4, we will only consider small instances, and since we do
not have a specific physical implementation in mind, we will not concern ourselves with the
spatial arrangement of the qubits. We note that some of these implementation issues have
been addressed in specific proposals [113, 114].

27

2.3 An example: The exact cover problem

To be concrete, we describe the details of the adiabatic algorithm for a particular combina-
torial search problem known as three-bit exact cover, or EC3. This is the problem we will
consider in our simulations in Section 2.4, and it also serves to illustrate the general idea.
An n-bit instance of EC3 consists of a set of clauses, each of which specifies three of the n
bits. A clause is said to be satisfied if and only if exactly one of its bits has the value 1.
The problem is to determine if any of the 2n assignments of the n bits satisfies all of the
clauses.

For this problem, the function h(z) is a sum

h(z) =
∑
C

hC(ziC , zjC , zkC
) (2.8)

of three-bit clauses, where

hC(ziC , zjC , zkC
) =

{
0 (ziC , zjC , zkC

) satisfies clause C
1 (ziC , zjC , zkC

) violates clause C .
(2.9)

The value of the function h(z) is the number of clauses that are violated; in particular,
h(z) = 0 if and only if z is an assignment that satisfies all the clauses.

To solve EC3 by the adiabatic algorithm, a sensible choice for the beginning Hamiltonian
is

HB =
∑
C

HB,C , (2.10)

where
HB,C =

1
2

(
1− σ(iC)

x

)
+

1
2

(
1− σ(jC)

x

)
+

1
2

(
1− σ(kC)

x

)
, (2.11)

which has the ground state

|ψ(0)〉 =
1

2n/2

2n−1∑
z=0

|z〉 . (2.12)

Using the linear interpolation (2.2), the resulting H(t) is local in the sense that it is a sum
of terms, each of which acts on only a few qubits. A stronger kind of locality can be imposed
by restricting the instances so that each bit is involved in at most a fixed number of clauses.
The computational complexity of the problem is unchanged by this restriction.

Numerical studies of the adiabatic algorithm applied to this problem were reported
in [77, 79]. Instances of EC3 with n bits were generated by adding random clauses until
there was a unique satisfying assignment, giving a distribution of instances that one might
expect to be computationally difficult to solve. The results for a small number of bits
(n ≤ 20) were consistent with the possibility that the adiabatic algorithm requires a time
that grows only as a polynomial in n for typical instances drawn from this distribution. If
this is the case, then the gap ∆ does not shrink exponentially in n. Although the typical
spacing between levels must be exponentially small, since there are an exponential number
of levels in a polynomial range of energies, it is possible that the gap at the bottom is larger.
For example, Figure 2-1 shows the spectrum of a randomly generated seven-bit instance of
EC3. The gap at the bottom of the spectrum is reasonably large compared to the typical
spacing. This feature is not specific to this one instance, but is characteristic of randomly

28

Figure 2-1: Spectrum of a randomly generated n = 7 bit instance of EC3 with a unique
satisfying assignment. Note that the energy gap between the ground state and the first
excited state is significantly larger than all other gaps. An expanded view would show that
there are no level crossings anywhere in the spectrum (except for the degeneracies at s = 0
and s = 1).

generated instances, at least for n . 10, beyond which the repeated matrix diagonalization
required to create a picture of the spectrum becomes computationally costly. A large gap
makes an instance readily solvable by the adiabatic algorithm, and also provides robustness
against thermal transitions out of the ground state, as described below.

2.4 Robustness

Since quantum computers are far more susceptible to making errors than classical digital
computers, fault-tolerant protocols will be necessary for the operation of large-scale quan-
tum computers. General procedures have been developed that allow any quantum algorithm
to be implemented fault tolerantly on a universal quantum computer [167], but these in-
volve a substantial computational overhead. Therefore, it would be highly advantageous to
weave fault tolerance into the design of our quantum hardware.

In this section, we will regard adiabatic quantum computation not as a convenient lan-
guage for describing a class of quantum circuits, but as a proposed physical implementation
of quantum information processing. We do not cast the algorithm into the conventional
quantum computing paradigm by approximating it as a sequence of discrete unitary trans-
formations acting on a few qubits at a time. Instead, suppose we can design a physical device
that implements the required time-dependent Hamiltonian with reasonable accuracy. We
then imagine implementing the algorithm by slowly changing the parameters that control

29

the physical Hamiltonian. How well does such a quantum computer resist decoherence, and
how well does it perform if the algorithm is imperfectly implemented?

Regarding resistance to decoherence, we can make a few simple observations. The phase
of the ground state has no effect on the efficacy of the algorithm, and therefore dephasing
in the energy eigenstate basis is presumably harmless. Only the interactions with the
environment that induce transitions between eigenstates of the Hamiltonian might cause
trouble. In principle, these can be well controlled by running the algorithm at a temperature
that is small compared to the minimum gap ∆.3 If ∆ decreases slowly as the size of the
problem increases, then the resources required to run at a sufficiently low temperature may
be reasonable. Since the adiabatic method is only efficient if ∆ is not too small, we conclude
that whenever the method works on a perfectly functioning quantum computer, it is robust
against decoherence.

In addition to environmental decoherence, we must also consider the consequences of
imperfect implementation. Our chosen algorithm may call for the time-dependent Hamil-
tonian H(t), but when we run the algorithm, the actual Hamiltonian will be H(t) +K(t),
where K(t) represents errors in the implementation. An interesting feature of adiabatic
quantum computation is that K(t) need not remain small during the evolution in order
for the algorithm to work effectively. A reasonably large excursion away from the intended
Hamiltonian is acceptable, as long as K(t) is slowly varying and has initial and final val-
ues that are not too large. A very rapidly fluctuating K(t) may also be acceptable, if the
characteristic frequency of the fluctuations is large compared to the energy scale of H(t).

Below, we will use numerical simulations to investigate the sensitivity of an adiabatic
computer to decohering transitions and to a certain class of unitary perturbations induced
by an error Hamiltonian K(t). The results are consistent with the idea that the algorithm
remains robust as long as the temperature of the environment is not too high andK(t) varies
either sufficiently slowly or sufficiently rapidly. Thus, the adiabatic model illustrates the
principle that when the characteristics of the noise are reasonably well understood, it may
be possible to design suitable quantum hardware that effectively resists the noise. However,
note that some of the effects of decoherence and unitary control error may not be significant
for the small problems we are able to study—especially in the case of decoherence, where the
time required by the simulation restricts us to systems with only four qubits—and hence our
data may not be indicative of the performance of the algorithm working on larger inputs.

In a different guise, the principles that make quantum adiabatic evolution robust also
underlie the proposal by Kitaev [119] to employ non-abelian anyons for fault-tolerant quan-
tum computation. The fact that adiabatic evolution incorporates a kind of intrinsic fault
tolerance has also been noted in [156, 153, 190, 73, 131, 87].

2.4.1 Decoherence

Perhaps the most significant impediment to building a large-scale quantum computer is the
problem of decoherence. No quantum device can be perfectly isolated from its environment,
and interactions between a device and its environment will inevitably introduce noise. For-
tunately, such effects can be countered using fault-tolerant protocols, but, as mentioned
above, these protocols can be costly. Therefore, we would like to consider quantum systems
with inherent resistance to decohering effects. If the ground state of our adiabatic quantum
computer is separated from the excited states by a sizable energy gap, then we expect it to

3We use units in which Boltzmann’s constant kB = 1, so that temperature has units of energy.

30

exhibit such robustness. Here, we consider how the adiabatic algorithm for EC3 is affected
by decoherence.

First, we briefly review the Markovian master equation formalism for describing the
decohering effects of an environment on a quantum system. Suppose that our quantum
computer is a collection of spin-1

2 particles interacting with each other according to the
Hamiltonian HS and weakly coupled to a large bath of photons. The total Hamiltonian of
the quantum computer and its environment is

H = HS +HE + λV , (2.13)

where HE is the Hamiltonian of its environment, V is an interaction that couples the
quantum computer and the photon bath, and λ is a coupling constant. We may describe
the state of the quantum computer alone by the density matrix ρ found by tracing over the
environmental degrees of freedom. In general, the time evolution of ρ is complicated, but
under reasonable assumptions, we can approximate its evolution using a Markovian master
equation.

One way of deriving such a master equation is to consider the weak coupling limit, in
which λ� 1 [60]. If the environment is very large and only weakly coupled to the quantum
computer, it will be essentially unchanged by the interaction. Furthermore, in this limit,
we can expect the evolution of the quantum computer to be Markovian, or local in time,
if we filter out high-frequency fluctuations by some coarse-graining procedure. Assuming
that the combined state of the quantum computer and its environment begins in a product
state ρ(0)⊗ ρE , Davies derives the master equation

dρ
dt

= −i[HS , ρ] + λ2K\ρ , (2.14)

where

Kρ = −
∫ ∞

0
dx trE [U(−x)V U(x), [V, ρ⊗ ρE]] (2.15)

K\ρ = lim
x→∞

1
x

∫ x

0
dy U(−y){K[U(y)ρU(−y)]}U(y) (2.16)

with
U(x) = e−ix(HS+HE) , (2.17)

where we have (temporarily) assumed that HS is time-independent. Although the \ op-
eration defined by (2.16) does not appear in some formulations of the Markovian master
equation, it appears to be essential for the equation to properly describe the weak coupling
limit [69], and in particular, for it to capture the phenomenon of relaxation to thermal equi-
librium. The master equation (2.14) has the property that if the environment is in thermal
equilibrium at a given temperature, then the decohering transitions drive the quantum com-
puter toward the Gibbs state of HS at that temperature. While not an exact description
of the dynamics, (2.14) should provide a reasonable caricature of a quantum computer in a
thermal environment.

Note that (2.14) is derived assuming a time-independent Hamiltonian HS ; with a time-
varying HS(t), we should expect the generator of time evolution at any particular time to
depend on the Hamiltonian at all previous times [61]. However, if HS(t) is slowly varying,
then it is a good approximation to imagine that the generator at any particular time depends

31

only on HS at that time [127]. In particular, since we are interested in nearly adiabatic
evolution, HS(t) varies slowly, so (2.14) remains a good approximation, where at any given
time t we compute K\ using only HS(t). Note that with HS(t) time-dependent, U(x)
defined by (2.17) is not the time evolution operator; it depends on the time t only implicitly
through HS(t).

For a system of spins coupled to photons, we choose the interaction

V =
∑
i

∫ ∞

0
dω [g(ω)aωσ

(i)
+ + g∗(ω)a†ωσ

(i)
−] , (2.18)

where
∑

i is a sum over the spins, σ(i)
± are raising and lowering operators for the ith spin,

aω is the annihilation operator for the photon mode with frequency ω, and λg(ω) is the
product of the coupling strength and spectral density for that mode. Note that if the
coupling strength is frequency-dependent, we can absorb this dependence into g(ω), leaving
λ as a frequency-independent parameter. With this specific choice for V , we can perform
the integrals and trace in (2.14)–(2.17). If we assume that all spacings between eigenvalues
of HS are distinct, the resulting expression simplifies considerably, and we find

dρ
dt

=− i[HS , ρ]

−
∑
i,a,b

[
Nba|gba|2〈a|σ

(i)
− |b〉〈b|σ

(i)
+ |a〉+ (Nab + 1)|gab|2〈b|σ

(i)
− |a〉〈a|σ

(i)
+ |b〉

]
×
[
(|a〉〈a|ρ) + (ρ|a〉〈a|)− 2|b〉〈a|ρ|a〉〈b|

]
, (2.19)

where the states |a〉 are the time-dependent instantaneous eigenstates of HS with energy
eigenvalues ωa,

Nba =
1

exp[β(ωb − ωa)]− 1
(2.20)

is the Bose-Einstein distribution at temperature 1/β, and

gba =

{
λg(ωb − ωa) ωb > ωa

0 ωb ≤ ωa .
(2.21)

We simulated the effect of thermal noise by numerically integrating the master equation
(2.19) with a Hamiltonian HS given by (2.3) and with the initial pure state density matrix
ρ(0) = |ψ(0)〉〈ψ(0)| given by (2.12). For simplicity, we chose g(ω) = 1 for ω ≥ 0 and zero
otherwise. Although we would expect that g(ω) → 0 as ω → ∞, for the small systems we
are able to simulate it should be a reasonable approximation to treat g(ω) as constant and
tune the overall coupling strength using λ2.

How should we expect the success probability 〈E0(1)|ρ(T)|E0(1)〉, where |E0(1)〉 is the
ground state of HP , to depend on the run time T and the temperature? If the run time T
is sufficiently long, then regardless of its initial state the quantum computer will come to
thermal equilibrium; at the time of the final readout it will be close to the Gibbs state

lim
T→∞

ρ(T) =
e−βHP

tr e−βHP
= ρP (2.22)

of the problem Hamiltonian HP , and therefore the success probability will be approximately

32

Figure 2-2: The success probability as a function of run time T for two instances of EC3
with n = 4 bits. The instance on the left has a gap of ∆1 ≈ 0.301 and the instance on
the right has a gap of ∆2 ≈ 0.425. The dotted line shows the behavior of the algorithm
with no decoherence, i.e., λ2 = 0. Note that in the figure on the right, the dotted curve is
partially obscured but can be seen slightly above the topmost solid curve. The solid lines
show the behavior of the algorithm in the presence of decoherence with λ2 = 0.1 for five
different temperatures. The triangles at the far right show the thermal success probabilities
〈E0(1)|ρP |E0(1)〉 at each of these temperatures. From top to bottom, the temperatures are
1/10, 1/2, 1, 2, and 10.

〈E0(1)|ρP |E0(1)〉. This probability may be appreciable if the temperature is small compared
to the gap between the ground state and first excited state of HP . Thus one way to find
the ground state of HP is to prepare the computer in any initial state, put it in a cold
environment, wait a long time, and measure. However, this thermal relaxation method is
not an efficient way to solve hard optimization problems. Although it may work well on
some instances of a given problem, this method will not work in cases where the computer
can get stuck in local minima from which downward transitions are unlikely. In such cases,
the time for equilibration is expected to be exponentially large in n.

Consider an instance with a long equilibration time so that cooling alone is not an
efficient way to find the ground state of HP . It is possible that the minimum gap ∆
associated with the quantum algorithm is not small, and the idealized quantum computer,
running without decohering effects, would find the ground state of HP in a short time. In
this situation, if we include the coupling of the system to the environment and we run at
a temperature much below ∆, then thermal transitions are never likely, and the adiabatic
algorithm should perform nearly as well as in the absence of decoherence. But if the
temperature is comparable to ∆, then the performance may be significantly degraded.

On the other hand, consider an instance for which the equilibration time is short, so
that cooling alone is a good algorithm. Furthermore, suppose that the adiabatic algorithm
would find the ground state of HP in a short time in the absence of decohering effects. In
this case, the combined effects of cooling and adiabatic evolution will surely find the ground
state of HP in a short time. But note that ∆ alone does not control the success of the
algorithm. Even if H(t) changes too quickly for the evolution to be truly adiabatic so that
a transition occurs when the gap is small, the system may be cooled back into its ground
state at a later time.

Typical results of the simulation are shown in Figure 2-2 for two n = 4 bit instances

33

of EC3 with unique satisfying assignments. These two instances have minimum gaps of
∆1 ≈ 0.301 and ∆2 ≈ 0.425. For each instance, we plot the success probability as a
function of the run time T . With λ2 = 0.1, we consider five temperatures: 1/10, 1/2, 1, 2,
and 10. We also present the data with no decoherence (λ2 = 0) for comparison.

Unfortunately, the time required to integrate (2.19) grows very rapidly with n. Whereas
a state vector contains 2n entries, the density matrix contains 4n entries; and in addition,
calculating dρ/dt at each timestep requires evaluating a double sum over 2n energy eigen-
states. For this reason, we were only able to consider instances with n ≤ 4.

The results are consistent with our general expectations. In the absence of decoherence,
the success probability becomes appreciable for sufficiently long run times. This proba-
bility rises faster for the problem with a larger gap. When we add decoherence at high
temperature, the success probability never becomes very large (note the lowest curves in
Figure 2-2). As the temperature is decreased to a value of order one, the presence of deco-
herence has a less significant effect on the success probability. In fact, for sufficiently low
temperatures, the success probability can actually be higher in the presence of decoherence
than when there is no decoherence. This is because the primary effect of decoherence at
low temperature is to drive transitions toward the ground state, improving performance.

However, these results do not illustrate a definitive connection between the minimum
gap ∆ and the temperature above which the algorithm no longer works. These simple n = 4
bit instances fall into the second category discussed above: the equilibration time is short,
so cooling alone is a good algorithm. In other words, no sharp distinction can be drawn
between the run time required for the adiabatic algorithm to perform well in the absence
of decoherence and the run time required for equilibration. Accordingly, the dependence of
the success probability on temperature and run time is similar for the two instances shown
in Figure 2-2, even though the minimum gaps for these instances are somewhat different.

2.4.2 Unitary control error

We now consider how the performance of the adiabatic algorithm for EC3 is affected by
adding three different kinds of perturbations to the Hamiltonian. Each perturbation we
consider is a sum of single-qubit terms, where each term can be interpreted as a magnetic
field pointing in a random direction. To simplify our analysis, we assume that the magnitude
of the magnetic field is the same for all qubits, but its direction varies randomly from qubit
to qubit. The perturbations we consider are

K̃1(s) = C1s
n∑
i=1

m̂i · ~σ(i) , (2.23)

K̃2(s) = C2 sin(πs)
n∑
i=1

m̂i · ~σ(i) , (2.24)

K̃3(s) =
1
2

sin(C3πs)
n∑
i=1

m̂i · ~σ(i) , (2.25)

which are added to (2.2) and give a time-dependent Hamiltonian according to (2.3). Each
m̂i is a randomly generated real three-component vector with unit length, C1 and C2 are
real numbers, and C3 is a nonnegative integer.

The adiabatic algorithm was simulated by numerically solving the time-dependent Schrö-
dinger equation with initial state |ψ(0)〉 given by (2.12) and Hamiltonian H̃(t/T)+K̃j(t/T)

34

n = 7 n = 10

Figure 2-3: (Top) The success probability of the adiabatic algorithm for two randomly
generated instances of EC3 with n = 7 bits (left) and n = 10 bits (right) under the
perturbation K1 defined by (2.23) for four different sets of magnetic field directions. For
each n, the run time is the same for each random perturbation. (Bottom) The corresponding
overlaps |〈E0(1)|E0(1)′〉|2 of the ground state |E0(1)〉 of HP with the perturbed ground state
|E0(1)′〉 at s = 1.

for a given j ∈ {1, 2, 3}. As in [77, 43, 79], we used a fifth-order Runge-Kutta method with
variable step-size, and checked the accuracy by verifying that the norm of the state was
maintained to one part in a thousand. For a specified value of n, we randomly generated an
instance of EC3 with a unique satisfying assignment. Then we randomly generated several
different values of the magnetic field directions {m̂i}. For each instance of the problem
and the magnetic field, the run time was chosen so that the success probability without
the perturbation was reasonably high. With this run time fixed, we then determined the
success probability for varying values of the relevant Cj .

First, we consider the perturbation K1. Since it turns on at a constant rate, this
perturbation can be thought of as an error in HP . Note that with C1 6= 0, the final
Hamiltonian is not simply HP , so the algorithm will not work exactly even in the adiabatic
limit T →∞. This perturbation is potentially dangerous because of the way its effect scales
with the number of bits n. Indeed, consider the case where HP can be separated into a
sum of Hamiltonians acting separately on each qubit. If adding K1 reduces the overlap
of the ground state |E0(1)〉 of HP with the perturbed ground state |E0(1)′〉 by some fixed

35

n = 7 n = 10

Figure 2-4: (Top) The success probability of the adiabatic algorithm for the same instances
used in Figure 2-3 under the perturbation K2 defined by (2.24). The four different magnetic
field directions for each instance are also the same as in Figure 2-3. (Bottom) The minimum
gap ∆ in the perturbed problem.

value ε for each of the n qubits, then the total overlap is (1 − ε)n, which is exponentially
small in the number of bits. Thus the algorithm clearly fails in this factorized case. In
general, if the magnitude of K1 is independent of n, then we might expect the algorithm
to fail. However, if the magnitude of K1 falls as 1/n or faster, then the shift of the ground
state may be small enough (as it would be in the factorized case) that the algorithm is not
significantly affected. Note that for any n there is some value of C1 that is small enough
that the disadvantage of reduced overlap with the ground state of HP may be overcome
if the perturbation happens to increase the minimum gap ∆. For this reason, we expect
to sometimes see an increase in success probability for small C1 that goes away as C1 is
increased.

The effect of the perturbation K1 is shown in Figure 2-3 for n = 7 and n = 10 bit
instances of EC3, with four different randomly generated sets of magnetic field directions
for each instance. The run time is chosen such that for C1 = 0, the success probability is
around 1/2. The top plots show that for small C1, the success probability is not strongly
suppressed; in fact, in some cases it is significantly enhanced. For large enough C1, the suc-
cess probability is heavily suppressed. The bottom plots show the overlap |〈E0(1)|E0(1)′〉|2
between the ground state of HP and the actual ground state in the presence of the per-

36

turbation. As we expect, the suppression of the success probability is correlated with the
amount of overlap. We also studied a similar perturbation in which s is replaced by 1− s,
which can be thought of as an error in HB. Unsurprisingly, the results were qualitatively
similar.

Next, we consider the low-frequency perturbation K2. The period of oscillation is chosen
such that the perturbation vanishes at t = 0 and t = T , so the perturbation does not affect
the algorithm in the adiabatic limit. Since the success probability is quite sensitive to the
value of the minimum gap ∆, and it is not a priori obvious whether a perturbation will
increase or decrease ∆, we can guess that turning on a nonzero value of C2 can either
increase the success probability or decrease it.

Figure 2-4 shows the effect of the perturbation K2, using the same instances, magnetic
field directions, and run times as in Figure 2-3. The top plots show the success probability as
a function of C2. As in the case of K1, some perturbations can raise the success probability
and some suppress it. Perhaps unsurprisingly, a particular set of magnetic field directions
that can raise the success probability under K1 is also likely to help when K2 is applied.
But unlike K1, K2 can improve the success probability even with C2 ' 2, where the size of
the perturbation is comparable to the size of the unperturbed Hamiltonian. The bottom
plots show the minimum gap ∆ when the perturbation is added. Note that there is a strong
correlation between the success probability and ∆.

For both perturbations K1 and K2, similar results have been observed (with fewer data
points) for instances with as many as n = 14 bits. Figures 2-3 and 2-4 present typical data.
For example, for a given instance, typically one or two out of four sets of randomly chosen
magnetic field directions led to an improvement in the success probability for some values
of C1 and C2, compared to the unperturbed case.

Finally, we consider the perturbation K3, in which the magnitude of the oscillating
component is fixed, but we may vary its frequency by varying C3. As for K2, the frequency
is chosen so that the perturbation vanishes at t = 0 and t = T . We expect that for C3

of order one, the perturbation will be likely to excite a transition, and that the success
probability will be small. But since both HB and HP have a maximum eigenvalue of order
n, we can anticipate that for

C3 �
nT

π
, (2.26)

the perturbation will be far from any resonance. Then the probability that the perturbation
drives a transition will be low, and the success probability should be comparable to the case
where the perturbation vanishes.

Some representative plots of the dependence of the success probability on C3 are shown
in Figure 2-5. Each plot corresponds to a particular randomly generated instance of EC3
(with either n = 8 bits or n = 10 bits) and a randomly generated set of magnetic field
directions. In the top row of plots, the run time is chosen so that the success probability
is around 1/8 with the perturbation absent (i.e., C3 = 0). In the bottom row, the run
time is doubled. All of the data exhibit the expected qualitative trend. The leftmost point
corresponds to C3 = 0. For the smallest values of C3 > 0, the success probability may not
be too badly damaged; for somewhat larger values of C3 it is heavily suppressed; and for
sufficiently large C3 it recovers to a value near the success probability in the absence of the
perturbation. The value of nT/π is around 19 and 39 for the upper and lower n = 8 plots
and is around 38 and 76 for the upper and lower n = 10 plots, so the estimate (2.26) turns
out to be reasonable.

Another conspicuous feature of the plots in Figure 2-5 is that the success probability

37

n = 8 n = 10

Figure 2-5: The success probability as a function of the frequency C3 of the perturbation K3

defined in (2.25). The data in each plot were obtained for a randomly generated instance
of EC3 with randomly generated magnetic field directions. The data in the left column are
for two instances with n = 8 bits, and the data in the right column are for two instances
with n = 10 bits. For the top row, the run time is chosen so that the success probability is
around 1/8 for C3 = 0, and for the bottom row, the run time is twice as long. The leftmost
points in each plot correspond to C3 = 0, so the perturbation is absent for all t. C3 takes
integer values, so the lines are included only to guide the eye.

tends to oscillate between even and odd values of C3, though whether even or odd values
are favored varies from case to case. This occurs because the perturbation’s time average
vanishes for C3 even, so that its integrated effect is weaker than for C3 odd. Since a small
perturbation might either help or hurt, the success probability is slightly enhanced for odd
C3 in some cases, and is slightly suppressed in other cases.

2.4.3 Discussion

We have conducted numerical simulations to investigate the fault tolerance of adiabatic
quantum computation, and our results are consistent with the claim that this algorithm
is robust against decoherence and certain kinds of random unitary perturbations. Thus,
if a physical system could be engineered with interactions reasonably well described by a
Hamiltonian that smoothly interpolates from an initial HB to a final HP corresponding to
an interesting combinatorial search problem, and if the gap remains large throughout the

38

interpolation, that system might be a powerful computational device.
Although we have viewed unitary perturbations as noise, the fact that they sometimes

raise the success probability suggests a possible way to speed up the adiabatic algorithm.
The algorithm finds the ground state of HP by starting the system in the ground state of
HB. The quantum state evolves as the system Hamiltonian smoothly interpolates from HB

to HP . However, there are many possible choices for HB and many smooth paths from a
given HB to HP . The choices (2.10) and (2.2) are convenient but arbitrary, so choosing an
alternate route to HP might speed up the algorithm. An example of this is seen in [158, 59],
where it is shown that optimizing the time-dependent coefficients of HB and HP allows the
adiabatic algorithm to achieve a square root speedup for the unstructured search problem.
More generally, the interpolating Hamiltonian might involve terms that have nothing to do
with HB or HP , but that increase ∆ and therefore improve performance. For example, the
perturbation K2 sometimes increases the success probability, as seen in Figure 2-4. Rather
than being thought of as a source of error, such a perturbation could be applied intentionally
and might sometimes enhance the effectiveness of the adiabatic algorithm. This idea was
applied in [78], where it was shown that a certain instance on which the adiabatic algorithm
behaves badly can typically be solved efficiently by adding a random perturbation similar
to K2.

2.5 Search by measurement

In this section, we describe a measurement-based variant of adiabatic quantum computation.
This approach is quite similar to standard adiabatic quantum computation, although the
underlying mechanism is somewhat easier to understand than the usual adiabatic theorem.
We also hope that exploring alternative means of computation can motivate new algorithmic
ideas, as discussed in Section 0.3.

In the conventional circuit model of quantum computation described in Section 1.1, a
quantum computation consists of a discrete sequence of unitary gates. Only at the end of
the computation does one perform a measurement in the computational basis to read out
the result. But another model of quantum computation allows measurement at intermediate
stages. Indeed, recent work has shown that measurement alone is universal for quantum
computation: one can efficiently implement a universal set of quantum gates using only
measurements (and classical processing) [157, 151, 125]. Here, we describe an algorithm for
solving combinatorial search problems that consists only of a sequence of measurements.
Using a straightforward variant of the quantum Zeno effect (see for example [150, 7, 161]),
we show how to keep the quantum computer in the ground state of a smoothly varying
Hamiltonian H̃(s). This process can be used to solve a computational problem by encoding
the solution to the problem in the ground state of the final Hamiltonian just as in adiabatic
quantum computation.

We begin in Section 2.5.1 by presenting the algorithm in detail and describing how
measurement of H̃(s) can be performed on a digital quantum computer. In Section 2.5.2,
we estimate the running time of the algorithm in terms of spectral properties of H̃(s), and
in Section 2.5.3, we analyze the measurement process in detail. Then, in Section 2.5.4, we
discuss how the algorithm performs on the unstructured search problem and show that by
a suitable modification, Grover’s quadratic speedup can be achieved by the measurement
algorithm. Finally, in Section 2.5.6, we discuss the relationship between the measurement
algorithm and quantum computation by adiabatic evolution.

39

2.5.1 The measurement algorithm

Our algorithm is conceptually similar to quantum computation by adiabatic evolution. Both
algorithms operate by remaining in the ground state of a smoothly varying Hamiltonian
H̃(s) whose initial ground state is easy to construct and whose final ground state encodes the
solution to the problem, as described in Section 2.2. However, whereas adiabatic quantum
computation uses Schrödinger evolution under H̃(s) to remain in the ground state, the
present algorithm uses only measurement of H̃(s).

To construct the measurement algorithm, we divide the interval [0, 1] intoM subintervals
of width δ = 1/M . So long as the interpolating Hamiltonian H̃(s) is smoothly varying and
δ is small, the ground state of H̃(s) will be close to the ground state of H̃(s+ δ). Thus, if
the system is in the ground state of H̃(s) and we measure H̃(s+ δ), the post-measurement
state is very likely to be the ground state of H̃(s + δ). If we begin in the ground state of
HB = H̃(0) and successively measure H̃(δ), H̃(2δ), . . . , H̃((M − 1)δ), H̃(1) = HP , then the
final state will be the ground state of HP with high probability, assuming δ is sufficiently
small.

To complete our description of the measurement algorithm, we must explain how to
measure the operator H̃(s). The technique we use is motivated by von Neumann’s descrip-
tion of the measurement process [150]. In this description, measurement is performed by
coupling the system of interest to an ancillary system, which we call the pointer. Suppose
that the pointer is a one-dimensional free particle and that the system-pointer interaction
Hamiltonian is H̃(s) ⊗ p, where p is the momentum of the particle. Furthermore, suppose
that the mass of the particle is sufficiently large that we can neglect the kinetic term. Then
the resulting evolution is

e−itH̃(s)⊗p =
∑
a

[
|Ea(s)〉〈Ea(s)| ⊗ e−itEa(s)p

]
, (2.27)

where |Ea(s)〉 are the eigenstates of H̃(s) with eigenvalues Ea(s). Suppose we prepare the
pointer in the state |x = 0〉, a narrow wave packet centered at x = 0. Since the momentum
operator generates translations in position, the above evolution performs the transformation

|Ea(s)〉 ⊗ |x = 0〉 → |Ea(s)〉 ⊗ |x = tEa(s)〉 . (2.28)

If we can measure the position of the pointer with sufficiently high precision that all relevant
spacings xab = t|Ea(s) − Eb(s)| can be resolved, then measurement of the position of the
pointer—a fixed, easy-to-measure observable, independent of H̃(s)—effects a measurement
of H̃(s).

Von Neumann’s measurement protocol makes use of a continuous variable, the position of
the pointer. To turn it into an algorithm that can be implemented on a fully digital quantum
computer, we can approximate the evolution (2.27) using r quantum bits to represent the
pointer, as in the simulation of a particle in a potential discussed in Section 1.4 (and see
also [184, 189]). The full Hilbert space is thus a tensor product of a 2n-dimensional space
for the system and a 2r-dimensional space for the pointer. We let the computational basis
of the pointer, with basis states {|z〉}, represent the basis of momentum eigenstates. The
label z is an integer between 0 and 2r − 1, and the r bits of the binary representation of
z specify the states of the r qubits. In this basis, the digital representation of p is simply

40

given by

p =
r∑
j=1

2−j
1− σ(j)

z

2
, (2.29)

a sum of diagonal operators, each of which acts on only a single qubit. Here σ(j)
z is the

Pauli z operator on the jth qubit. As we will discuss in the next section, we have chosen
to normalize p so that

p|z〉 =
z

2r
|z〉 , (2.30)

which gives ‖p‖ ≈ 1. If H̃(s) is a sum of terms, each of which acts on at most k qubits,
then H̃(s)⊗ p is a sum of terms, each of which acts on at most k + 1 qubits. If k is a fixed
constant independent of the problem size n, such a Hamiltonian can be simulated efficiently
on a universal quantum computer using Rules 1.1 and 1.4. Expanded in the momentum
eigenbasis, the initial state of the pointer is

|x = 0〉 =
1

2r/2

2r−1∑
z=0

|z〉 . (2.31)

The measurement is performed by evolving under H̃(s)⊗ p for a total time τ . We discuss
how to choose τ in the next section. After this evolution, the position of the simulated
pointer could be measured by measuring the qubits that represent it in the x basis, i.e.,
the Fourier transform of the computational basis. However, note that our algorithm only
makes use of the post-measurement state of the system, not of the measured value of H̃(s).
In other words, only the reduced density matrix of the system is relevant. Thus it is not
actually necessary to perform a Fourier transform before measuring the pointer, or even to
measure the pointer at all. When the system-pointer evolution is finished, one can either
re-prepare the pointer in its initial state |x = 0〉 or discard it and use a new pointer, and
immediately begin the next measurement.

As an aside, note that the von Neumann measurement procedure described above is
identical to the well-known phase estimation algorithm for measuring the eigenvalues of a
unitary operator [118, 52], which can also be used to produce eigenvalues and eigenvectors
of a Hamiltonian [3]. This connection has been noted previously in [189], and it has been
pointed out that the measurement is a non-demolition measurement in [174]. In the phase
estimation problem, we are given an eigenvector |ψ〉 of a unitary operator U and asked to
determine its eigenvalue e−iφ. The algorithm uses two registers, one that initially stores
|ψ〉 and one that will store an approximation of the phase φ. The first and last steps of the
algorithm are Fourier transforms on the phase register. The intervening step is to perform
the transformation

|ψ〉 ⊗ |z〉 → U z|ψ〉 ⊗ |z〉 , (2.32)

where |z〉 is a computational basis state. If we take |z〉 to be a momentum eigenstate
with eigenvalue z (i.e., if we choose a different normalization than in (2.30)) and let U =
e−iHt, this is exactly the transformation induced by e−i(H⊗p)t. Thus we see that the phase
estimation algorithm for a unitary operator U is exactly von Neumann’s prescription for
measuring i lnU .

41

2.5.2 Running time

The running time of the measurement algorithm is the product of M , the number of mea-
surements, and τ , the time per measurement. Even if we assume perfect projective mea-
surements, the algorithm is guaranteed to keep the computer in the ground state of H̃(s)
only in the limit M → ∞, so that δ = 1/M → 0. Given a finite running time, the prob-
ability of finding the ground state of HP with the last measurement will be less than 1.
To understand the efficiency of the algorithm, we need to determine how long we must
run as a function of n, the number of bits on which the function h is defined, so that the
probability of success is not too small. In general, if the time required to achieve a success
probability greater than some fixed constant (e.g., 1

2) is poly(n), we say the algorithm is
efficient, whereas if the running time grows exponentially, we say it is not.

To determine the running time of the algorithm, we consider the effect of the measure-
ment process on the reduced density matrix of the system. Here, we simply motivate the
main result; a detailed analysis is given in the following section.

Let ρ(j) denote the reduced density matrix of the system after the jth measurement; its
matrix elements are

ρ
(j)
ab = 〈Ea(jδ)|ρ(j)|Eb(jδ)〉 . (2.33)

The interaction with the digitized pointer effects the transformation

|Ea(s)〉 ⊗ |z〉 → e−iEa(s)zt/2r |Ea(s)〉 ⊗ |z〉 . (2.34)

Starting with the pointer in the state (2.31), evolving according to (2.34), and tracing over
the pointer, the quantum operation induced on the system is

ρ
(j+1)
ab = κ

(j+1)
ab

∑
c,d

U (j)
ac ρ

(j)
cd U

(j)∗
bd , (2.35)

where the unitary transformation relating the energy eigenbases at s = jδ and s = (j + 1)δ
is

U
(j)
ab = 〈Ea((j + 1)δ)|Eb(jδ)〉 (2.36)

and

κ
(j)
ab =

1
2r

2r−1∑
z=0

ei[Eb(jδ)−Ea(jδ)]zt/2r
. (2.37)

Summing this geometric series, we find∣∣∣κ(j)
ab

∣∣∣2 = |κ([Eb(jδ)− Ea(jδ)]t/2)|2 , (2.38)

where

|κ(x)|2 =
sin2 x

4r sin2(x/2r)
. (2.39)

This function is shown in Fig. 2-6 for the case r = 4. It has a sharp peak of unit height and
width of order 1 at the origin, and identical peaks at integer multiples of 2rπ.

If the above procedure were a perfect projective measurement, then we would have
κab = 0 whenever Ea 6= Eb. Assuming (temporarily) that this is the case, we find

ρ
(j+1)
00 ≥

∣∣∣U (j)
00

∣∣∣2 ρ(j)
00 (2.40)

42

Figure 2-6: The function |κ(x)|2 for r = 4.

with the initial condition ρ(0)
00 = 1 and ρ(0)

ab = 0 otherwise. Perturbation theory gives

∣∣∣U (j)
00

∣∣∣2 = 1− δ2
∑
a 6=0

|〈Ea(s)|dH̃ds |E0(s)〉|2

(E0(s)− Ea(s))2

∣∣∣∣∣
s=jδ

+O(δ3) (2.41)

≥ 1− Γ(jδ)2 δ2

∆(jδ)2
+O(δ3) , (2.42)

where ∆(s) and Γ(s) are given in (2.5) and (2.6). In terms of the quantities ∆ and Γ defined
in (2.4), we find that according to (2.40), the probability of being in the ground state after
the last measurement is at least

ρ
(M)
00 ≥

[
1− Γ2

M2∆2
+O(M−3)

]M
(2.43)

= exp
(
− Γ2

M∆2

)
+O(M−2) . (2.44)

The probability of success is close to 1 provided

M � Γ2

∆2
. (2.45)

When HB and HP are both sums of poly(n) terms, each of which acts nontrivially on at
most a constant number of qubits, it is easy to choose an interpolation such as (2.2) so that
Γ is only poly(n). Thus, as for the adiabatic algorithm, we are mainly interested in the
behavior of ∆, the minimum gap between the ground and first excited states. We see that
for the algorithm to be successful, the total number of measurements must be much larger

43

than 1/∆2.
In fact, the simulated von Neumann procedure is not a perfect projective measurement.

We must determine how long the system and pointer should interact so that the measure-
ment is sufficiently good. In particular, the analysis of the following section shows that
|κ(j)

01 |2 should be bounded below 1 by a constant for all j. In other words, to sufficiently
resolve the difference between the ground and first excited states, we must decrease the
coherence between them by a fixed fraction per measurement. The width of the central
peak in Figure 2-6 is of order 1, so it is straightforward to show that to have |κ(x)|2 less
than, say, 1/2, we must have x ≥ O(1). This places a lower bound on the system-pointer
interaction time of

τ ≥ O(1)
∆

(2.46)

independent of r, the number of pointer qubits.
Putting these results together, we find that the measurement algorithm is successful if

the total running time, T = Mτ , satisfies

T � Γ2

∆3
. (2.47)

This result can be compared to the corresponding expression for quantum computation by
adiabatic evolution, (2.7).

The adiabatic and measurement algorithms have qualitatively similar behavior: if the
gap is exponentially small, neither algorithm is efficient, whereas if the gap is only polyno-
mially small, both algorithms are efficient. However, the measurement algorithm is slightly
slower: whereas adiabatic evolution runs in a time that grows like 1/∆2, the measurement
algorithm runs in a time that grows like 1/∆3. To see that this comparison is fair, recall that
we have defined the momentum in (2.29) so that ‖p‖ ≈ 1, which gives ‖H̃(s)‖ ≈ ‖H̃(s)⊗p‖.
Alternatively, we can compare the number m of few-qubit unitary gates needed to simulate
the two algorithms on a conventional quantum computer. Using Rule 1.4 with the first-
order expansion (1.7), we find m = O(1/∆4) for adiabatic evolution and m = O(1/∆6) for
the measurement algorithm, in agreement with the previous comparison.

2.5.3 The measurement process

In this section, we analyze the measurement process in greater detail. First, we derive the
bound (2.47) on the running time by demonstrating (2.45) and (2.46). We show rigorously
that these bounds are sufficient as long as the gap is only polynomially small and the number
of qubits used to represent the pointer is r = O(log n). Finally, we argue that r = 1 qubit
should typically be sufficient.

Our goal is to find a bound on the final success probability of the measurement algorithm.
We consider the effect of the measurements on the reduced density matrix of the system,
which can be written as the block matrix

ρ =
(
µ ν†

ν χ

)
(2.48)

where µ = ρ00, νa = ρa0 for a 6= 0, and χab = ρab for a, b 6= 0. Since tr ρ = 1, µ = 1− trχ.
For ease of notation, we suppress j, the index of the iteration, except where necessary. The
unitary transformation (2.36) may also be written as a block matrix. Define ε = Γδ/∆.

44

Using perturbation theory and the unitarity constraint, we can write

U =
(
u −w†V +O(ε3)
w V +O(ε2)

)
, (2.49)

where |u|2 ≥ 1 − ε2 + O(ε3), ‖w‖2 ≤ ε2 + O(ε3), and V is a unitary matrix. We let ‖·‖
denote the l2 vector or matrix norm as appropriate. Furthermore, let

κ =
(

1 k†

k J

)
. (2.50)

From (2.35), the effect of a single measurement may be written

ρ′ = (UρU †) ◦ κ , (2.51)

where ◦ denotes the element-wise (Hadamard) product. If we assume ‖ν‖ = O(ε), we find

µ′ = |u|2µ− w†V ν − ν†V †w +O(ε3) (2.52)

ν ′ = [V ν + µw − V χV †w +O(ε2)] ◦ k . (2.53)

Now we use induction to show that our assumption always remains valid. Initially,
ν(0) = 0. Using the triangle inequality in (2.53), we find∥∥ν ′∥∥ ≤ [‖ν‖+ ε+O(ε2)]k̃ , (2.54)

where
k̃ = max

j,a

∣∣∣k(j)
a

∣∣∣ . (2.55)

So long as k̃ < 1, we can sum a geometric series, extending the limits to go from 0 to ∞,
to find ∥∥∥ν(j)

∥∥∥ ≤ ε

1− k̃
+O(ε2) (2.56)

for all j. In other words, ‖ν‖ = O(ε) so long as k̃ is bounded below 1 by a constant.

Finally, we put a bound on the final success probability µ(M). Using the Cauchy-
Schwartz inequality in (2.52) gives

µ′ ≥ (1− ε2)µ− 2ε2

1− k̃
+O(ε3) . (2.57)

Iterating this bound M times with the initial condition µ(0) = 1, we find

µ(M) ≥ 1− Γ2

M∆2

(
1 +

2
1− k̃

)
+O(Mε3) . (2.58)

If k̃ is bounded below 1 by a constant (independent of n), we find the condition (2.45).

The requirement on k̃ gives the bound (2.46) on the measurement time τ , and also gives
a condition on the number of pointer qubits r. To see this, we must investigate properties
of the function |κ(x)|2 defined in (2.39) and shown in Fig. 2-6. It is straightforward to show
that |κ(x)|2 ≤ 1/2 for π/2 ≤ x ≤ π(2r − 1/2). Thus, if we want k̃ to be bounded below 1

45

by a constant, we require

π/2 ≤ [Ea(s)− E0(s)]t/2 ≤ π(2r − 1/2) (2.59)

for all s and for all a 6= 0. The left hand bound with a = 1 gives t ≥ π/∆, which is (2.46).
Requiring the right hand bound to hold for the largest energy difference gives the additional
condition 2r & (E2n−1 − E0)/∆. Since we only consider Hamiltonians H̃(s) that are sums
of poly(n) terms of bounded size, the largest possible energy difference must be bounded by
a polynomial in n. If we further suppose that ∆ is only polynomially small, this condition
is satisfied by taking

r = O(log n) . (2.60)

Thus we see that the storage requirements for the pointer are rather modest.
However, for the purpose of the measurement algorithm, the pointer typically need not

comprise even this many qubits. Since the goal of the measurement algorithm is to keep
the system close to its ground state, it would be surprising if the energies of highly excited
states were relevant. Suppose we take r = 1; then |κ(x)|2 = cos2(x/2). As before, (2.46)
suffices to make |κ01|2 sufficiently small. However, we must also consider terms involving
|κ0a|2 for a > 1. The algorithm will fail if the term µw ◦ k in (2.53) accumulates to be O(1)
over M iterations. This will only happen if, for O(M) iterations, most of ‖w‖ comes from
components wa with (Ea − E0)t close to an integer multiple of 2π. In such a special case,
changing t will avoid the problem. An alternative strategy would be to choose t from a
random distribution independently at each iteration.

2.5.4 The unstructured search problem

The unstructured search problem considered by Grover is to find a particular unknown
n-bit string w using only queries of the form “is z the same as w?” [98]. In other words,
one is trying to minimize a function

hw(z) =

{
0 z = w

1 z 6= w.
(2.61)

Since there are 2n possible values for w, the best possible classical algorithm uses Θ(2n)
queries. However, Grover’s algorithm requires only Θ(2n/2) queries, providing a (provably
optimal [19]) quadratic speedup. In Grover’s algorithm, the winner is specified by an
oracle Uw with

Uw|z〉 = (−1)hw(z)|z〉 . (2.62)

This oracle is treated as a black box that one can use during the computation. One call to
this black box is considered to be a single query of the oracle.

In addition to Grover’s original algorithm, quadratic speedup can also be achieved in
a time-independent Hamiltonian formulation [81] (and see also Chapter 4) or by adiabatic
quantum computation [158, 59]. In either of these formulations, the winner is specified by
an “oracle Hamiltonian”

Hw = 1− |w〉〈w| (2.63)

whose ground state is |w〉 and that treats all orthogonal states (the non-winners) equiva-
lently. One is provided with a black box that implements Hw, where w is unknown, and is
asked to find w. Instead of counting queries, the efficiency of the algorithm is quantified in

46

Figure 2-7: Oracles for the unstructured search problem. (a) Top: Grover’s original oracle.
(b) Center: An oracle that performs evolution according to Hw. The double line indicates
a classical control parameter, the time for which the Hamiltonian is applied. (c) Bottom:
An oracle that allows one to measure Hw.

terms of the total time for which one applies the oracle Hamiltonian.

Here, we show that by using a slightly different oracle Hamiltonian, we can achieve
quadratic speedup using the measurement algorithm. We let the problem Hamiltonian be
HP = Hw and we consider a one-parameter family of Hamiltonians H̃(s) given by (2.2) for
some HB. Because we would like to measure this Hamiltonian, we will use a black box that
evolves the system and a pointer according to Hw ⊗ p, where p is the momentum of the
pointer. This oracle is compared to the previous two in Fig. 2-7. By repeatedly alternating
between applying this black box and evolving according to HB ⊗ p, each for small time,
we can produce an overall evolution according to the Hamiltonian [sHB + (1− s)HP]⊗ p,
and thus measure the operator H̃(s) for any s. Note that either oracle Hamiltonian can be
simulated efficiently using the unitary oracle (and vice versa), but we will find it convenient
to use the continuous-time description.

Now consider the beginning Hamiltonian

HB =
n∑
j=1

1− σ(j)
x

2
, (2.64)

where σ(j)
x is the Pauli x operator acting on the jth qubit. This beginning Hamiltonian is

a sum of local terms, and has the easy-to-prepare ground state |E0(0)〉 = 2−n/2
∑

z |z〉, the
uniform superposition of all possible bit strings in the computational basis. If we consider
the linear interpolation (2.2), then one can show [80] that the minimum gap occurs at

s∗ = 1− 2
n

+O(n−2) , (2.65)

where the gap takes the value

∆∗ = ∆(s∗) = 21−n/2[1 +O(n−1)] . (2.66)

47

Naively applying (2.47) gives a running time T = O(23n/2), which is even worse than the
classical algorithm.

However, since we know the value of s∗ independent of w, we can improve on this
approach by making fewer measurements. We observe that in the limit of large n, the
ground state of H̃(s) is close to the ground state |E0(0)〉 of HB for s . s∗ and is close to
the ground state |E0(1)〉 = |w〉 of HP for s & s∗, switching rapidly from one state to the
other in the vicinity of s = s∗. In Section 2.5.5, we show that up to terms of order 1/n, the
ground state |ψ+〉 and the first excited state |ψ−〉 of H̃(s∗) are the equal superpositions

|ψ±〉 '
1√
2
(|E0(0)〉 ± |E0(1)〉) (2.67)

of the initial and final ground states (which are nearly orthogonal for large n). If we prepare
the system in the state |E0(0)〉 and make a perfect measurement of H̃(s∗) followed by a
perfect measurement of H̃(1), we find the result w with probability 1

2 . The same effect can
be achieved with an imperfect measurement, even if the pointer consists of just a single
qubit. First consider the measurement of H̃(s∗) in the state |E0(0)〉. After the system and
pointer have interacted for a time t according to (2.34) with r = 1, the reduced density
matrix of the system in the {|ψ+〉, |ψ−〉} basis is approximately

1
2

(
1 ei∆

∗t/4 cos(∆∗t/4)
e−i∆

∗t/4 cos(∆∗t/4) 1

)
. (2.68)

If we then measureH(1) (i.e., measure in the computational basis), the probability of finding
w is approximately

1
2

sin2(∆∗t/4) . (2.69)

To get an appreciable probability of finding w, we choose t = Θ(2n/2).

This approach is similar to the way one can achieve quadratic speedup with the adiabatic
algorithm. Schrödinger time evolution governed by (2.2) does not yield quadratic speedup.
However, because s∗ is independent of w, we can change the Hamiltonian quickly when the
gap is big and more slowly when the gap is small. Since the gap is only of size ∼ 2−n/2 for
a region of width ∼ 2−n/2, the total oracle time with this modified schedule need only be
O(2n/2). This has been demonstrated explicitly by solving for the optimal schedule using a
different beginning Hamiltonian that is not a sum of local terms [158, 59], but it also holds
using the beginning Hamiltonian (2.64). We will return to this idea in Section 4.7.

Note that measuring H(s∗) is not the only way to solve the unstructured search problem
by measurement. More generally, we can start in some w-independent state, measure the
operator

H ′ = Hw +K (2.70)

where K is also independent of w, and then measure in the computational basis. For
example, suppose we choose

K = 1− |ψ〉〈ψ| , (2.71)

where |ψ〉 is a w-independent state with the property |〈w|ψ〉| ∼ 2−n/2 for all w. (If we are
only interested in the time for which we use the black box shown in Fig. 2-7(c), i.e., if we
are only interested in the oracle query complexity, then we need not restrict K to be a sum
of local terms.) In (2.71), the coefficient of −1 in front of |ψ〉〈ψ| has been fine-tuned so

48

that |ψ〉+ |w〉 is the ground state of H̃ (choosing the phase of |w〉 so that 〈w|ψ〉 is real and
positive). If the initial state has a large overlap with |ψ〉, then the measurement procedure
solves the unstructured search problem. However, the excited state |ψ〉 − |w〉 is also an
eigenstate of H ′, with an energy higher by of order 2−n/2. Thus the time to perform the
measurement must be Ω(2n/2).

The measurement procedures described above saturate the well-known lower bound
on the time required to solve the unstructured search problem. Using an oracle like the
one shown in Fig. 2-7(a), Bennett, Bernstein, Brassard, and Vazirani showed that the
unstructured search problem cannot be solved on a quantum computer using fewer than
of order 2n/2 oracle queries [19]. By a straightforward modification of their argument, an
equivalent result applies using the oracle shown in Fig. 2-7(c). Thus every possible H ′ as in
(2.70) that can be measured to find w must have a gap between the energies of the relevant
eigenstates of order 2−n/2 or smaller.

2.5.5 Eigenstates in the unstructured search problem

Here, we show that the ground state of H̃(s∗) for the Grover problem is close to (2.67). Our
analysis follows Section 4.2 of [80].

Since the problem is invariant under the choice of w, we consider the case w = 0
without loss of generality. In this case, the problem can be analyzed in terms of the total
spin operators

Sa =
1
2

n∑
j=1

σ(j)
a , (2.72)

where a = x, y, z and σ(j)
a is the Pauli a operator acting on the jth qubit. The Hamiltonian

commutes with ~S2 = S2
x + S2

y + S2
z , and the initial state has ~S2 = n

2 (n2 + 1), so we can
restrict our attention to the (n + 1)-dimensional subspace of states with this value of ~S2.
In this subspace, the eigenstates of the total spin operators satisfy

Sa|ma = m〉 = m|ma = m〉 (2.73)

for m = −n
2 ,−

n
2 + 1, . . . , n2 . Written in terms of the total spin operators and eigenstates,

the Hamiltonian is

H̃(s) = (1− s)
(n

2
− Sx

)
+ s

(
1−

∣∣∣mz =
n

2

〉〈
mz =

n

2

∣∣∣) . (2.74)

The initial and final ground states are given by |E0(0)〉 = |mx = n
2 〉 and |E0(1)〉 = |mz = n

2 〉,
respectively.

Projecting the equation H̃(s)|ψ〉 = E|ψ〉 onto the eigenbasis of Sx, we find〈
mx =

n

2
− r
∣∣∣ψ〉 =

s

1− s

√
Pr

r − λ

〈
mz =

n

2

∣∣∣ψ〉 , (2.75)

where we have defined λ = (E − s)/(1 − s) and Pr = 2−n
(
n
r

)
. Now focus on the ground

state |ψ+〉 and the first excited state |ψ−〉 of H̃(s∗). By equation (4.39) of [80], these states
have λ± = ∓n

2 2−n/2(1 + O(1/n)). Putting r = 0 in (2.75) and taking s = s∗ from (2.65),
we find 〈

mx =
n

2

∣∣∣ψ±〉 = ±
〈
mz =

n

2

∣∣∣ψ±〉 (1 +O(1/n)) . (2.76)

49

For r 6= 0, we have〈
mx =

n

2
− r
∣∣∣ψ±〉 =

n

2

√
Pr
r

〈
mz =

n

2

∣∣∣ψ±〉 (1 +O(1/n)) . (2.77)

Requiring that |ψ±〉 be normalized, we find

1 =
n∑
r=0

∣∣∣〈mx =
n

2
− r
∣∣∣ψ±〉∣∣∣2 (2.78)

=
∣∣∣〈mz =

n

2

∣∣∣ψ±〉∣∣∣2(1 +
n2

4

n∑
r=1

Pr
r2

)
(1 +O(1/n)) (2.79)

=
∣∣∣〈mz =

n

2

∣∣∣ψ±〉∣∣∣2 (2 +O(1/n)) , (2.80)

which implies |〈mz = n
2 |ψ±〉|

2 = 1
2 + O(1/n). From (2.76), we also have |〈mx = n

2 |ψ±〉|
2 =

1
2 +O(1/n). Thus we find

|ψ±〉 '
1√
2

(∣∣∣mx =
n

2

〉
±
∣∣∣mz =

n

2

〉)
(2.81)

up to terms of order 1/n, which is (2.67).

2.5.6 Discussion

We have described a way to solve combinatorial search problems on a quantum computer
using only a sequence of measurements to keep the computer near the ground state of a
smoothly varying Hamiltonian. The basic principle of this algorithm is similar to quantum
computation by adiabatic evolution, and the running times of the two methods are closely
related. Because of this close connection, many results on adiabatic quantum computa-
tion can be directly applied to the measurement algorithm. We have also shown that the
measurement algorithm can achieve quadratic speedup for the unstructured search problem
using knowledge of the place where the gap is smallest, as in adiabatic quantum computa-
tion.

Although it does not provide a computational advantage over quantum computation
by adiabatic evolution, the measurement algorithm is an alternative way to solve general
combinatorial search problems on a quantum computer. The algorithm can be simply
understood in terms of measurements of a set of operators, without reference to unitary time
evolution. Nevertheless, we have seen that to understand the running time of the algorithm,
it is important to understand the dynamical process by which these measurements are
realized.

The robustness of the adiabatic algorithm to unitary control errors is shared to some
extent by the measurement algorithm: again, the particular path from HB to HP is unim-
portant as long as the initial and final Hamiltonians are correct, the path is smoothly
varying, and the minimum gap along the path is not too small. However, we would not
necessarily expect the measurement algorithm to share the adiabatic algorithm’s robust-
ness to thermal transitions out of the ground state, since the Hamiltonian of the quantum
computer during the measurement procedure is not simply H̃(s).

50

Chapter 3

Quantum walk

3.1 Introduction

The concept of random walk has a long history in mathematics and physics. Furthermore,
random walks on graphs, also known as Markov chains, are widely used in classical com-
puter science—a few examples include space-bounded computation [9], constraint satisfac-
tion problems [154, 160], graph coloring [141], approximate counting [169], and probability
amplification [53, 108]. Thus, in the search for new quantum algorithms, there has been
considerable interest in studying a quantum version of random walk.

Perhaps the best known type of random walk is the simple discrete-time random walk.
In this process, one begins at some vertex of a graph (possibly selected at random) and at
each time step has equal probability of moving to each adjacent vertex. These stochastic
dynamics can be viewed as the deterministic evolution of a probability distribution over
the vertices. The idea of a quantum walk is to replace the probability distribution with a
quantum state, but to retain the notion of local evolution on the graph.

As we discuss in Section 3.4, there is a certain technical difficulty in defining a discrete-
time quantum walk. Therefore, we will find it more natural to define a quantum walk in
continuous time, in analogy to a continuous-time classical random walk (which we will do
in Section 3.2). However, the spirit of the idea is the same: by replacing a probability
distribution with complex amplitudes, we can create a walk that exhibits constructive and
destructive interference, resulting in radically different behavior. We will give a few simple
examples of quantum walks in Section 3.3, and we will present original results on how
quantum walk can be used to achieve algorithmic speedup in Chapters 4 and 5. Some
related results by other researchers are reviewed in Section 3.5.

To discuss quantum walk, we need some standard graph-theoretic notation. We write
a ∈ G to denote that the vertex a is in the graph G and ab ∈ G to denote that the edge
joining vertices a and b is in the graph. We let deg(a) denote the degree of vertex a, i.e.,
the number of edges incident on that vertex. Given an undirected graph G with N vertices
and no self-loops, we define the N ×N adjacency matrix

Aab =

{
1 ab ∈ G
0 otherwise

(3.1)

which describes the connectivity of G. In terms of this matrix, we also define the Laplacian
L = A−D, where D is the diagonal matrix with Daa = deg(a). The matrix L is called the

51

Laplacian because it is a discrete approximation to the continuum operator ∇2 whenever
G can be viewed as a discretization of a continuous manifold.

3.2 From random walk to quantum walk

A continuous-time quantum walk on a graph can be defined in direct analogy to a corre-
sponding continuous-time classical random walk, as proposed by Farhi and Gutmann [82].
A continuous-time classical random walk is a Markov process on a graph. In this process,
there is a fixed probability per unit time γ of moving to an adjacent vertex. In other words,
from any vertex, the probability of jumping to any connected vertex in a time ε is γε (in
the limit ε → 0). If the graph has N vertices, this classical random walk can be described
by the N × N infinitesimal generator matrix K = −γL, where L is the Laplacian of the
graph. If pa(t) is the probability of being at vertex a at time t, then

dpa(t)
dt

=
∑
b

Kab pb(t) . (3.2)

Note that because the columns of K sum to zero, we have d
dt

∑
a pa(t) = 0, so that an

initially normalized distribution remains normalized, i.e.,
∑

a pa(t) = 1 for all t.
The continuous-time quantum walk on G takes place in an N -dimensional Hilbert space

spanned by states |a〉, where a is a vertex in G. In terms of these basis states, we can
write a general state |ψ(t)〉 in terms of the N complex amplitudes qa(t) = 〈a|ψ(t)〉. If the
Hamiltonian is H, then the dynamics of the system are determined by the Schrödinger
equation (0.1), which we may rewrite as

i
dqa(t)

dt
=
∑
b

〈a|H|b〉 qb(t) . (3.3)

Note the similarity between (3.2) and (3.3). A natural quantum analog of the continuous-
time classical random walk described above is given by the Hamiltonian with matrix ele-
ments

〈a|H|b〉 = Kab , (3.4)

i.e., H = −γL.
Although this choice of the Hamiltonian is most closely analogous to the continuous-

time classical random walk, it is not unique. Whereas (3.2) requires
∑

aKab to conserve∑
a pa(t), (3.3) requires H = H† to conserve

∑
a |qa(t)|2, i.e., to be unitary. Any choice

consistent with this requirement is legitimate as long as it retains the locality of the graph.
For example, we can set the diagonal to zero and choose H = γA. For regular graphs (i.e.,
graphs for which deg(a) is independent of a), these two choices differ by a multiple of the
identity matrix, so they give rise to the same quantum dynamics. However, for non-regular
graphs, the two choices will give different results. In the following chapters, we will have
occasion to use both definitions depending on the situation.

In fact, one could reasonably view any time-independent Hamiltonian dynamics in an N -
dimensional Hilbert space as a quantum walk on an N -vertex graph G provided 〈a|H|b〉 6= 0
if and only if ab ∈ G. In other words, we can associate arbitrary complex weights with the
directed edges of the graph, so long as the value associated to the edge ab is the complex
conjugate of the value associated to the edge ba. However, thinking of Hamiltonian evolution

52

000

010

001

011

100

110

101

111

�
�

�

�
�

�

�
�

�

�
�

�

s

s

s

s
s

s

s

s

Figure 3-1: Three-dimensional hypercube, with vertices labeled by bit strings.

as a quantum walk on a graph can be helpful, since the underlying graph can provide a
visual way of engineering quantum interference.

To be useful for algorithmic applications, the quantum walk must be efficiently imple-
mentable by a quantum computer. If the graph is sufficiently sparse, then its quantum walk
can be implemented efficiently using Rule 1.7 from Chapter 1. For example, we will use
this implementation in our demonstration of exponential algorithmic speedup by quantum
walk in Chapter 5.

3.3 Examples

In this section, we present two simple examples of quantum walks on graphs, the n-
dimensional hypercube and the infinite line. These examples serve to illustrate some basic
features of quantum walk, including its relationship to classical random walk. They also
introduce some concepts that will be useful in later chapters.

3.3.1 Quantum walk on a hypercube

The n-dimensional hypercube is a graph with N = 2n vertices. The familiar case n = 3 (the
cube) is shown in Figure 3-1. The vertices of the hypercube can be labeled by n-bit strings,
where two vertices are connected if they differ in exactly one bit. Thus the adjacency matrix
can be written

A =
n∑
j=1

σ(j)
x (3.5)

where σ(j)
x is the Pauli x operator for the jth qubit. Since the hypercube is a regular graph,

it does not matter if we use the adjacency matrix or the Laplacian as the generator of the
quantum walk, so we use the adjacency matrix for simplicity.

Because A is a sum of commuting single-qubit operators, it is trivial to exponentiate.
At time t (in units where γ = 1), the evolution of the quantum walk is described by the
unitary operator

U(t) = e−iAt (3.6)

=
n∏
j=1

e−iσ
(j)
x t (3.7)

53

=
n∏
j=1

(
cos t− iσ(j)

x sin t
)
. (3.8)

Note that after time t = π/2, we have U(π/2) =
∏n
j=1 σ

(j)
x (up to an overall phase), i.e., the

quantum walk evolves from any given state to its antipodal state. This can be contrasted
with a classical random walk, which rapidly approaches a uniform distribution over the
vertices, so that the probability of reaching the antipodal vertex is always exponentially
small—a straightforward calculation shows that it is [(1 − e−2t)/2]n. This is perhaps the
simplest example of radically different behavior between a quantum walk and its classical
counterpart.

3.3.2 Quantum walk on a line

Now consider the quantum walk on an infinite, translationally invariant line. In this graph,
there is a vertex for every integer j, and the vertex j is connected to the two vertices j + 1
and j − 1, so the nonzero matrix elements of the adjacency matrix are

〈j|A|j ± 1〉 = 1 . (3.9)

Again, the graph is regular, so we choose H = A for simplicity. The eigenstates of this
Hamiltonian are the momentum eigenstates |p〉 with components

〈j|p〉 =
1√
2π
eipj , −π ≤ p ≤ π (3.10)

having energies
E(p) = 2 cos p . (3.11)

Using these expressions, it is straightforward to calculate the propagator, or Green’s func-
tion, to go from j to k in time t:

G(j, k, t) = 〈k|e−iHt|j〉 (3.12)

=
1
2π

∫ π

−π
eip(k−j)−2it cos p dp (3.13)

= (−i)k−jJk−j(2t) (3.14)

where Jν(·) is a Bessel function of order ν. By the well-known properties of the Bessel
function, this shows that a state initially localized at a single vertex evolves as a left-
moving and a right-moving wave packet, each propagating with speed 2. To see this, note
that the Bessel function has the following asymptotic expansions for ν � 1:

Jν(ν sech ξ) ∼ e−ν(ξ−tanh ξ)

√
2πν tanh ξ

(3.15)

Jν(ν + ξν1/3) = (2/ν)1/3 Ai(−21/3ξ) +O(ν−1) (3.16)

Jν(ν sec ξ) =
√

2
πν tan ξ

{
cos[π4 − ν(ξ − tan ξ)] +O(ν−1)

}
, 0 < ξ <

π

2
(3.17)

where Ai(·) is an Airy function [2]. These three relations show that for |k−j| � 1, G(j, k, t)
is exponentially small in |k−j| for t < 0.99 · |k−j|/2, of order |k−j|−1/3 for t near |k−j|/2,

54

and of order |k − j|−1/2 for t > 1.01 · |k − j|/2.

This result can be contrasted with the corresponding classical random walk. In time t,
the continuous-time classical random walk on the line only moves a distance proportional
to
√
t. This can be seen by analytically continuing the quantum walk (using the Laplacian

rather than the adjacency matrix as the generator of the walk, since only the Laplacian
gives rise to a probability-conserving classical Markov process). Including the appropriate
phase factor and then putting it→ t in (3.14), we find

Gc(j, k, t) = [e−Lt]kj (3.18)

= e−2tIk−j(2t) (3.19)

for the probability of moving from j to k in time t, where Iν(·) is the modified Bessel
function of order ν. This shows that the probability to move a distance x in time t is
e−2tIx(2t), which for large t is approximately 1√

4πt
exp(−x2/4t), a Gaussian of width

√
2t,

as can be shown using asymptotic properties of the modified Bessel function.

3.4 Discrete-time quantum walk

The model of quantum walk presented above is based on continuous time evolution. This
definition is natural from the point of view of physics, but it also sidesteps a fundamental
problem with defining a quantum analog of a discrete-time classical random walk. The
essence of the difficulty can be seen by considering the infinite line. Suppose we attempt to
define a translationally invariant rule that transforms a given vertex to a superposition of
its neighbors. One is tempted to propose

|j〉 ?→ 1√
2
(|j + 1〉+ |j − 1〉) , (3.20)

but this rule is clearly not unitary, since (for example) the orthogonal states |1〉 and | − 1〉
evolve to non-orthogonal states. In fact, under very mild assumptions, Meyers proved that
no discrete-time quantum walk on the vertices of the line exists [143]. This result can also be
generalized to a lattice of any dimension [144], and furthermore, it can be shown that only
graphs with special properties can possibly support local unitary dynamics, even without
homogeneity restrictions [162].

However, despite this difficulty, it is possible to define a discrete-time quantum walk on
a general graph if one is willing to use a state space other than the vertices of the graph.1

In particular, one can define a discrete-time quantum walk on the directed edges of a graph,
where each step maps an outgoing directed edge of a given vertex to a superposition of
the outgoing directed edges of its neighbors [182, 11, 4] (and see also [104, 172] for related
formulations). This model has been studied in some detail, and is generally quite similar
in behavior to the continuous-time quantum walk. Some examples are mentioned in the
following section, where we summarize known results on quantum walks.

1We are reminded of John Bell’s remark that “. . . what is proved by impossibility proofs is lack of
imagination” [17]. For another example of this phenomenon, see Section 4.5.

55

3.5 Discussion

Quantum walks on graphs have recently been widely studied. To conclude this chapter, we
review some of the main results on both continuous- and discrete-time quantum walk, some
of which will be discussed in the following two chapters. In our view, these results have
only scratched the surface of the possible phenomenology and algorithmic implications of
quantum walk.

The quantum walk on the hypercube, in both continuous and discrete time, was inves-
tigated by Moore and Russell [148]. They were primarily interested in determining how
quickly the walk starting from a particular vertex spreads out over the entire graph. The
discrete-time quantum walk on the line has been analyzed by many authors, including Am-
bainis, Bach, Nayak, Vishwanath, and Watrous [11]. Its behavior is qualitatively similar to
the continuous-time quantum walk on the line described in Section 3.3.2.

Gerhardt and Watrous have analyzed the continuous-time quantum walk on certain Cay-
ley graphs of the symmetric group using the tools of representation theory [90, 91]. Their
results show that this quantum walk is very different from its classical counterpart. Unfor-
tunately, it appears that, rather than reaching interesting faraway locations, the quantum
walk tends to remain close to its starting point, a phenomenon that does not seem amenable
to algorithmic applications.

Several examples are known of graphs for which the quantum walk moves rapidly be-
tween two particular vertices, but where the corresponding classical random walk does not.
The first example of this kind was a continuous-time quantum walk on a certain tree pre-
sented by Farhi and Gutmann [82]. A much simpler example is the continuous-time walk
on the hypercube, as discussed in Section 3.3.1. Kempe showed that the same phenomenon
occurs in the discrete-time quantum walk [116]. Other examples, from [44, 40], are discussed
in Chapter 5.

Regarding algorithmic applications, there have been three main developments. First, a
quantum walk has been used to construct an oracular problem that can be solved exponen-
tially faster by a quantum walk than by any classical algorithm [40]. This result is described
in detail in Chapter 5. Second, quantum walks have been used to locally search a graph for
a marked vertex quadratically faster than is possible classically [81, 164, 46, 12, 47], pro-
viding spatially local versions of Grover’s algorithm [98]. The continuous-time algorithms
of this sort are described in Chapter 4. Finally, Ambainis has recently used a discrete-time
quantum walk to give an optimal O(N2/3)-query algorithm for the element distinctness
problem [10] (and see also [42, 172]). This algorithm works in a very similar way to the
spatial search algorithms, but walks on a different graph. The algorithm can be applied
to a wide variety of problems sharing the feature that a solution can be identified by a
small certificate [42]. For example, it has yielded improved quantum algorithms for finding
substructures in graphs [136, 42].

56

Chapter 4

Spatial search by quantum walk

4.1 Introduction

Recall that Grover’s quantum search algorithm [98] is one of the main applications of
quantum computation. Given a black box function f(x) : {1, . . . , N} → {0, 1} satisfying

f(x) =

{
0 x 6= w

1 x = w ,
(4.1)

Grover’s algorithm can find the value of w using of order
√
N queries, which is optimal [19].

On the other hand, no classical algorithm can do better than exhaustive search, which takes
of order N queries. Grover’s algorithm can be used to speed up brute force combinatorial
search. It can also be used as a subroutine in a variety of other quantum algorithms.

Grover’s algorithm is sometimes described as a way to search an unsorted database of
N items in time O(

√
N). But the algorithm as originally proposed is not designed to search

a physical database. Suppose we had N items stored in a d-dimensional physical space, and
that these items could be explored in superposition by a quantum computer making local
moves (a “quantum robot” in the terminology of Benioff [18]). Naively, it would seem that
each step of the Grover algorithm should take time of order N1/d, since this is the time
required to cross the database. Performing

√
N iterations, we find that the search takes

time of order N
1
2
+ 1

d , so no speedup is achieved in d = 2, and full speedup is achieved only
in the limit of large d.

However, it is possible to do better than this naive approach suggests. In [1], Aaronson
and Ambainis present a model of query complexity on graphs. Within this model, they give
a recursive algorithm for the search problem that achieves full

√
N speedup for a d ≥ 3

dimensional lattice, and runs in time
√
N log2N in d = 2. (A straightforward argument

shows that no algorithm can get speedup in d = 1, since it takes time O(N) just to cross
the database.)

In this chapter, we approach the spatial search problem using quantum walks. Quantum
walks provide a natural framework for the spatial search problem because the graph can
be used to model the locality of the database. We present a simple quantum walk search
algorithm that can be applied to any graph. Our algorithm can be implemented within the
model of [1], but is actually much simpler because it uses no auxiliary storage space. For
the case of the complete graph, the resulting algorithm is simply the continuous-time search
algorithm of Farhi and Gutmann [81]. On the hypercube, previous results can be used to

57

show that the algorithm also provides quadratic speedup [80, 41] (and see Section 2.5.5).
However, in both of these cases, the graph is highly connected. Here, we consider the case
of a d-dimensional cubic periodic lattice, where d is fixed independent of N . We find full√
N speedup in d > 4 and running time O(

√
N log3/2N) in d = 4. In d < 4, we find no

speedup, so this simple continuous-time quantum walk algorithm is never faster than the
Aaronson-Ambainis algorithm.

The spatial search problem can also be approached using a discrete-time quantum walk.
This type of walk has been used to construct a fast search algorithm on the hypercube [164],
and recently, on a d-dimensional lattice with d ≥ 2 [12]. As discussed in Section 3.4, a
discrete-time quantum walk cannot be defined on a state space consisting only of the vertices
of a graph, so these discrete-time walk algorithms necessarily use additional degrees of
freedom. In fact, by introducing additional degrees of freedom into the continuous-time
quantum walk, we find a search algorithm that works better in lower dimensions. Although
the continuous-time quantum walk can be defined without additional memory, we find that
the additional degrees of freedom can improve the algorithm’s performance. This modified
algorithm draws from Dirac’s quantum mechanical formulation of a relativistic particle, and
helps to illuminate the similarities and differences between continuous- and discrete-time
quantum walks.

This chapter is organized as follows. In Section 4.2 we discuss how the continuous-time
quantum walk can be used to approach the search problem. In Section 4.3 we review the
results in the high-dimensional cases (the complete graph and the hypercube), casting them
in the language of continuous-time quantum walks. In Section 4.4 we present the results for
finite dimensional lattices, and in Section 4.5, we show how these results can be improved in
low dimensions by introducing a Dirac spin. In Section 4.6, we explain how the continuous-
time algorithm can be simulated in linear time in the local unitary model of [1]. Finally, in
Section 4.7, we conclude with a discussion of the results and some related algorithms.

4.2 Quantum walk algorithm

To approach the search problem with a quantum walk, we need to modify the usual quantum
walk Hamiltonian so that the vertex w is special. Following [81], we introduce the oracle
Hamiltonian1

Hw = −|w〉〈w| (4.2)

which has energy zero for all states except |w〉, which is the ground state, with energy −1.
Solving the search problem is equivalent to finding the ground state of this Hamiltonian.
Here, we assume that this Hamiltonian is given, and we want to use it for as little time as
possible to find the value of w. As we noted before, this Hamiltonian can be simulated in
the circuit model using the standard Grover oracle

Uw|j〉 = (−1)δjw |j〉 . (4.3)

We will show how this can be done without compromising the speedup in Section 4.6. For
now, we focus on the continuous-time description.

To construct an algorithm with the locality of a particular graph G, we consider the

1More precisely, we should use Hw = −ω|w〉〈w| where ω is a fixed parameter with units of inverse time.
However, we choose units in which ω = 1. In these units, γ is a dimensionless parameter.

58

time-independent Hamiltonian

H = −γL+Hw = −γL− |w〉〈w| (4.4)

where L is the Laplacian of G. We begin in a uniform superposition over all vertices of the
graph,

|s〉 =
1√
N

∑
j

|j〉 , (4.5)

and run the quantum walk for time T . We then measure in the vertex basis. Our objective
is to choose the parameter γ so that the success probability |〈w|ψ(T)〉|2 is as close to 1 as
possible for as small a T as possible. Note that the coefficient of Hw is held fixed at 1 to
make the problem fair (e.g., so that evolution for time T could be simulated with O(T)
queries of the standard Grover oracle (4.3)).

One might ask why we should expect this algorithm to give a substantial success prob-
ability for some values of γ, T . We motivate this possibility in terms of the spectrum of H.
Note that regardless of the graph, |s〉 is the ground state of the Laplacian, with L|s〉 = 0.
As γ → ∞, the contribution of Hw to H is negligible, so the ground state of H is close to
|s〉. On the other hand, as γ → 0, the contribution of L to H disappears, so the ground
state of H is close to |w〉. Furthermore, since |s〉 is nearly orthogonal to |w〉, degenerate
perturbation theory shows that the first excited state of H will be close to |s〉 as γ → 0 for
large N . We might expect that over some intermediate range of γ, the ground state will
switch from |w〉 to |s〉, and could have substantial overlap on both for a certain range of γ.
If the first excited state also has substantial overlap on both |w〉 and |s〉 at such values of γ,
then the Hamiltonian will drive transitions between the two states, and thus will rotate the
state from |s〉 to a state with substantial overlap with |w〉 in a time of order 1/(E1 − E0),
where E0 is the ground state energy and E1 is the first excited state energy.

Indeed, we will see that this is a good description of the algorithm if the dimension
of the graph is sufficiently high. The simplest example is the complete graph [81] which
can be thought of roughly as having dimension proportional to N . A similar picture holds
for the (logN)-dimensional hypercube. When we consider a d-dimensional lattice with d
independent of N , we will see that the state |s〉 still switches from ground state to first
excited state at some critical value of γ. However, the |w〉 state does not have substantial
overlap on the ground and first excited states unless d > 4, so the algorithm will not work
for d < 4 (and d = 4 will be a marginal case).

4.3 High dimensions

In this section, we describe the quantum walk algorithm on “high dimensional” graphs,
namely the complete graph and the hypercube. These cases have been analyzed in previous
works [81, 80, 41] (and see Section 2.5.5). Here, we reinterpret them as quantum walk
algorithms, which provides motivation for the case of a lattice in d spatial dimensions.

4.3.1 Complete graph

Letting L be the Laplacian of the complete graph, we find exactly the continuous-time search
algorithm proposed in [81]. Adding a multiple of the identity matrix to the Laplacian gives

59

Figure 4-1: Energy gap and overlaps for the complete graph with N = 1024.

L+NI = N |s〉〈s| =

1 · · · 1
...

. . .
...

1 · · · 1

 . (4.6)

Therefore we consider the Hamiltonian

H = −γN |s〉〈s| − |w〉〈w| . (4.7)

This Hamiltonian acts nontrivially only on a two-dimensional subspace, so it is straight-
forward to compute its spectrum exactly for any value of γ. For γN � 1, the ground state
is close to |w〉, and for γN � 1, the ground state is close to |s〉. In fact, for large N , there
is a sharp change in the ground state from |w〉 to |s〉 as γN is varied from slightly less than
1 to slightly greater than 1. Correspondingly, the gap between the ground and first excited
state energies is smallest for γN ∼ 1, as shown in Figure 4-1. At γN = 1, for N large, the
eigenstates are 1√

2
(|w〉 ± |s〉) (up to terms of order N−1/2), with a gap of 2/

√
N . Thus the

walk rotates the state from |s〉 to |w〉 in time π
√
N/2.

4.3.2 Hypercube

Now consider the n-dimensional hypercube with N = 2n vertices, as discussed in Section
3.3.1. In this case, we again find a sharp transition in the eigenstates at a certain critical
value of γ, as shown in Figure 4-2. The Hamiltonian can be analyzed using essentially the
same method we will apply in the next section, together with facts about spin operators.
The energy gap is analyzed in Section 4.2 of [80], and the energy eigenstates are analyzed

60

Figure 4-2: Energy gap and overlaps for the hypercube with N = 210 = 1024.

in Section 2.5.5 above. The critical value of γ is

γ =
1
2n

n∑
r=1

(
n

r

)
1
r

=
2
n

+O(n−2) (4.8)

at which the energy gap is
2√
N

[1 +O(n−1)] , (4.9)

and the ground and first excited states are 1√
2
(|w〉 ± |s〉) up to terms of order 1/n. Again,

we find that after a time of order
√
N , the probability of finding w is of order 1.

4.4 Finite dimensions

Having seen that the algorithm works in two cases where the dimension of the graph grows
with N , we now consider the case of a d-dimensional cubic periodic lattice, where d is fixed
independent of N . The minimum gap and overlaps of |s〉, |w〉 with the ground and first
excited states are shown in Figure 4-3 for d = 2, 3, 4, 5 and N ≈ 1000. In all of these plots,
there is a critical value of γ where the energy gap is a minimum, and in the vicinity of this
value, the state |s〉 changes from being the first excited state to being the ground state. In
large enough d, the |w〉 state changes from being the ground state to having large overlap
on the first excited state in the same region of γ. However, for smaller d, the range of
γ over which the change occurs is wider, and the overlap of the |w〉 state on the lowest
two eigenstates is smaller. Note that in all cases, |s〉 is supported almost entirely on the
subspace of the two lowest energy states. Therefore, if the algorithm starting in the state

61

|s〉 is to work at all, it must work essentially in a two dimensional subspace.

In the rest of this section, we will make this picture quantitative. We begin with some
general techniques for analyzing the spectrum of H using knowledge of the spectrum of
the graph. We then show the existence of a phase transition in γ, and we show that for
any d, the algorithm fails if γ is not close to a certain critical value. Next we consider
what happens when γ is close to its critical value. In d > 4, we show that the algorithm
gives a success probability of order 1 in time of order

√
N , and in d = 4, we find a success

probability of order 1/ logN in time of order
√
N logN . Finally, we investigate the critical

point in d < 4 and show that the algorithm provides no speedup.

4.4.1 Preliminaries

In this section, we show how the spectrum of H can be understood in terms of the spectrum
of L. An eigenvector of H, denoted |ψa〉, with eigenvalue Ea, satisfies

H|ψa〉 = (−γL− |w〉〈w|)|ψa〉 = Ea|ψa〉 , (4.10)

i.e.,
(−γL− Ea)|ψa〉 = |w〉〈w|ψa〉 . (4.11)

The state |ψa〉 is normalized, so |〈ψa|ψa〉|2 = 1. Define

Ra = |〈w|ψa〉|2 (4.12)

and choose the phase of |ψa〉 so that

〈w|ψa〉 =
√
Ra . (4.13)

We wish to calculate the amplitude for success,

〈w|e−iHt|s〉 =
∑
a

〈w|ψa〉〈ψa|s〉e−iEat , (4.14)

so we only need those |ψa〉 with Ra > 0.

L is the Laplacian of a lattice in d dimensions, periodic in each direction with period
N1/d, with a total of N vertices. Each vertex of the lattice corresponds to a basis state
|x〉, where x is a d-component vector with components xj ∈ {0, 1, . . . , N1/d − 1}. The
eigenvectors of −L are the momentum eigenstates

|k〉 =
1√
N

∑
x

eik·x|x〉 , (4.15)

where k is a d-component vector with components

kj =
2πmj

N1/d
, mj =

{
0,±1, . . . ,±1

2(N1/d − 1) N1/d odd
0,±1, . . . ,±1

2(N1/d − 2),+1
2N

1/d N1/d even,
(4.16)

62

d = 5
N = 45 = 1024

d = 4
N = 64 = 1296

d = 3
N = 103 = 1000

d = 2
N = 322 = 1024

Figure 4-3: Energy gap and overlaps for d-dimensional lattices with N ≈ 1000.

63

Figure 4-4: The function F (E) for a d = 2 dimensional periodic lattice with N = 16 vertices,
at γ = 1.

and the corresponding eigenvalues are

E(k) = 2

d− d∑
j=1

cos (kj)

 . (4.17)

Since 〈k|w〉 6= 0, from (4.11) we have

(γE(k)− Ea)〈k|ψa〉 6= 0 (4.18)

for any k. We can therefore rewrite (4.11), using (4.13), as

|ψa〉 =
√
Ra

−γL− Ea
|w〉 . (4.19)

Consistency with (4.13) then gives the eigenvalue condition

〈w| 1
−γL− Ea

|w〉 = 1 . (4.20)

Using (4.15), this can be expressed as

F (Ea) = 1 , F (E) =
1
N

∑
k

1
γE(k)− E

. (4.21)

A typical function F (E) is shown in Figure 4-4. This function has poles where E =
γE(k). For E 6= γE(k), (4.21) shows that F ′(E) > 0, so there is an eigenvalue of H between

64

every adjacent pair of eigenvalues of −γL. Since F (E) → 0 as E → ±∞, there is also
one negative eigenvalue of H (corresponding to the ground state). Note that in the case
shown in Figure 4-4, the eigenvalues E = 2, 4, 6 of −γL have degeneracies 4, 6, 4 because
of the symmetry of the lattice. It follows that there are 3, 5, 3 eigenvectors of H with
eigenvalues Ea = 2, 4, 6, all with 〈w|ψa〉 = 0 and thus not relevant to our purpose. These
11 eigenvectors, together with the 5 relevant ones, make up the necessary total of 16.

The normalization condition on |ψa〉 gives

Ra〈w|
1

(−γL− Ea)2
|w〉 = 1 , (4.22)

i.e.
Ra =

1
F ′(Ea)

. (4.23)

We also need the overlap of |ψa〉 with |s〉. Since L|s〉 = 0, from (4.19) we have

〈s|ψa〉 = −
√
Ra
Ea
〈s|w〉 , (4.24)

so that
|〈s|ψa〉|2 =

1
N

1
E2
aF

′(Ea)
. (4.25)

Using (4.14), (4.19), and (4.20),

〈w|e−iHt|s〉 = − 1√
N

∑
a

e−iEat

EaF ′(Ea)
. (4.26)

At t = 0, this gives the sum rule ∑
a

1
EaF ′(Ea)

= −1 . (4.27)

We will see that the spectrum of H depends significantly on the behavior of the sums

Sj,d =
1
N

∑
k 6=0

1
[E(k)]j

. (4.28)

If d > 2j, then Sj,d can be approximated by an integral as

Sj,d = Ij,d + o(1) (4.29)

where

Ij,d =
1

(2π)d

∫ π

−π

ddk
[E(k)]j

. (4.30)

The condition d > 2j is necessary for Ij,d to converge at k = 0. The numerical values of
I1,d and I2,d for d ≤ 10 are given in Table 4.1. Note that Ij,d can also be calculated using
the formula [145]

Ij,d =
1

(2d)j

∫ ∞

0
dα

αj−1e−α

(j − 1)!
[I0(α/d)]d (4.31)

65

d I1,d I2,d
3 0.253
4 0.155
5 0.116 0.0184
6 0.0931 0.0105
7 0.0781 0.00697
8 0.0674 0.00504
9 0.0593 0.00383
10 0.0530 0.00301

Table 4.1: Numerical values of the convergent integrals. The result for I1,3 is given exactly
in [183]; the rest were computed numerically.

where I0(·) is a modified Bessel function of the first kind.

On the other hand, if d < 2j, then Sj,d can be well approximated by the contribution
from values of k small enough that E(k) is approximately

E(k) ≈ k2 =
(2πm)2

N2/d
(4.32)

(where we have used the notation k2 = k2
1 + · · ·+ k2

d). Then

Sj,d ∼ cj,dN
2j
d
−1 (4.33)

where
cj,d =

1
(2π)2j

∑
m6=0

1
(m2)j

. (4.34)

Here the sum is over all values of the d-component vector of integers m other than m = 0,
and converges for large m2. Numerically, we find

c2,2 = 0.00664 , c2,3 = 0.0265 . (4.35)

In the borderline case d = 2j, Ij,d diverges logarithmically at k2 small and cj,d diverges
logarithmically at m2 large. In this case

Sj,2j =
1

(4π)j j!
lnN +O(1) . (4.36)

We will need

S1,2 =
1
4π

lnN +A+O(N−1) (4.37)

S2,4 =
1

32π2
lnN +O(1) (4.38)

where A = 0.0488 (the case j = 1, d = 2 is treated in greater detail in [146]).

66

4.4.2 Phase transition

In this section, we show that the overlap of the state |s〉 on the ground or first excited state
of H exhibits a phase transition at a critical value of γ for any dimension d. In fact, away
from the critical value, |s〉 is approximately an eigenstate of H, so Schrödinger evolution
according to H does not change the state very much. In the next section, we will show that
the algorithm indeed fails away from the critical value of γ, and in the following sections
we will consider what happens near the critical point.

For γ larger than the critical value (which will be determined below), the ground state
energy is very close to 0. This can be seen as follows. The eigenvalue condition (4.21) for
the ground state energy E0, which is negative, gives

1 = F (E0) =
1

N |E0|
+

1
N

∑
k 6=0

1
γE(k) + |E0|

(4.39)

<
1

N |E0|
+

1
N

∑
k 6=0

1
γE(k)

(4.40)

≈ 1
N |E0|

+
I1,d
γ

(4.41)

where in the last line we have assumed d > 2. In this case, for γ > I1,d (which will turn out
to be the critical value), up to small terms,

|E0| <
1
N

γ

γ − I1,d
. (4.42)

Using (4.25), we have

|〈s|ψ0〉|2 =
[
1 + E2

0

∑
k 6=0

(γE(k) + |E0|)−2
]−1

(4.43)

>

1 +
E2

0

γ2

∑
k 6=0

1
[E(k)]2

−1

(4.44)

> 1− E2
0

γ2

∑
k 6=0

1
[E(k)]2

. (4.45)

Inserting the behavior of S2,d from (4.28), (4.33), and (4.36) and using the bound (4.42),
we find

1− |〈s|ψ0〉|2 <
1

(γ − I1,d)2
×

O(N−1) d > 4
O(N−1 logN) d = 4
O(N−2/3) d = 3 .

(4.46)

This shows that if γ = I1,d + ε for any ε > 0, then 1− |〈s|ψ0〉|2 approaches zero as N →∞.

If d = 2, then I1,2 is logarithmically divergent, but using (4.37) in (4.40) we can apply
a similar argument whenever γ > 1

4π lnN +A, in which case we have

|E0| <
1
N

γ

γ − 1
4π lnN −A

(4.47)

67

and
1− |〈s|ψ0〉|2 <

1
(γ − 1

4π lnN −A)2
×O(1) . (4.48)

This shows that if γ > (1
4π + ε) lnN , then 1−|〈s|ψ0〉|2 ≤ 1/(ε lnN)2, which approaches zero

as N →∞.
Similarly, for d > 2 and for γ < I1,d, the first excited state |ψ1〉, with energy E1 > 0, is

essentially |s〉. Here we find

1 = F (E1) = − 1
NE1

+
1
N

∑
k 6=0

1
γE(k)− E1

(4.49)

> − 1
NE1

+
1
N

∑
k 6=0

1
γE(k)

(4.50)

≈ − 1
NE1

+
I1,d
γ

, (4.51)

so that, up to small terms,

E1 <
1
N

γ

I1,d − γ
. (4.52)

Again applying (4.25), we find

1− |〈s|ψ1〉|2 <
1

(I1,d − γ)2
×

O(N−1) d > 4
O(N−1 logN) d = 4
O(N−2/3) d = 3 .

(4.53)

We see that γ = I1,d is the critical point. In d = 2 we can apply similar reasoning to obtain
that for γ < 1

4π lnN +A,

1− |〈s|ψ1〉|2 <
1

(1
4π lnN − γ)2

×O(1) . (4.54)

In this case γ = 1
4π lnN +A is the critical point.

4.4.3 Failure of the algorithm away from the critical point

In this section we will show that the algorithm fails away from the critical point, regardless
of dimension. The results (4.46) and (4.53) are actually sufficient to show that away from
the critical point in d > 4, the algorithm can be no better than classical search, but we will
give a different argument for consistency of presentation.

First we consider the regime where γ is larger than the critical value. In the previous
section, we saw that in this case, the ground state energy E0 is small. This is sufficient to
imply that the success probability is small at all times. Combining (4.26) and (4.27), we
see that the amplitude at an arbitrary time must satisfy

|〈w|e−iHt|s〉| ≤ 1√
N

(
2

|E0|F ′(E0)
− 1
)

(4.55)

≤ 2√
N |E0|F ′(E0)

. (4.56)

68

Furthermore it is clear from the definition of F (E) that

F ′(E0) ≥
1

NE2
0

, (4.57)

so
|〈w|e−iHt|s〉| ≤ 2

√
N |E0| . (4.58)

Using (4.42), we find that for d > 2,

|〈w|e−iHt|s〉| ≤ 2√
N

γ

γ − I1,d
. (4.59)

This shows that if γ = I1,d + ε for any ε > 0, the success probability is never more than a
constant factor larger than its initial value, no matter how long we run the algorithm. If
d = 2, then I1,2 is logarithmically divergent, but using (4.47) we find

|〈w|e−iHt|s〉| ≤ 2√
N

γ

γ − 1
4π lnN −A

. (4.60)

This shows that the algorithm fails if γ > (1
4π + ε) lnN for any ε > 0.

Now we consider the case where γ is smaller than the critical value. For d > 4 and
E < 0, we have

F (E) ≈ 1
(2π)d

∫
ddk

γE(k) + |E|
(4.61)

=
1

(2π)d

∫
ddk
γE(k)

− |E|
(2π)d

∫
ddk

γE(k)[γE(k) + |E|]
(4.62)

>
I1,d
γ
− |E|
γ2(2π)d

∫
ddk

[E(k)]2
(4.63)

=
I1,d
γ
−
I2,d
γ2
|E| . (4.64)

Using the fact that F (E0) = 1, this shows that

|E0| >
γ(I1,d − γ)

I2,d
. (4.65)

From (4.12) and (4.23), it is clear that F ′(E) > 1, so using (4.56) gives

|〈w|e−iHt|s〉| < 1√
N

2I2,d
γ(I1,d − γ)

. (4.66)

A similar argument can be used for d = 3, 4. With d = 4, we have

F (E) ≈ 1
(2π)4

∫
d4k

γE(k) + |E|
(4.67)

=
1

(2π)4

∫
d4k

γE(k)
− |E|

(2π)4

∫
d4k

γE(k)[γE(k) + |E|]
(4.68)

69

>
I1,4
γ
− |E|

32γ

∫ 2π

0

kdk
4γ
π2k2 + |E|

(4.69)

=
I1,4
γ
− π2|E|

256γ2
ln
(

1 +
16γ
|E|

)
, (4.70)

where the third line follows because cos k ≤ 1− 2(k/π)2 for |k| ≤ π, which implies E(k) ≥
4
π2k

2. We have also used the fact that k2 ≤ dπ2 to place an upper limit on the integral.
This shows that for any ε > 0 (with ε ≤ 1), there exists a c > 0 such that

F (E) >
I1,4
γ
− c|E|1−ε

γ2−ε , (4.71)

so that
|E0| > c′γ(I1,d − γ)1/(1−ε) (4.72)

for some c′ > 0, and therefore

|〈w|e−iHt|s〉| < 1√
N

2
c′γ(I1,4 − γ)1/(1+ε)

. (4.73)

With d = 3, we have

F (E) ≈ 1
(2π)3

∫
d3k

γE(k) + |E|
(4.74)

=
1

(2π)3

∫
d3k

γE(k)
− |E|

(2π)3

∫
d3k

γE(k)[γE(k) + |E|]
(4.75)

>
I1,3
γ
− |E|

8γ

∫ ∞

0

dk
4γ
π2k2 + |E|

(4.76)

=
I1,3
γ
− π2

32γ3/2

√
|E| (4.77)

where in the third line we have again used E(k) ≥ 4
π2k

2. In this case we find

|E0| >
1024
π4

γ(I1,3 − γ)2 (4.78)

which shows that

|〈s|e−iHt|w〉| < 1√
N

2π4

1024γ(I1,3 − γ)2
. (4.79)

Finally, with d = 2 we use a different argument. Here we have

F ′(E) ≈ 1
(2π)2

∫
d2k

[γE(k) + |E|]2
(4.80)

>
1
2π

∫ π

0

k dk
(γk2 + |E|)2

(4.81)

=
π

4|E|(|E|+ π2γ)
(4.82)

where the second line follows since cos k ≥ 1− 1
2k

2, which implies E(k) ≤ k2. In the second

70

line we have also used the fact that the entire disk |k| ≤ π is included in the region of
integration. Equation (4.82) shows that

|E|F ′(E) >
π

4(|E|+ π2γ)
, (4.83)

so that

|〈w|e−iHt|s〉| < 1√
N

8(|E0|+ π2γ)
π

, (4.84)

which is O(1/
√
N) for γ = O(1), and O((logN)/

√
N) for any γ < 1

4π lnN +A.
The arguments for the case where γ is smaller than the critical value can be made

tighter by a more refined analysis. For example, by considering the behavior of F ′(E), one
can give a bound whose dependence on I1,d − γ is linear for all d > 2, not just for d > 4.
Furthermore, the careful reader will note that our bounds for d > 2 all become useless as
γ → 0, but it is easy to see that the algorithm cannot be successful for small values of γ.

Altogether, we see that the algorithm cannot work any better than classical search if
γ is not chosen close to its critical value. It remains to investigate what happens near the
critical point.

4.4.4 The critical point in four dimensions and higher

In this section we investigate the region of the critical point in the cases where the algorithm
provides speedup. First we consider the case d > 4. Separating out the k = 0 term in (4.21),
we have

F (E) = − 1
NE

+
1
N

∑
k 6=0

1
γE(k)− E

. (4.85)

If |E| � γE(k) for all k 6= 0, then for large N , we can Taylor expand the second term to
obtain

F (E) ≈ − 1
NE

+
1
γ
I1,d +

E

γ2
I2,d (4.86)

which gives

F ′(E) ≈ 1
NE2

+
I2,d
γ2

. (4.87)

The critical point corresponds to the condition γ = I1,d. At this point, setting (4.86) equal
to 1 gives two eigenvalues,

E0 ≈ −
I1,d√
I2,dN

, E1 ≈ +
I1,d√
I2,dN

, (4.88)

which correspond to the ground and first excited state, with a gap of order N−1/2. Since
E(k) ≈ (2π)2N−2/d for m2 = 1, we see that the assumption E0, E1 � γE(k) holds for all
k 6= 0. Furthermore, for the ground and first excited states at γ = I1,d, (4.87) gives

F ′(E0) ≈ F ′(E1) ≈
2I2,d
I2
1,d

. (4.89)

Now we want to use (4.26) to compute the time evolution of the algorithm. The con-
tribution from all states above the first excited state is small, since as can be seen using

71

(4.27) we have

− 1√
N

∑
Ea>E1

1
EaF ′(Ea)

=
1√
N

(
1 +

1
E0F ′(E0)

+
1

E1F ′(E1)

)
. (4.90)

Using (4.88) and (4.89), we see that the O(
√
N) contributions from the terms 1/E0F

′(E0)
and 1/E1F

′(E1) cancel, so the right hand side of (4.90) is o(1). Thus, using (4.26), we find

|〈w|e−iHt|s〉| ≈
I1,d√
I2,d

∣∣∣∣∣sin
(

I1,d t√
I2,dN

)∣∣∣∣∣ . (4.91)

The success probability is of order 1 at t =
√
I2,dN/I1,d. Straightforward analysis shows

that a similar condition holds so long as γ = I1,d ± O(N−1/2), exactly the width of the
region that cannot be excluded based on the arguments of Section 4.4.3.

In d = 4, I2,d does not converge, so the result is modified slightly. In this case (4.86)
holds with I2,d replaced by 1

32π2 lnN , so the ground and first excited state energies are given
by

E0 ≈ −
I1,4√

1
32π2N lnN

, E1 ≈ +
I1,4√

1
32π2N lnN

, (4.92)

and we find
F ′(E0) ≈ F ′(E1) ≈

lnN
16π2I2

1,4

. (4.93)

Therefore

|〈w|e−iHt|s〉| ≈ I1,4√
1

32π2 lnN

∣∣∣∣∣∣sin
 I1,4 t√

1
32π2N lnN

∣∣∣∣∣∣ ,
which shows that running for a time of order

√
N logN gives a success probability of order

1/ logN . Using O(logN) repetitions to boost the success probability close to 1, we find
a total run time O(

√
N log3/2N). One can show that similar conditions hold so long as

γ = I1,4 ±O(
√

(logN)/N).
In fact, we could improve the run time of the algorithm to O(

√
N logN) using amplitude

amplification [33]. The same technique could also be used in d = 2, 3, but in those cases we
would find that the resulting algorithm is still slower than O(

√
N) by some power of N .

For d < 4, the expansion (4.86) fails to find states whose energies satisfy E � γE(k).
Indeed, we will see in the next section that the algorithm provides no speedup in these
cases.

4.4.5 The critical point below four dimensions

To handle the case d < 4, we rearrange the eigenvalue condition to extract the O(1) contri-
bution to F (E):

F (E) = − 1
NE

+
1
N

∑
k 6=0

1
γE(k)

+
1
N

∑
k 6=0

E

γE(k)[γE(k)− E]
. (4.94)

In d = 3, we can replace the middle term by I1,3/γ for large N . To explore the neigh-

72

borhood of the critical point in d = 3, we introduce rescaled variables a, x via

γ = I1,3 +
a

N1/3
(4.95)

E =
4π2I1,3

N2/3
x . (4.96)

Since the sum in the third term of (4.94) only gets significant contributions from small
energies, we use (4.32) to give the approximation

γE(k) ≈ 4π2I1,3m
2

N2/3
, (4.97)

and we can analyze the sum using the same techniques we applied to calculate Sj,d in the
case d < 2j. Then we have, for large N ,

F (E) ≈ 1 +
G3(x)− a
I1,3N1/3

(4.98)

where

G3(x) =
1

4π2

∑
m6=0

x

m2(m2 − x)
− 1
x

 . (4.99)

Here the sum is over all integer values of m, as in (4.34), and similarly converges for large
m2. The eigenvalue condition in terms of x is G3(x) = a, which has one negative solution
x0. Since G3(x) is independent of N , x0 is independent of N , and the ground state energy
E0 is proportional to N−2/3.

As we saw in Section 4.4.3, a very small ground state energy implies that the success
probability is small at all times. Using (4.58), we find

|〈w|e−iHt|s〉| ≤ 8π2I1,3|x0|
N1/6

. (4.100)

Therefore the success probability is small no matter how long we run the algorithm. In fact,
the small gap shows that we have to wait for a time of order N2/3 even to get a probability
of order N−1/3.

Similar considerations hold in the case d = 2. In this case, the critical point is at
γ = 1

4π lnN +A, so we choose

γ =
1
4π

lnN +A+ a (4.101)

E =
2π lnN
N

x . (4.102)

In this case, we find

F (E) ≈ 1 +
G2(x)− a

1
4π lnN

, (4.103)

where G2(x) is defined as in (4.99), but with m having two components instead of three.

73

Again we find a solution x0 < 0 that is independent of N , and applying (4.58) gives

|〈w|e−iHt|s〉| ≤ 4π|x0| lnN√
N

. (4.104)

(Note that we could have reached a similar conclusion using (4.84).) Therefore the algorithm
also fails near the critical point in d = 2.

4.5 The Dirac equation and an improved algorithm in low
dimensions

So far, we have considered a quantum walk algorithm using no additional memory beyond
the present location of the walker. We showed that this algorithm can find a single marked
site in time O(

√
N) for dimensions d > 4 and in time O(

√
N logN) in four dimensions.

We also showed that this algorithm fails to provide an interesting speedup for dimensions
d < 4. After this result appeared [46], Ambainis, Kempe, and Rivosh found a discrete-time
quantum walk algorithm that works in lower dimensions [12]. This algorithm runs in time
O(
√
N) for d > 2 and in time O(

√
N logN) in two dimensions.

Because a discrete-time quantum walk cannot be defined on a state space consisting
only of the vertices of a graph, as discussed in Section 3.4, the algorithm of [12] necessarily
uses additional memory. In this section, we consider a continuous-time quantum walk using
additional memory, and we show that it achieves the same running times as the discrete-time
algorithm.

Dirac found that a consistent quantum mechanical description of a free relativistic par-
ticle requires the introduction of spin degrees of freedom [66]. Since this idea is essential to
our construction, we outline it here. The relationship between the energy E, momentum p,
and mass m of a relativistic particle is E2 = p2 +m2 (in units where the speed of light is
1). To quantize such a particle, Dirac considered a Hamiltonian of the form

H =
d∑
j=1

αjpj + βm (4.105)

where the operators αj and β act on the spin degrees of freedom, and p = −i~ d
dx is the

momentum operator. If the spin operators αj and β satisfy the anticommutation relations

{αj , αk} = 2δj,k , {αj , β} = 0 , β2 = 1 , (4.106)

then one indeed finds H2 = p2 + m2. To write down the Dirac equation in d dimensions,
we need d+ 1 anticommuting operators. The minimal representation of the algebra (4.106)
uses 2dd/2e-dimensional matrices, and hence there are 2dd/2e spin components.

Previously, we considered the Hamiltonian (4.4), which is the Hamiltonian of a free,
spinless, non-relativistic particle plus a potential term at the marked site. Since the free
Hamiltonian −γL is translationally invariant, its eigenstates are the momentum eigenstates
|k〉 given in (4.15). For small k, the energy of the state |k〉 is E(k) ≈ γk2. As we saw in
Section 4.4, this quadratic dispersion relation ultimately gives rise to the critical dimension
d = 4.

To find an algorithm with a critical dimension of 2, we might expect to require a free

74

Hamiltonian with a linear dispersion relation. This can be achieved by introducing spin
degrees of freedom and using the massless Dirac Hamiltonian, equation (4.105) with m = 0.
On the lattice, the continuum operator pj can be discretely approximated as

Pj |x〉 =
i

2
(|x+ ej〉 − |x− ej〉) , (4.107)

where ej is a unit vector in the j direction. However, as we will see later, it turns out
that simply taking the free Hamiltonian (4.105) using the lattice approximation (4.107) is
insufficient. Instead, we will take2

H0 = ω
∑
j

αjPj + γβL (4.108)

where both ω and γ are adjustable parameters. For a Hamiltonian with spin degrees of
freedom, translation invariance shows that the eigenstates have the form |η, k〉, where |η〉 is
a (momentum-dependent) spin state. For (4.108), we find states with energies

E(k) = ±
√
ω2s2(k) + γ2c2(k) , (4.109)

where

s2(k) =
d∑
j=1

sin2 kj (4.110)

c(k) = 2
d∑
j=1

(1− cos kj) . (4.111)

For small momenta, we have E(k) ≈ ±ω|k|, which leads to a better search algorithm in low
dimensions.

The full algorithm is as follows. We begin in the state |η, s〉, where |η〉 is any spin state
and |s〉 is the uniform superposition (4.5). We then evolve with the Hamiltonian

H = H0 − β|w〉〈w| (4.112)

with parameters ω, γ to be determined in the analysis below, for a time T also determined
below. The goal is to choose the parameters ω and γ so that for some T as small as possible,
the spatial component of the evolved state has a substantial overlap on |w〉.

To analyze the algorithm, we would like to determine the spectrum of H using our
knowledge of the spectrum of H0. We do this using the same techniques we applied to the
Hamiltonian (4.4) in Section 4.4.

An eigenvector of H, denoted |ψa〉, with eigenvalue Ea, satisfies

H|ψa〉 = (H0 − β|w〉〈w|)|ψa〉 = Ea|ψa〉 . (4.113)

Defining
〈w|ψa〉 =

√
Ra|φa〉 (4.114)

2This choice is closely related to a standard remedy for the fermion doubling problem in lattice field
theory [56, p. 27].

75

where |φa〉 is a normalized spin state, and
√
Ra > 0 by choice of phases, we can rewrite

(4.113) as
(H0 − Ea)|ψa〉 =

√
Ra β|φa, w〉 . (4.115)

Assuming H0 − Ea is nonsingular, we can write the eigenstate of H as

|ψa〉 =
√
Ra

H0 − Ea
β|φa, w〉 . (4.116)

Consistency with (4.114) then gives the eigenvalue condition

|φa〉 = F (Ea)β|φa〉 (4.117)

where
F (E) = 〈w| 1

H0 − E
|w〉 . (4.118)

In other words, to find eigenvalues of H, we must look for values of E such that the spin
operator F (E)β has an eigenvector of eigenvalue 1.

In addition to finding eigenvalues of H, we need some facts about it eigenvectors. The
normalization condition on |ψa〉 gives

R−1
a = 〈φa, w|β

1
(H0 − Ea)2

β|φa, w〉 (4.119)

= 〈φa|βF ′(Ea)β|φa〉 . (4.120)

We also need the overlap of |ψa〉 with eigenvectors of H0. From (4.116) we have

〈E|ψa〉 =
√
Ra

E − Ea
〈E|β|φa, w〉 (4.121)

where |E〉 is an eigenvector of H0 with eigenvalue E .

For the free Hamiltonian (4.108), we find

F (E)β = 〈w| H0 + E

H2
0 − E2

|w〉β (4.122)

=
1
N

∑
k

γ c(k) + βE

E(k)2 − E2
(4.123)

= − β

NE
+ U(E) + β E V (E) (4.124)

where in (4.123) we have canceled terms that are odd in k, and

U(E) =
1
N

∑
k 6=0

γ c(k)
E(k)2 − E2

(4.125)

V (E) =
1
N

∑
k 6=0

1
E(k)2 − E2

. (4.126)

If |E| � E(k) for all k 6= 0, then for large N , we can Taylor expand U(E) and V (E) in
powers of E. In fact, one can show that it is sufficient to keep only the leading order terms

76

U(0) and V (0). For large N , we have

U(0) ≈ 1
(2π)d

∫ π

−π

γ c(k) ddk
E(k)2

, (4.127)

which is a convergent integral regardless of d. For d > 2 and N large, we can also write
V (0) as a convergent integral,

V (0) ≈ 1
(2π)d

∫ π

−π

ddk
E(k)2

. (4.128)

In d = 2, this integral is logarithmically infrared divergent, and instead we find

V (0) =
1
4π

lnN +O(1) . (4.129)

Now suppose we choose ω and γ such that U(0) = 1. In this case, we are simply looking
for a zero eigenvalue of β(− 1

NE + E V (0)). We find such eigenvalues with

E± ≈ ±
1√

V (0)N
, (4.130)

which indeed satisfy the condition |E±| � E(k) for all k 6= 0. These eigenvalues are
degenerate in the spin space, i.e., any state |φ±〉 provides an eigenvector with the same
eigenvalue.

The condition U(0) = 1 can be satisfied by choosing u(ω/γ) = γ, where u(ω/γ) = γ U(0)
is a function only of ω/γ. Figure 4-5 shows the critical curve in the (ω, γ) plane for d = 2
through 5. For any ω with 0 < ω < ω∗, where ω∗ is some dimension-dependent threshold
value, there are two values of γ such that U(0) = 1. Note that with ω = 0, we recover the
results of Section 4.4. Also, with γ = 0, no solution of U(0) = 1 exists, so it was essential
to include this additional term (and the ability to fine tune its coefficient).

Having found the relevant eigenvalues, we need to determine the corresponding eigen-
states. Using (4.120) we find

R−1
± ≈

1
NE2

±
+ V (0) ≈ 2V (0) , (4.131)

and using (4.121) we find

〈η, s|ψ±〉 = −
√
R±

E±
√
N
〈η|β|φ±〉 ≈ ∓

1√
2
, (4.132)

where we have chosen the eigenstate of H with |φ±〉 = β|η〉. Therefore we have

|η, s〉 ≈ 1√
2
(|ψ−〉 − |ψ+〉) , (4.133)

and choosing T = π/(2|E±|) produces the state

e−iHT |η, s〉 ≈ 1√
2
(|ψ+〉+ |ψ−〉) (4.134)

77

Figure 4-5: Critical values of (ω, γ) for various dimensions. From rightmost curve to leftmost
curve, d = 2, 3, 4, 5.

which has an overlap on |η, w〉 of
√

2R±.

For d > 2, we have shown that there is a T = O(
√
N) that gives a probability O(1) of

finding w. For d = 2, there is a T = O(
√
N logN) that gives an amplitude O(1/

√
logN), so

that classical repetition can be used to find w with high probability in time O(
√
N log3/2N),

and amplitude amplification [33] can be used to find w with high probability in time
O(
√
N logN).

This algorithm is closely related to the discrete-time quantum walk search algorithm
of [12]. Very similar techniques to the ones we have used in this section (and Section 4.4)
can also be applied to discrete-time quantum walks, as described in [42]. This analysis for
the algorithm of [12] closely parallels the analysis above, which highlights the similarity
between the two kinds of algorithms. However, there are a few important differences. The
continuous-time algorithm requires fine tuning the parameters ω and γ, whereas there is
(apparently) no equivalent fine tuning in the discrete-time algorithm. Also, the discrete-time
algorithm has noticeably different behavior depending on whether N1/d is odd or even, a
difference that is not seen in the continuous-time algorithm. In short, although the essential
infrared features of the two kinds of algorithms are identical, their detailed behaviors differ.

In high dimensions, our algorithm is very wasteful in terms of the number of spin degrees
of freedom: it uses a 2dd/2e-dimensional spin space, whereas [46] shows that no spin degrees
of freedom are required at all for d > 4. In comparison, the discrete-time quantum walk
search algorithm in [12] uses 2d extra degrees of freedom. The Dirac particle in d dimensions
cannot be represented with fewer than 2dd/2e degrees of freedom, but a continuous-time
search algorithm with only d + 1 degrees of freedom can arise from reproducing the Dirac
algebra (4.106) only on a subspace. If the operators αj and β satisfy

{αj , αk}|η〉 = 2δj,k|η〉 , {αj , β}|η〉 = 0 , β|η〉 = |η〉 (4.135)

78

for some spin state |η〉, then the algorithm will work starting from the state |η, s〉. The
condition (4.135) is sufficient to give H2

0 |η, k〉 = E(k)2|η, k〉. The previous analysis then
shows that

|ψa〉 =
√
Ra

H0 − Ea
|η, w〉 (4.136)

is an eigenstate of H with eigenvalue Ea provided − 1
NEa

+ U(Ea) + EaV (Ea) = 1, where
U(E) and V (E) are as defined in equations (4.125) and (4.126). The rest of the analysis
with two states |ψ±〉 follows exactly as before. Finally, we see that (4.135) can be satisfied
in a (d + 1)-dimensional spin space with basis |0〉, |1〉, . . . , |d〉, since in that case we can
choose αj = |0〉〈j|+ |j〉〈0|, β = 2|0〉〈0| − I, and |η〉 = |0〉.

4.6 Simulation in the local unitary model

For the spatial search problem, the Hamiltonian model might directly provide a reasonable
physical model of a computational device. However, one can also express the problem in
terms of a unitary gate model, where the gates are only allowed to move amplitude between
adjacent locations on the graph [1]. In this section, we show that the continuous-time
quantum walk algorithm can be efficiently simulated in such a model, without affecting the
computational speedup. For simplicity, we discuss the spinless algorithm, although similar
considerations apply to the Dirac-inspired algorithm.

The Hamiltonian (4.4) can easily be written as a sum of terms that can individually
be simulated locally with only linear overhead. The only difficulty arises when we try to
combine the terms using Rule 1.4. In Chapter 1, we were content with any polynomial-
time simulation, but the quadratic overhead involved in naive implementation of Rule 1.4
apparently eliminates the quadratic speedup we worked so hard to achieve. Taking the
expansion to higher orders as discussed in Section 1.4 improves the situation somewhat,
but only allows us to achieve an algorithm that runs in time O(N (1/2)+ε) for arbitrarily
small ε > 0.

Fortunately, we can do better than this by using more detailed information about the
expansion. Using the first order approximation (1.7) to simulate H1 +H2 with small error,
the Baker-Campbell-Hausdorff theorem shows that we actually need only on the order of
‖[H1,H2]‖ t2 alternations between the two simulations. For example, to simulate the search

algorithm on the complete graph, note that ‖[|s〉〈s|, |w〉〈w|]‖ =
√

1
N (1− 1

N), so that O(
√
N)

simulation steps suffice [159].
For finite-dimensional lattices, ‖[L, |w〉〈w|‖ is of order 1, so the above argument does not

immediately apply. However, we have seen that the algorithm works almost entirely in a
subspace spanned by the uniform superposition |s〉 and another state |ψ〉 that is orthogonal
to |s〉 (and that has substantial overlap on |w〉). Since we only need to accurately reproduce
the evolution in this two-dimensional subspace, the simulation can be made sufficiently
good using only O(‖Π[L, |w〉〈w|]Π‖ t2) alternations between the simulation of L and the
simulation of |w〉〈w|, where Π is a projector onto the subspace spanned by |s〉 and |ψ〉. A
straightforward calculation shows that

‖Π[L, |w〉〈w|]Π‖ =
|〈w|L|ψ〉|√

N
; (4.137)

since ‖L‖ = 4d, this shows that O(
√
N) alternations suffice.

79

To simulate L using a sequence of local unitary operations, we can break it up into a
sum of locally simulable pieces and combine those pieces using Rule 1.4. If N1/d is even, a
simple decomposition that works is

L =
d∑
j=1

(Leven
j + Lodd

j) , (4.138)

where

Leven
j |x〉 =

{
|x+ ej〉 − |x〉 xj even
|x− ej〉 − |x〉 xj odd

(4.139)

Lodd
j |x〉 =

{
|x+ ej〉 − |x〉 xj odd
|x− ej〉 − |x〉 xj even.

(4.140)

Since Leven
j |s〉 = Lodd

j |s〉 = 0, we find
∥∥∥Π[Lpj , L

p′

j′]Π
∥∥∥ = 0 for any j, j′ and for any p, p′ ∈

{even, odd}. This shows that a simulation of L that is sufficiently accurate in the rele-
vant subspace can also be achieved with only linear overhead. Therefore, a local unitary
discretization of the full algorithm can indeed find the marked item in O(

√
N) steps.

4.7 Discussion

In this chapter, we have presented a general approach to the spatial search problem using a
continuous-time quantum walk on a graph. Using a straightforward quantum walk with no
extra degrees of freedom, we showed that quadratic speedup can be achieved if the graph
is a lattice of sufficiently high dimension (d > 4). Furthermore, by using Dirac’s insight of
introducing spin to take the square root in a relativistic dispersion relation, we showed that
quadratic speedup can also be achieved for d > 2, and can nearly be achieved in d = 2.

Our algorithm begins in the state that is delocalized over the entire graph. One might
demand instead that we start at a particular vertex of the graph. However, it is clear
that the delocalized state |s〉 can be prepared from a localized state using O(N1/d) local
operations. In fact, we could also prepare |s〉 by running the quantum walk search algorithm
backward from a known localized state for the same amount of time it would take to find
|w〉 starting from |s〉.

The simple quantum walk search algorithm without spin degrees of freedom is closely
related to a search algorithm using adiabatic evolution. In the adiabatic version of the
search algorithm, the quantum computer is prepared in the state |s〉 (the ground state of
H with γ large), and γ is slowly lowered from a large value to 0. If γ is changed sufficiently
slowly, then the adiabatic theorem ensures that the quantum computer ends up near the
final ground state |w〉, thus solving the problem. Recall from Section 2.2 that the time
required to achieve a success probability of order 1 is inversely proportional to the square
of the gap between the ground and first excited state energies. On the complete graph,
the fact that the gap is only small (of order 1/

√
N) for a narrow range of γ (also of order

1/
√
N) means that γ can be changed in such a way that time O(

√
N) is sufficient to solve

the problem [158, 59]. Since the gap has similar behavior for the hypercube and for d-
dimensional lattices with d > 4, quadratic speedup can also be achieved adiabatically in
these cases. In d = 4, the gap is of order 1/

√
N logN for a range of γ of order

√
(logN)/N ,

80

so the run time is O(
√
N log3/2N), just as for the quantum walk search algorithm using

classical repetition. In d < 4, no speedup can be achieved adiabatically.
In contrast, the Dirac-inspired algorithm from Section 4.5 cannot be turned into an

adiabatic algorithm. In that case, the ground state of the free Hamiltonian (4.108) does not
have k = 0; the zero-momentum states have zero energy, but this puts them in the middle
of the spectrum. Although the adiabatic theorem applies to any eigenstate, not just the
ground state, states near the middle of the spectrum of (4.112) with ω, γ small have very
little overlap on |w〉, so that even perfectly adiabatic evolution produces a state far from
the desired one.

The search problem can also be solved with high probability using a single measurement
of H (followed by a measurement in the computational basis), as described in Section 2.5.
The case of a hypercube was analyzed in Section 2.5.4, and our present results show that
this algorithm can also be used when the graph is a lattice with d > 4 (or d > 2 if spin
degrees of freedom are introduced). However, to realize the measurement dynamically, the
Hamiltonian H must be coupled to a pointer variable, which must be represented using
auxiliary space.

Finally, we note that the actual complexity of the spatial search problem in two dimen-
sions is still an open question. A gap of logN remains between the best known algorithm
and the lower bound of [19]. It would be interesting either to improve the algorithm further
or to show that no such improvement is possible.

81

82

Chapter 5

Exponential speedup by quantum
walk

5.1 Introduction

In this chapter, we show how quantum walks can be used to achieve exponential speedup
over classical processes. We begin by presenting an example of a case in which a quantum
walk can move through a graph exponentially faster than its classical counterpart. In
particular, we consider a situation in which two vertices are designated as the entrance
and exit, and we show that a quantum walk starting from the entrance has a substantial
probability of reaching the exit much sooner than the corresponding classical random walk.

However, our ultimate goal is to find quantum algorithms that work faster than any
classical algorithm, not just an algorithm of a particular type, such as a random walk. We
would especially like to find algorithms that run exponentially faster (in contrast to poly-
nomial speedups, such as the quadratic speedup we discussed in Chapter 4). Exponential
quantum algorithmic speedup has been demonstrated for a number of different problems,
but in each case, the quantum algorithm for solving the problem relies on the quantum
Fourier transform. In this chapter, we demonstrate that exponential algorithmic speedup
can be achieved using a quantum walk. In particular, we show how to solve an oracular
computational problem exponentially faster than any classical algorithm could.

As discussed in Section 0.3, oracular problems provided the first examples of algorithmic
speedup using a quantum instead of a classical computer, ultimately leading to Shor’s
factoring algorithm [165] and a number of related algorithms providing superpolynomial
speedup over classical methods. However, all of these algorithms are fundamentally based
on quantum Fourier transforms.

The idea of using quantum walks to achieve algorithmic speedup was explored by Farhi
and Gutmann [82], who studied the behavior of quantum walks on decision trees. They
also gave the first of several examples of graphs in which a quantum walk is exponentially
faster than a classical walk. We present a simpler example of such graphs in Section 5.2.
However, as we explain in Section 5.3, these results do not imply algorithmic speedup.
Instead, we modify the example of Section 5.2 to construct an oracular problem that can
be solved efficiently using a quantum walk, but that no classical algorithm can solve in
subexponential time. We conclude in Section 5.4 with a discussion of the results and some
remarks about open problems.

83

Figure 5-1: The graph G4.

5.2 Speedup over classical random walk

In this section, we give an example of a sequence of graphs in which the behavior of a
quantum walk is radically different from the behavior of the corresponding classical random
walk. In particular, we show that the quantum walk can propagate from a designated
entrance vertex to a designated exit vertex exponentially faster than the classical random
walk.

We define a sequence of graphs Gn, where n = 1, 2, 3, The number of vertices in Gn
is 2n+1 + 2n − 2. In Figure 5-1 we show G4. In general, Gn consists of two balanced binary
trees of depth n with the 2n leaves of the two trees pairwise identified. We will refer to the
root of the left tree as the entrance, and to the root of the right tree as the exit.

For both the classical random walk and the quantum walk, we start at the entrance
and want the probability as a function of time of being at the exit. In other words, we are
interested in how long it takes to propagate from the entrance to the exit as a function
of n.

Consider the classical case first. The vertices of Gn can be grouped in columns indexed
by j ∈ {0, 1, . . . , 2n}. Column 0 contains the entrance, column 1 contains the two vertices
connected to the entrance, etc. Note that column n contains the 2n vertices in the middle
of the graph and column 2n is the exit.

To analyze the classical walk from the entrance to the exit, we need only keep track
of the probabilities of being in the columns. In the left tree, for 0 < j < n, the probability
of stepping from column j to column j + 1 is twice as great as the probability of stepping
from column j to column j − 1. However, in the right tree, for n < j < 2n, the probability
of stepping from column j to column j + 1 is half as great as the probability of stepping
from column j to column j−1. This means that if you start at the entrance, you quickly
move to the middle of the graph, but then it takes a time exponential in n to reach the

84

exit. More precisely, starting at the entrance, the probability of being at the exit after
any number of steps is less than 2−n. This implies that the probability of reaching the exit
in a time that is polynomial in n must be exponentially small as a function of n.

We now analyze the quantum walk on Gn starting in the state corresponding to the
entrance and evolving with the Hamiltonian given by H = −γL. With this initial state,
the symmetries ofH keep the evolution in a (2n+1)-dimensional subspace of the (2n+1+2n−
2)-dimensional Hilbert space. This subspace is spanned by states |col j〉 (where 0 ≤ j ≤ 2n),
the uniform superposition over all vertices in column j, that is,

|col j〉 =
1√
Nj

∑
a∈column j

|a〉 , (5.1)

where

Nj =

{
2j 0 ≤ j ≤ n
22n−j n ≤ j ≤ 2n

(5.2)

is the number of vertices in column j. We refer to this subspace as the column subspace. In
the column subspace, the non-zero matrix elements of H are

〈col j|H|(col j ± 1)〉 = −
√

2γ (5.3)

〈col j|H|col j〉 =

{
2γ j = 0, n, 2n
3γ otherwise,

(5.4)

which is depicted in Figure 5-2(a) (for n = 4) as a quantum walk on a line with 2n + 1
vertices.

Starting at the entrance in Figure 5-2(a), there is an appreciable probability of being at
the exit after a time proportional to n. To see this, we will consider a number of examples
that show the essential features of the walk. When we give an example of algorithmic
speedup in the next section using a closely related graph, we will rigorously prove that the
walk reaches the exit in time polynomial in n.

First consider quantum propagation on an infinite, translationally invariant line of ver-
tices as depicted in Figure 5-2(b). This is simply a rescaled version of the quantum walk
on the line discussed in Section 3.3.2. In this case, the energy for the momentum eigenstate
|p〉 in (3.10) is given by

E(p) = 3− 2
√

2γ cos p . (5.5)

Thus we find for the propagator between vertices j and k

G(j, k, t) = 〈k|e−iHt|j〉 (5.6)

= e−i3γtik−jJk−j(2
√

2γt) (5.7)

(cf. (3.14)). This corresponds to propagation with speed 2
√

2γ.

To understand the effect of a defect, we now consider an infinite line with a different
matrix element at site j = n, as shown in 5-2(c). For generality, we consider the case where
the matrix element at the defect is α. We use standard scattering theory to calculate the
transmission coefficient for an incident plane wave of momentum p > 0. Consider a state
|ψ〉 consisting of an incident plane wave and a reflected plane wave on the left side of the

85

(a) s s s p p p s s s p p p s s s2 3 3 3 2 3 3 3 2
entrance exit

col 0 col 1 col 2 coln−1 coln coln+1 col 2n−2 col 2n−1 col 2n

(b) s s s s s s s s s -�
3 3 3 3 3 3 3 3 3

(c) s s s s s s s s s -�
j = n

3 3 3 3 α 3 3 3 3

(d) � s s s s p p p s s s sα3 3 3 3 3 3 3

(e) s s s s p p p s s s s
j = 1 j = L

3 3 3 3 3 3 3 3

Figure 5-2: Quantum walks on lines, with matrix elements shown in units of γ. Each edge
represents a matrix element of −

√
2 connecting two sites. (a) Reduction of the quantum

walk on Gn to a quantum walk on a line. (b) Quantum walk on an infinite, translationally
invariant line. (c) Quantum walk on an infinite line with a defect. (d) Quantum walk on a
half-line with a defect at the end. (e) Quantum walk on a finite line with no defects.

defect and a transmitted plane wave on the right side:

〈j|ψ〉 =

{
1√
2π
eipj + R√

2π
e−ipj j ≤ n

T√
2π
eipj j ≥ n+ 1 .

(5.8)

Here R is the reflection coefficient and T is the transmission coefficient. Requiring this to
be an eigenstate of the Hamiltonian, we find

T (p) =
4 sin p

4 sin p− i
√

2(3− α)
(5.9)

which gives

|T (p)|2 =
8 sin2 p

1 + 8 sin2 p
(5.10)

for α = 2, as shown in Figure 5-3(a). A narrow wave packet with momentum p propagates
through the defect with probability |T (p)|2. The wave packet that results from a state
initially localized at a particular site is spread out over a range of momenta, but since the
transmission probability is appreciable over most of the range, it is clear that there will be
substantial transmission through the defect.

To understand the effect of boundaries, now consider the half-line shown in Figure 5-
2(d). A state |ψ〉 consisting of an incoming plane wave together with a reflected wave takes

86

Figure 5-3: (a) The transmission probability |T (p)|2 as a function of momentum for the
infinite line with a defect from Figure 5-2(c) (with α = 2). (b) The phase shift φ(p) induced
by reflection off the end of the half line from Figure 5-2(d) (again with α = 2).

the form
〈j|ψ〉 =

1√
2π
eipj +

R√
2π
e−ipj . (5.11)

Demanding that this state is an eigenstate of the Hamiltonian, we find

R(p) = − α− 3 +
√

2eip

α− 3 +
√

2e−ip
. (5.12)

By unitarity, |R(p)| = 1, so we can write R(p) = eiφ(p). An incoming plane wave of
momentum p is reflected from the end of the line with a momentum-dependent phase shift
φ(p), as shown in Figure 5-3(b) for α = 2. In the simple case α = 3, we have a reflecting
boundary condition, and we find R(p) = −e2ip. In this case, it is as if the incoming wave
reflects off a site one unit to the right of the end of the half line, regardless of its momentum.
The case of general α is similar, but the reflection is slightly more complicated due to the
momentum dependence of the phase shift.

Finally, to understand the effect of having a finite system, consider the finite line (with
no defects) shown in Figure 5-2(e). This problem can be treated by standard techniques of
multiple reflection. The exact Green’s function G̃(j, k, t) for this finite line in terms of the
Green’s function G(j, k, t) for the infinite line is

G̃(j, k, t) =
∞∑

l=−∞
[G(j, k + 2l(L+ 1), t)−G(j,−k + 2l(L+ 1), t)] , 1 ≤ j, k ≤ L . (5.13)

This can be interpreted as a sum of paths making reflections off the boundaries, as in the
previous example. To verify this formula, one can check that it satisfies the Schrödinger
equation, the boundary conditions, and the initial condition. The Schrödinger equation
is satisfied because each term individually satisfies it for the infinite line. The boundary
conditions G̃(j, 0, t) = G̃(j, L+1, t) = 0 can be verified by substitution. The initial condition
G̃(j, k, 0) = δjk holds because G(j, k, 0) = δjk, and the only contribution at t = 0 comes
from the first term of (5.13) with l = 0. We can now see, using the particular form of the
propagator in terms of a Bessel function, that propagation from j = 1 to j = L takes time

87

proportional to L for L� 1. Since Jj(t) is small for |j| � t, there are only four terms that
contribute significantly for t & L/(2

√
2γ). They result from taking l = 0,−1 in the first

term of (5.13) and l = 0, 1 in the second term. The resulting expression is

G̃(1, L, t) ≈ G(1, L, t)+G(1,−L−2, t)−G(1,−L, t)−G(1, L+2, t) , t & L/(2
√

2γ) , (5.14)

the magnitude of which is not small.
We have seen that propagation on a line occurs as a wave packet that moves with

constant speed, that the wave packet is substantially transmitted through a defect, and
that reflections off boundaries do not impede propagation. Taken together, these facts
constitute compelling evidence that the quantum walk traverses the graph Gn in linear
time. To verify this, we can numerically compute the probability |〈col j|ψ(t)〉|2 of being
in column j at various times t, where |ψ(0)〉 = |entrance〉 and we choose γ = 1. This
is shown in Figure 5-4 with n = 500 for t = 100, 250, and 400. These plots clearly show
a wave packet that propagates with speed 2

√
2, with the amplitude near the wavefront

decreasing like t−1/2. In the first plot, at t = 100, the leading edge of the distribution is at
column 200

√
2 ≈ 283. The packet has not yet encountered the small defect at the center,

so it has a relatively simple shape. At t = 250, the wavefront has passed the center, and a
small reflection can be seen propagating backward. However, the leading edge is relatively
undisturbed, having propagated to column 500

√
2 ≈ 707. The wavefront continues to

propagate with speed 2
√

2 until it reaches the exit, where the packet is reflected. The last
plot, at t = 400, shows the distribution shortly after this first reflection. Even after the
reflection, there is still an appreciable probability of being at the exit.

Note that if we had chosen H = γA instead of H = −γL as the Hamiltonian of our
quantum walk, the reduced walk on the line would have been free of defects, and we could
have calculated its propagation exactly, just as we did for the example of Figure 5-2(e). We
chose to use the Laplacian since this choice is more closely analogous to the classical case.
However, when we demonstrate algorithmic speedup in the next section, we will be free to
choose H = γA to simplify the calculation.

5.3 Algorithmic speedup

In the previous section, we gave a simple example of exponential speedup of a quantum
walk over a classical random walk. In this section, we modify the graphs in the previous
example so that the quantum walk is exponentially better not only than the corresponding
classical random walk, but also than any classical algorithm one can design to traverse the
graph.

5.3.1 The problem

We begin by describing the computational problem in detail. The problem involves deter-
mining a property of a graph (a variant of Gn) whose structure is given in the form of black
box. Before we describe the modified graphs, we provide a black box framework in which
graphs can be specified, and where our notion of an algorithm traversing a graph can be
made precise.

Let G be a graph with N vertices. To represent G as a black box, let m be such that
2m > N and let k be at least as large as the maximum vertex degree in G. Assign each
vertex a ∈ G a distinct m-bit string as its name, except do not assign 11 . . . 1 as the name

88

Figure 5-4: Propagation in G500 starting at the left root. From top to bottom, the times
are t = 100, 250, and 400.

89

of any vertex. For each vertex a ∈ G, assign the outgoing edges of a labels from a set L of
size k. For a ∈ {0, 1}m and c ∈ L, define vc(a) as the adjacent vertex reached by following
the outgoing edge of a labeled by c, if such an edge exists. If no such edge exists or if
a 6∈ G, then vc(a) = 11 . . . 1. The resulting black box for G takes c ∈ L and a ∈ {0, 1}m as
input and returns the value of vc(a). For quantum algorithms, this operation is defined as
a unitary transformation U in the usual way. That is, for a, b ∈ {0, 1}m and c ∈ L,

U |c, a, b〉 = |c, a, b⊕ vc(a)〉 , (5.15)

where ⊕ denotes bitwise addition modulo 2.

We now define a notion of traversing a graph G from its entrance to its exit:

Definition 5.1. Let G be a graph and entrance and exit be two vertices of G. The input
of the traversal problem is a black box for G and the name of the entrance. The output
is the name of the exit.

For the graphs Gn, with the entrance and exit defined as before, this instance of the
traversal problem can be solved in time polynomial in n using a classical algorithm that is
not a random walk. The key is that we can always tell whether a particular vertex is in
the central column by checking its degree. We begin at the entrance. At each vertex,
we query the oracle and move to one of the two unvisited adjacent vertices. After n steps,
we reach the central column and then proceed moving to unvisited adjacent vertices in the
right tree, checking the degree at each step. If we discover that after s steps we are again
at a central vertex, we know that the wrong move happened after s/2 steps (s can only be
even due to the structure of Gn) and we can backtrack to that point and take the other
edge. After only O(n2) steps this procedure will reach the exit.1

We now describe how the graphs Gn are modified so that they cannot be traversed
efficiently by any classical algorithm. We choose a graph G′

n at random from a particular
distribution on graphs. A typical graph G′

n is shown in Figure 5-5 (for n = 4). The
distribution is defined as follows. The graph again consists of two balanced binary trees of
height n, but instead of identifying the leaves, they are connected by a random cycle that
alternates between the leaves of the two trees. In other words, we choose a leaf on the left
at random and connect it to a leaf on the right chosen at random. Then we connect the
latter to a leaf on the left chosen randomly among the remaining ones. We continue with
this procedure, alternating sides, until every leaf on the left is connected to two leaves on
the right (and vice versa).

In Sections 5.3.2 and 5.3.3, we describe and analyze a quantum algorithm that solves the
graph traversal problem for G′

n in polynomial time, and in Section 5.3.4, we show that any
classical algorithm that solves this traversal problem with nonnegligible probability takes
exponential time.

1As an aside, note that there is also a polynomial-time classical traversal algorithm for the n-dimensional
hypercube (where one vertex is designated as the entrance and the exit is the unique vertex whose distance
from entrance is n). For a description of the algorithm, see Appendix A of [40]. This means that there can
be no exponential algorithmic speedup using quantum walks to traverse the hypercube, even though both
continuous- and discrete-time quantum walks reach the exit in a polynomial number of steps (see Section
3.3.1 and [148, 116]).

90

Figure 5-5: A typical graph G′
4.

5.3.2 Quantum walk algorithm

The traversal problem for any graph G′
n can be easily solved by a quantum walk. Just as

for Gn, a quantum walk on G′
n starting from entrance rapidly traverses the graph to the

exit. Given the black box (5.15) for computing the neighbors of a given vertex, this walk
can be implemented efficiently in the quantum circuit model using Rule 1.7. To simplify
the analysis, we define the walk using the adjacency matrix of the graph.

Similar arguments to the ones we gave in Section 5.2 show that the walk propagates
from the entrance to the exit in linear time. In the remainder of this section, we explain
how the walk on G′

n can be viewed as a walk on a finite line with a defect at the center, and
we argue as before that the defect and the boundaries do not significantly affect the walk.
In Section 5.3.3, we prove that the walk reaches the exit in polynomial time.

Just as the walk on Gn could be reduced to a walk on a line with 2n + 1 vertices, one
for each column of the original graph, the walk on G′

n can be reduced to a walk on a line
with 2n + 2 vertices. Consider the (2n + 2)-dimensional column subspace spanned by the
column states (5.1) for j ∈ {0, 1, . . . , 2n+ 1}, where now

Nj =

{
2j 0 ≤ j ≤ n
22n+1−j n+ 1 ≤ j ≤ 2n+ 1 .

(5.16)

Because every vertex in column j is connected to the same number of vertices in column
j + 1 and every vertex in column j + 1 is connected to the same number of vertices in
column j, applying H to any state in the column subspace results in another state in this
subspace. Despite the random connections in G′

n, the column subspace is invariant under
H. In particular, a quantum walk starting in the state corresponding to the entrance
always remains in the column subspace. Thus, to understand the quantum walk starting
from the entrance, we only need to understand how the Hamiltonian acts on the column

91

(a) r r r p p p r r r r p p p r r r1 1 1
√

2 1 1 1
entrance exit

col 0 col 1 col 2 coln−1 coln coln+1 coln+2 col 2n−1 col 2n col 2n+1

(b) r r r r r r r r -�
j = d j = d+1

1 1 1 α′ 1 1 1

Figure 5-6: (a) Reduction of the quantum walk on G′
n to a quantum walk on a line. (b)

Quantum walk on an infinite line with a defect between sites n and n+ 1.

subspace. In this subspace, the non-zero matrix elements of H = γA are

〈col j|H|col(j + 1)〉 =

{√
2γ 0 ≤ j ≤ n− 1 , n+ 1 ≤ j ≤ 2n

2γ j = n
(5.17)

(and those deduced by Hermiticity of H). For simplicity, we set γ = 1/
√

2. The quantum
walk in the column subspace is shown pictorially in Figure 5-6(a).

We claim that if the quantum state at t = 0 is |col 0〉 = |entrance〉, then at a time
of order n/2, there is an appreciable probability of being at |col(2n + 1)〉 = |exit〉. By
considering examples similar to those in Figure 5-2, it is clear that the walk propagates on
the line with speed 2. In this case, since the diagonal elements are zero, we do not need
to worry about defects at the ends of the line. However, since we have added edges in the
middle of the graph, the reduction of G′

n contains a defect between sites j = n and j = n+1.
Therefore, analogous to Figure 5-2(c), we should consider an infinite line with a defect on
one edge, as shown in Figure 5-6(b). For this problem, we can calculate a transmission
coefficient just as we did in the previous section. If we consider a state |ψ〉 of the form

〈j|ψ〉 =

{
1√
2π
eipj + R√

2π
e−ipj j ≤ d

T√
2π
eipj j ≥ d+ 1 ,

(5.18)

then we find a transmission coefficient

T (p) =
2iα′ sin p

(α′2 − 1) cos p+ i(α′2 + 1) sin p
. (5.19)

Coincidentally, even though the reduction of G′
n (using the adjacency matrix) has a different

kind of defect from the reduction of Gn (using the Laplacian), for α′ =
√

2 we find the same
transmission probability |T (p)|2 given in (5.10), as shown in Figure 5-3(a). As in the
previous case, we see that the defect is not a substantial barrier to transmission.

Again, using simple arguments based on standard scattering theory, we see that a quan-
tum walk traverses the graph G′

n in linear time. The exact propagator for the line shown in
Figure 5-6(a) can be calculated using a more sophisticated version of these techniques [94].
This exact propagator, evaluated for t near n, is of order n−1/3. We give a simpler proof of
a bound that is not tight—but is nevertheless polynomial—in the following section.

92

5.3.3 Upper bound on the traversal time

Although the preceding section demonstrated beyond any reasonable doubt that the quan-
tum walk traverses the graph G′

n in linear time, we now provide a simple proof that the
traversal time is upper bounded by a polynomial.

For the purpose of this proof, it will be more convenient to consider the graph G′
n−1,

which reduces to a line with 2n vertices. We label the vertices from 1 to 2n, and the
defect is on the edge between vertices n and n + 1. With this labeling and γ = 1/

√
2, the

Hamiltonian (5.17) is

〈col j|H|col(j + 1)〉 =

{
1 1 ≤ j ≤ n− 1 , n+ 1 ≤ j ≤ 2n− 1√

2 j = n ,
(5.20)

with Hermiticity of H giving the other nonzero matrix elements.

Define a reflection operator

R|col j〉 = |col(2n+ 1− j)〉 . (5.21)

Note that R2 = 1, so R has eigenvalues ±1. R commutes with H on the column subspace,
so we can find simultaneous eigenstates of R and H. These are of the form

〈col j|E〉 =

{
sin pj 1 ≤ j ≤ n
± sin(p(2n+ 1− j)) n+ 1 ≤ j ≤ 2n ,

(5.22)

which explicitly vanish at j = 0 and j = 2n + 1. The eigenvalue corresponding to the
eigenstate |E〉 is E = 2 cos p, and the quantization condition (to be discussed later) comes
from matching at vertices n and n + 1. The entrance vertex corresponds to |col 1〉 and
the exit vertex to |col 2n〉.

Lemma 5.1. Consider the quantum walk in G′
n−1 starting at the entrance. Let the walk

run for a time t chosen uniformly in [0, τ] and then measure in the computational basis. If
τ ≥ 4n

ε∆E for any constant ε > 0, where ∆E is the magnitude of the smallest gap between
any pair of eigenvalues of the Hamiltonian, then the probability of finding the exit is greater
than 1

2n(1− ε).

Proof. The probability of finding the exit after the randomly chosen time t ∈ [0, τ] is

1
τ

∫ τ

0
dt |〈col 2n|e−iHt|col 1〉|2

=
1
τ

∑
E,E′

∫ τ

0
dt e−i(E−E

′)t〈col 2n|E〉〈E|col 1〉〈col 1|E′〉〈E′|col 2n〉 (5.23)

=
∑
E

|〈E|col 1〉|2|〈E|col 2n〉|2

+
∑
E 6=E′

1− e−i(E−E′)τ

i(E − E′)τ
〈col 2n|E〉〈E|col 1〉〈col 1|E′〉〈E′|col 2n〉 . (5.24)

93

Because of (5.22), we have 〈E|col 1〉 = ±〈E|col 2n〉. Thus the first term is∑
E

|〈E|col 1〉|4 ≥ 1
2n

(5.25)

as is easily established using the Cauchy-Schwartz inequality. The second term can be
bounded as follows:∣∣∣∣∣∣

∑
E 6=E′

1− e−i(E−E′)τ

i(E − E′)τ
〈col 2n|E〉〈E|col 1〉〈col 1|E′〉〈E′|col 2n〉

∣∣∣∣∣∣
≤ 2
τ∆E

∑
E,E′

|〈E|col 1〉|2|〈E′|col 2n〉|2 =
2

τ∆E
. (5.26)

Thus we have

1
τ

∫ τ

0
dt |〈col 2n|e−iHt|col 1〉|2 ≥ 1

2n
− 2
τ∆E

≥ 1
2n

(1− ε) (5.27)

where the last inequality follows since τ ≥ 4n
ε∆E by assumption.

Now we need to prove that the minimum gap ∆E is only polynomially small.

Lemma 5.2. The smallest gap between any pair of eigenvalues of the Hamiltonian satisfies

∆E >
2π2

(1 +
√

2)n3
+O(1/n4) . (5.28)

Proof. To evaluate the spacings between eigenvalues, we need to use the quantization con-
dition. We have

〈coln|H|E〉 = 2 cos p 〈coln|E〉 (5.29)

so that √
2〈col(n+ 1)|E〉+ 〈col(n− 1)|E〉 = 2 cos p 〈coln|E〉 (5.30)

and using (5.22), we have

±
√

2 sinnp+ sin((n− 1)p) = 2 cos p sinnp (5.31)

which simplifies to
sin((n+ 1)p)

sinnp
= ±
√

2 . (5.32)

In Figure 5-7 we plot the left hand side of (5.32) for n = 5. The intersections with −
√

2
occur to the left of the zeros of sinnp, which occur at πl/n for l = 1, 2, . . . , n − 1. For the
values of p that intersect −

√
2, we can write p = (πl/n)− δ. Equation (5.32) with −

√
2 on

the right hand side is now

−
√

2 sinnδ = sin
(
nδ − lπ

n
+ δ

)
. (5.33)

Write δ = (c/n)+(d/n2)+O(1/n3). Taking n→∞ in (5.33) gives −
√

2 sin c = sin c, which

94

Figure 5-7: Left hand side of (5.32) for n = 5.

implies that c = 0. We then get

−
√

2 sin
(
d

n
+O(1/n2)

)
= sin

(
d

n
− lπ

n
+O(1/n2)

)
(5.34)

which gives, as n→∞,

d =
lπ

1 +
√

2
. (5.35)

Thus we have that the roots of (5.32) with −
√

2 on the right hand side are of the form

p =
lπ

n
− lπ

(1 +
√

2)n2
+O(1/n3) . (5.36)

Let p′ and p′′ be the two roots of (5.32) closest to the root p just found, with p′ < p < p′′.
From the figure we see that p′ and p′′ both are roots of (5.32) with +

√
2. (Note that the

smallest p, corresponding to l = 1, does not have a p′.) We see that p′′ lies to the right of
the zero of sinnp at p = lπ/n. We also see that p′ lies to the left of the zero of sin((n+1)p)
at lπ/(n+ 1). Therefore we have

p′ <
lπ

n
− lπ

n2
+O(1/n3) (5.37)

p′′ >
lπ

n
, (5.38)

95

from which we conclude that

p− p′ > lπ
√

2
(1 +

√
2)n2

+O(1/n3) , l = 2, 3, . . . , n− 1 (5.39)

p′′ − p > lπ

(1 +
√

2)n2
+O(1/n3) , l = 1, 2, . . . , n− 1 . (5.40)

Thus the smallest spacing is at least π/[(1 +
√

2)n2] +O(1/n3).
Now for a given p, the corresponding eigenvalue is 2 cos p. For small ∆p, the spacing

∆E is related to the spacing ∆p by

∆E = 2|∆p sin p|+O
(
(∆p)2

)
. (5.41)

The factor sin p = sin(lπ/n+O(1/n2)) is smallest when l = 1, so we have

∆E >
2π2

(1 +
√

2)n3
+O(1/n4) >

8
n3

for n sufficiently large. (5.42)

The alert reader will note from the figure with n = 5 that there are only 8 roots,
whereas the dimension of the reduced space is 10, so there are actually 10 eigenvalues. In
general, there are n − 2 roots of (5.32) with p real. If we let p = ik with k real, we can
have eigenstates of the form (5.22) with sin pj replaced by sinh kj and ± sin(p(2n+ 1− j))
replaced by ± sinh(k(2n+1−j)). The corresponding eigenvalue is 2 cosh k and the condition
(5.32) becomes

sinh((n+ 1)k)
sinhnk

= ±
√

2. (5.43)

As n → ∞, the root of this equation is at ek =
√

2, which corresponds to an eigenvalue√
2 + 1√

2
. To obtain the last eigenvalue, let p = π + ik. The eigenvalue is then −2 cosh k.

The quantization condition is now the same as (5.43), and as n → ∞, the eigenvalue is
−(
√

2+ 1√
2
). So we have found two eigenvalues at ±(

√
2+ 1√

2
) with corrections that vanish

exponentially as n→∞. Since the other n− 2 eigenvalues are all in the range [−2, 2], our
conclusion about the minimum spacing is unchanged.

Using Lemma 5.1 and Lemma 5.2, we find

Theorem 5.3. For n sufficiently large, running the quantum walk for a time chosen uni-
formly in [0, n

4

2ε] and then measuring in the computational basis yields a probability of finding
the exit that is greater than 1

2n(1− ε).

To summarize, we have presented an efficient algorithm for traversing any graph G′
n

using a quantum computer. The computer is prepared in the state corresponding to the
entrance, and the quantum walk is simulated using Rule 1.7. After running the walk for
a certain time t, the state of the computer is measured in the computational basis. The
oracle can then be used to check whether the resulting vertex name corresponds to a vertex
of degree 2 other than entrance, in which case it must be exit. Theorem 5.3 shows that
by choosing an appropriate t = poly(n), the probability of finding the name of the exit can
be O(1/n). By repeating this process poly(n) times, the success probability can be made
arbitrarily close to 1. Combining this with the efficient implementation of the quantum
walk described in Chapter 1, we see that the quantum walk algorithm finds the name of
the exit with high probability using poly(n) calls to the oracle.

96

5.3.4 Classical lower bound

In this section, we show that any classical algorithm that solves the problem of traversing
G′
n requires exponential time. More precisely, we have

Theorem 5.4. Any classical algorithm that makes at most 2n/6 queries to the oracle finds
the exit with probability at most 4 · 2−n/6.

We shall prove Theorem 5.4 by considering a series of games and proving relations
between them. The first game is essentially equivalent to our problem, and each new game
will be essentially as easy to win. Finally, we will show that the easiest game cannot be
won in subexponential time.

Our problem is equivalent to the following game:

Game 1. The oracle contains a random set of names for the vertices of the randomly chosen
graph G′

n such that each vertex has a distinct 2n-bit string as its name and the entrance
vertex has the name 0. At each step, the algorithm sends a 2n-bit string to the oracle, and
if there exists a vertex with that name, the oracle returns the names of the neighbors of that
vertex. The algorithm wins if it ever sends the oracle the name of the exit vertex.

Note that there are two sources of randomness in this oracle: in the choice of a graph G′
n

and in the random naming of its vertices. We first consider a fixed graph G and only draw
implications from the random names. Throughout this section, G always refers to one of
the graphs G′

n. For a game X with a graph G, the success probability of the algorithm A
is defined as

PGX(A) = Pr
names

[A wins game X on graph G] , (5.44)

where Pr
names

[·] means the probability is taken over the random naming of vertices.

In Game 1, the algorithm could traverse a disconnected subgraph of G′
n. But because

there are exponentially many more strings of 2n bits than vertices in the graph, it is highly
unlikely that any algorithm will ever guess the name of a vertex that it was not sent by the
oracle. Thus, Game 1 is essentially equivalent to the following game:

Game 2. The oracle contains a graph and a set of vertex names as described in Game 1.
At each step, the algorithm sends the oracle the name of the entrance vertex or the name
of a vertex it has previously been sent by the oracle. The oracle then returns the names of
the neighbors of that vertex. The algorithm wins it ever sends the oracle the name of the
exit vertex.

The next lemma shows that, if the algorithms run for a sufficiently short time, then the
success probabilities for Game 1 and Game 2 can only differ by a small amount.

Lemma 5.5. For every algorithm A for Game 1 that makes at most t oracle queries, there
exists an algorithm A′ for Game 2 that also makes at most t oracle queries such that for all
graphs G,

PG1 (A) ≤ PG2 (A′) +O(t/2n) . (5.45)

Proof. Algorithm A′ simulates A, but whenever A queries a name it has not previously been
sent by the oracle, A′ assumes the result of the query is 11 . . . 1. The chance that A can
discover the name of a vertex that it is not told by the oracle is at most t(2n+2−2)/(22n−1),
and unless this happens, the two algorithms will have similar behavior.

97

To obtain a bound on the success probability of Game 2, we will compare it with a
simpler game, which is the same except that it provides an additional way to win:

Game 3. The oracle contains a graph and a set of vertex names as described in Game 1.
At each step, the algorithm and the oracle interact as in Game 2. The algorithm wins it
ever sends the oracle the name of the exit vertex, or if the subgraph it has seen contains a
cycle.

Game 3 is clearly easier to win than Game 2, so we have

Lemma 5.6. For all algorithms A for Game 2,

PG2 (A) ≤ PG3 (A) . (5.46)

Now we further restrict the form of the subgraph that can be seen by the algorithm
unless it wins Game 3. We will show that the subgraph an algorithm sees must be a
random embedding of a rooted binary tree. For a rooted binary tree T , we define an
embedding of T into G to be a function π from the vertices of T to the vertices of G such
that π(root) = entrance and for all vertices u and v that are neighbors in T , π(u) and
π(v) are neighbors in G. We say that an embedding of T is proper if π(u) 6= π(v) for u 6= v.
We say that a tree T exits under an embedding π if π(v) = exit for some v ∈ T .

We must specify what we mean by a random embedding of a tree. Intuitively, a random
embedding of a tree is obtained by setting π(root) = entrance and then mapping the
rest of T into G at random. We define this formally for trees T in which each internal
vertex has two children (it will not be necessary to consider others). A random embedding
is obtained as follows:

1. Label the root of T as 0, and label the other vertices of T with consecutive integers
so that if vertex i lies on the path from the root to vertex j then i < j.

2. Set π(0) = entrance.

3. Let i and j be the neighbors of 0 in T .

4. Let u and v be the neighbors of entrance in G.

5. With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set π(i) = v
and π(j) = u.

6. For i = 1, 2, 3, . . ., if vertex i is not a leaf, and π(i) is not exit or entrance,

(a) Let j and k denote the children of vertex i, and let l denote the parent of vertex
i.

(b) Let u and v be the neighbors of π(i) in G other than π(l).

(c) With probability 1/2 set π(i) = u and π(j) = v, and with probability 1/2 set
π(i) = v and π(j) = u.

We can now define the game of finding a tree T for which a randomly chosen π is an
improper embedding or T exits:

Game 4. The algorithm outputs a rooted binary tree T with t vertices in which each internal
vertex has two children. A random π is chosen. The algorithm wins if π is an improper
embedding of T in G′

n or T exits G′
n under π.

98

As the algorithm A merely serves to produce a distribution on trees T , we define

PG(T) = Pr
π

[π is improper for T or T exits G under π] , (5.47)

and observe that for every distribution on graphs G and all algorithms taking at most t
steps,

max
A

E
G

[
PG4 (A)

]
≤ max

trees T with t vertices
E
G

[
PG(T)

]
. (5.48)

(Here EG [·] means the expectation over graphs.) Game 3 and Game 4 are also equivalent:

Lemma 5.7. For any algorithm A for Game 3 that uses at most t queries of the oracle,
there exists an algorithm A′ for Game 4 that outputs a tree of at most t vertices such that
for all graphs G,

PG3 (A) = PG4 (A′) . (5.49)

Proof. Algorithm A halts if it ever finds a cycle, exits, or uses t steps. Algorithm A′ will
generate a (random) tree by simulating A. Suppose that vertex a in graph G corresponds
to vertex a′ in the tree that A′ is generating. If A asks the oracle for the names of the
neighbors of a, A′ generates two unused names b′ and c′ at random and uses them as the
neighbors of a′. Now b′ and c′ correspond to b and c, the neighbors of a in G. Using the
tree generated by A′ in Game 4 has the same behavior as using A in Game 3.

Finally, we bound the probability that an algorithm wins Game 4:

Lemma 5.8. For rooted trees T of at most 2n/6 vertices,

max
T

E
G

[
PG(T)

]
≤ 3 · 2−n/6. (5.50)

Proof. Let T be a tree with t vertices, t ≤ 2n/6, with image π(T) in G′
n under the random

embedding π. The vertices of columns n + 1, n + 2, . . . n + n
2 in G′

n divide naturally into
2n/2 complete binary subtrees of height n/2.

1. It is very unlikely that π(T) contains the root of any of these subtrees, i.e., that π(T)
includes any vertex in column n+ n

2 . Consider a path in T from the root to a leaf.
The path has length at most t, and there are at most t such paths. To reach column
n + n

2 from column n + 1, π must choose to move right n
2 − 1 times in a row, which

has probability 21−n/2. Since there are at most t tries on each path of T (from the
root to a leaf) and there are at most t such paths, the probability is bounded by
t2 · 21−n/2.

2. If π(T) contains a cycle, then there are two vertices a, b in T such that π(a) = π(b).
Let P be the path in T from a to b. Then π(P) is a cycle in G′

n. Let c be the vertex
in T closest to the root on the path π(P), and let π(P) consist of the path π(P1) from
c to a and π(P2) from c to b.

Let S1, S2, . . . , S2n/2 denote the 2n/2 subtrees described above. Let S′1, S
′
2, . . . , S

′
2n/2

denote the corresponding subtrees made out of columns n
2 + 1 to n. Without loss

of generality, let π(c) be in the left tree of G′
n, i.e., in a column ≤ n, as shown in

Figure 5-8.

π(P1) visits a sequence of subtrees S′i1 , Sj1 , S
′
i2
, . . . and, similarly, π(P2) visits a se-

quence of subtrees S′k1 , Sl1 , S
′
k2
, Since π(a) = π(b), the last subtree on these two

99

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

Q
Q

Q
Q

Q

�
�

�
�

�

pp
p

pp
p

r r
π(c)

π(a)=π(b)
���

π(P1)

π(P2)

0 n
2 n n+1 n+ n

2 2n+1

Figure 5-8: Graphical representation of part 2 of the proof of Lemma 5.8. The triangles
represent the subtrees of G′

n of height n/2, the dashed line represents the path π(P1), and
the dotted line represents the path π(P2). Together, these paths form a cycle in the graph.

lists must be the same. (The other possibility is that π(a) = π(b) does not lie in any
subtree, hence lies in columns 1 through n

2 or n+ n
2 +1 through 2n. But the event that

column n + n
2 is ever reached has already been shown to be unlikely in part 1. The

same argument bounds the probability of a return to column n
2 after a visit to column

n+ 1.) At least one of the lists has more than one term (or all vertices visited are in
the left tree, which can’t make a cycle). The probability that the last terms on the two
lists agree is bounded by 2n/2/(2n − t), by the construction of the random cycle that
connected the two trees of G′

n. As long as t ≤ 2n−1, we have 2n/2/(2n− t) ≤ 2 · 2−n/2.
Since there are

(
t
2

)
paths P to be considered, the probability of a cycle is less than

t2 · 2−n/2.

Overall we have shown that

E
G

[
PG(T)

]
≤ t2 · 2−n/2 + t2 · 21−n/2 (5.51)

≤ 3 · 2−n/6 (5.52)

if t ≤ 2n/6.

100

This completes the proof of Theorem 5.4.
Since we are only interested in proving an exponential separation, we have not tried to

optimize the analysis. By a slight improvement of Lemma 5.8, Theorem 5.4 can be improved
to show that any algorithm making at most 2n/3 queries finds the exit with probability at
most O(n2−n/3) [83].

5.4 Discussion

In this chapter, we have shown examples of situations where quantum walks achieve expo-
nential speedup over classical processes. We began with an example in which a quantum
walk is exponentially faster than the corresponding classical walk. We then modified this
example to produce a black box problem that can be solved efficiently using a quantum
walk, but not by any classical algorithm.

The speedup of our algorithm is essentially the result of a fast quantum hitting time,
the time to travel from one particular vertex to another. However, it can also be viewed as
mitigating the results of [4] regarding the mixing time of a quantum walk, the time required
to approach an appropriately defined limiting distribution. For discrete-time walks, [4]
pointed out that since the mixing times of both classical and quantum walks are controlled
by related eigenvalue gaps, a quantum walk cannot mix much faster than the corresponding
classical walk. Similar considerations apply for continuous-time walks. However, this result
does not say much about the relative behavior of classical and quantum walks, since the
limiting distributions of the two kinds of walks can be radically different. This fact was used
in the proof of Lemma 5.1, where we showed that the quantum walk reaches the exit because
its time-averaged probability distribution rapidly approaches a uniform distribution on the
columns, of which there are only polynomially many. In contrast, the corresponding classical
random walk approaches a uniform distribution on the vertices, in which the probability of
being at the exit is exponentially small.

Note that although our quantum algorithm finds the name of the exit, it does not find
a particular path from entrance to exit. If the algorithm stored information about its
path, then it would not exhibit constructive interference, and the speedup would be lost.
It is not clear whether this phenomenon can be avoided. It would be interesting to find an
efficient quantum algorithm for finding a path from entrance to exit, or to prove that
no such algorithm exists.

Although it is convenient to express our results in terms of a graph traversal problem,
the results can also be cast in terms of a graph reachability problem, where one is given a
graph G and two vertices s and t, and the goal is to determine whether or not there is a
path connecting s and t. The idea is to let G consist of two disjoint copies of G′

n, and set
s to be the entrance of one of the copies and t to be the exit of either the same copy or
the other copy of G′

n. The quantum algorithm of Section 5.3.2 can be adapted to solve this
problem in polynomial time, and the lower bound of Section 5.3.4 can be adapted to show
that no classical algorithm can solve this problem in subexponential time. (See [185] for a
survey of classical results about graph reachability problems in various contexts.)

Many computational problems can be recast as determining some property of a graph.
A natural question is whether there are useful computational problems (especially non-
oracular ones) that are classically hard (or are believed to be classically hard) but that can
be solved efficiently on a quantum computer employing quantum walks.

101

102

Chapter 6

Bipartite Hamiltonians as quantum
channels

6.1 Introduction

We now turn our attention from quantum algorithms to the exchange of quantum infor-
mation between two systems. The fundamental resource for information processing is an
interaction between two systems. Here we use Hamiltonian dynamics as a model of such an
interaction, and we discuss some of its consequences for quantum information processing.

Any interaction Hamiltonian H 6= HA⊗ IB + IA⊗HB that is not a sum of local1 terms
couples the systems A and B. Together with local operations, such a coupling can be used
for a variety of tasks, such as transmitting classical or quantum information [15, 26, 101, 32],
generating entanglement between the two systems [70, 123, 26, 191, 121], or simulating the
dynamics of some other bipartite Hamiltonian H ′ [68, 186, 117, 176, 187, 152, 39, 177, 139,
23, 175]. One of the goals of quantum information theory is to quantify the ability of an
interaction to perform such information processing tasks.

To focus on the purely nonlocal properties of Hamiltonians, we will work in a framework
of perfect local control. In other words, local control is regarded as a free resource. This
involves the ability to perform arbitrarily fast local operations to modify the evolution, and
may also include the use of local ancillary degrees of freedom.

The problem of simulating one bipartite Hamiltonian with another can be posed as
follows. We consider two quantum systems A andB that interact according to some nonlocal
Hamiltonian H. Separate parties in control of the two systems want to use H to produce an
evolution according to some other bipartite Hamiltonian H ′. They must do so using only
the evolution H and their ability to control the system locally.2 The goal of the simulation
is not to produce the Hamiltonian evolution e−iH

′t for a particular time t, but rather to
stroboscopically track the evolution e−iH

′t for arbitrarily closely spaced values of time. We
discuss the simulation problem in more detail in Section 6.2, where we give some rules for

1In this chapter, Hamiltonians and other operations are referred to as local if they act only on one
subsystem, i.e., on system A alone or system B alone. This can be contrasted with the use of the word
“local” in earlier chapters to describe constraints on the couplings between various parts of a large quantum
system, meaning for example that each qubit is only coupled to a few other qubits, that the connections
between qubits are spatially local, or that the Hamiltonian only couples matrix elements corresponding to
connected vertices in a sparse graph.

2In principle, we might allow classical communication between the two parties, but this would not increase
the simulation rate [176].

103

bipartite Hamiltonian simulation similar to the rules from Chapter 1 for computational
Hamiltonian simulation.

A basic result in bipartite Hamiltonian simulation is that any nonlocal Hamiltonian H
can be used to simulate any other at a nonzero rate, even without the ability to control
local ancillas.3 This was shown for two-qubit systems in [70, 68, 23], for a pair of d-
dimensional quantum systems in [152] and [23, Appendix C], and for an arbitrary pair of
finite-dimensional quantum systems in [187]. In Section 6.3, we give a construction for the
d-dimensional case along the lines of [152].

Unfortunately, the general simulation presented in Section 6.3 is typically quite ineffi-
cient. Ultimately, we would like to know the optimal rate γH′|H at which any interaction
Hamiltonian H can be used to simulate any other interaction Hamiltonian H ′, as well as
a protocol for doing so. A method for optimal simulation of two-qubit Hamiltonians is
given in [23], and the optimal rate in this case can be expressed in terms of a majorization
condition [176]. However, little is known about optimal simulation beyond the two-qubit
case.

The fact that any nonlocal Hamiltonian can simulate any other at some nonzero rate
means that all interactions are qualitatively equivalent. A stronger, quantitative notion
of equivalence between interactions comes from the possibility of performing a reversible
simulation. We say that H and H ′ can simulate each other reversibly if we can use H to
simulate H ′, and then use H ′ to simulate H back, with no overall loss in efficiency. In terms
of simulation rates, reversible simulation amounts to the condition

γH|H′ γH′|H = 1 . (6.1)

In Section 6.4, we show that all tensor product Hamiltonians of the form H = HA ⊗ HB

can simulate each other reversibly. Thus, for this particularly simple class of Hamiltonians,
we establish optimal simulation rates. Here we allow the use of local ancillas, since the
Hamiltonians H and H ′ might not even act on spaces of the same dimension.

Understanding Hamiltonian simulation also provides insight into capacities for other
information processing tasks. Let CH denote the capacity of the Hamiltonian H to accom-
plish some task, again assuming perfect local control. The Hamiltonian capacity can be
defined as

CH := sup
t

Ce−iHt

t
= lim

t→0

Ce−iHt

t
(6.2)

where Ce−iHt is the asymptotic capacity of the unitary gate e−iHt to perform the given task
[26]. If Hamiltonian H can be used to simulate H ′ at a rate γH′|H , then clearly

CH ≥ γH′|H CH′ , (6.3)

since one could first use H to simulate H ′ and then use H ′ to accomplish the task. Equa-
tion (6.3) is a lower bound on the capacity of H, or equivalently, an upper bound on the
capacity of H ′. Of course, such bounds need not be tight. For example, the majorization
condition for optimal simulation of two-qubit Hamiltonians [176] only provides a partial
order on these Hamiltonians, and thus the resulting bounds on capacities—for example, on
the entanglement capacity [26, 70, 49]—are not always tight. However, notice that if two
Hamiltonians H and H ′ can simulate each other reversibly, then their capacities are related

3Note that the same is not true for multipartite Hamiltonians coupling more than two systems [176, 34].

104

by
CH = γH′|H CH′ , (6.4)

as can be seen by applying (6.3) in both directions. In general, if every pair of Hamiltonians
in some given set can simulate each other reversibly, then simulation provides a total order
on the set. Thus the nonlocal properties of the entire set can be studied by focusing on
only one Hamiltonian in the set.

Finally, in Section 6.5, we address a different information processing task, the generation
of entanglement between two systems. For this problem, even the two-qubit case is nontrivial
because in general, the rate of entanglement generation can be increased through the use of
ancillary systems, and no upper bound is known on the dimension of the ancillas needed to
achieve the optimal rate. However, for a certain class of two-qubit Hamiltonians including
the Ising interaction, we show that ancillary systems do not increase the capacity, so that it
can be easily computed. Using (6.4), this allows us to compute the entanglement capacity of
any interaction that can reversibly simulate the Ising interaction—in particular, all tensor
product Hamiltonians.

6.2 Simulation rules

In this section, we present a list of rules for nonlocal Hamiltonian simulation. By compo-
sition, these rules give rise to all possible simulations achievable with local operations and
ancillary systems. We present five basic rules, as well as three additional rules that can be
obtained by combining the basic ones.

We use the shorthand notation H −→ H ′ to represent the fact that H can be used to
simulate H ′ at the rate γH′|H , and the notation H ←→ H ′ to indicate that, in addition,
the simulation can be reversed with no loss of efficiency, as in (6.1). We say that two
Hamiltonians are locally equivalent if they can simulate each other reversibly at unit rate,
i.e., γH′|H = γH|H′ = 1.

Many of these rules are analogous to those given in Chapter 1. However, they differ
in several important ways. Whereas Chapter 1 described simulation in a computational
setting, in this chapter we are using the model of perfect local control. Therefore we will
allow potentially complicated operations to be performed arbitrarily quickly, as long as they
are local. Additionally, since it turns out that any Hamiltonian can simulate any other at
a nonzero rate, we are only interested in simulation rules with at most linear overhead.

The first two basic rules merely make precise the notion of Hamiltonian evolution. They
do not involve any operational procedure, nor assume any ability to control the system.
The first rule makes precise the notion of rescaling the evolution time: a Hamiltonian
H can reversibly simulate another Hamiltonian H ′ = cH that only differs by a positive
multiplicative constant c.

Rule 6.1 (Rescaling). For any c > 0,

H ←→ cH , γcH|H =
1
c
. (6.5)

Note that it is important that c > 0. In general, Hamiltonians H and −H cannot simulate
each other reversibly (see [23, 187] for examples). This contrasts with Rule 1.2, where every
simulation was expressed in terms of a sequence of few-qubit unitary gates, and hence could
be run backward.

105

The second rule makes precise what it means for a Hamiltonian to act on a subsystem.
In the bipartite setting, the complete system can be described by subsystems A,B on which
H acts and ancillary subsystems A′, B′ on which it acts trivially.

Rule 6.2 (Ancillas). For any dimension of the ancillary Hilbert space HA′ ⊗HB′,

H ←→ H ⊗ IA′B′ , γH⊗IA′B′ |H = 1 . (6.6)

The next two basic rules arise from the possibility of switching on local Hamiltonians.
A purely local Hamiltonian can be simulated without the use of any interaction:

Rule 6.3 (Local Hamiltonians). Any local Hamiltonian of the form H0 = HA ⊗ IB +
IA ⊗HB can be produced at no cost.

Also, by means of local unitaries, any Hamiltonian H is locally equivalent to any other
that is obtained from it by local unitary conjugation. This follows from the simple identity

Ue−iHtU † = e−iUHU
†t (6.7)

for any unitary transformation U .

Rule 6.4 (Local unitaries). For any local unitary operation U = UA ⊗ UB,

H ←→ UHU † , γ
UHU†|H = 1 . (6.8)

Rules 6.1–6.4 allow us to produce Hamiltonians that differ from the original interaction
H. The Lie product formula (1.3) tells us how two of these Hamiltonians can be combined
into a new one by alternately simulating each of them individually. We suppose that we
can choose to apply either H1 or H2, but that only one can be applied at any given time.
Since we allow perfect local control, we need not be concerned with the error induced by
approximating (1.3) by a finite number of terms. With the help of Rule 6.1, this gives the
last basic rule.

Rule 6.5 (Convex combination). For any H1,H2 and 0 ≤ p ≤ 1, the simulation

pH1

(1− p)H2

}
−→ H ′ = pH1 + (1− p)H2 (6.9)

is possible with rate γH′|pH1;(1−p)H2
≥ 1.

Here the notation pH1; (1− p)H2 indicates that we have considered the use of Hamiltonian
H1 for a total fraction of time p and Hamiltonian H2 for a total fraction of time 1− p, and
the rate of simulating H ′ is computed by adding these two times together. In practice, the
simulation is achieved by alternating the use of H1 and H2 many times. We stress that
(6.9) assumes only the local ability to switch between the two constituent Hamiltonians,
and that only one Hamiltonian is acting at a time.

Notice that Rule 6.5 is the only basic simulation rule where irreversibility may occur.
Although we can always use H ′ to simulate back H1 and H2, in general we will incur an
overall loss in efficiency by doing so.

These basic rules can be combined in various ways. We state three particularly useful
combinations as additional rules. First, from Rules 6.3 and 6.5, a local Hamiltonian H0 can
be added to a given nonlocal Hamiltonian reversibly.

106

Rule 6.6 (Adding a local Hamiltonian).

H ←→ H +H0 , γH+H0|H = 1 . (6.10)

Second, local unitary conjugation and convex combination can be composed into what
we shall call a local unitary mixing of H.

Rule 6.7 (Local unitary mixing). For any set of local unitary transformations Ui =
UA,i ⊗ UB,i and any probability distribution pi (pi ≥ 0 and

∑
i pi = 1),

H −→ H ′ =
∑
i

pi UiHU
†
i , γH′|H ≥ 1 . (6.11)

Rule 6.1 and Rules 6.3–6.7 do not require local control over ancillary degrees of freedom.
In the two-qubit case, Rules 6.1, 6.6, and 6.7 describe all relevant simulations because local
control over ancillas is known to be unnecessary for optimal simulations [23]. But in general,
we may wish to allow local control over ancillas in our simulation model. By Rule 6.2, Rules
6.3–6.7 can be extended to include ancillas as well. Control over ancillas gives extra freedom
in the simulation, and is known to improve the achievable simulation rates in some cases
[176].

Our last rule is concerned with any simulation in which the original Hamiltonian H and
the simulated Hamiltonian H ′ act on systems with different dimensions. Let HA⊗HB and
HA′ ⊗HB′ denote the Hilbert spaces on which H and H ′ act, with dimensions dA, dB and
dA′ , dB′ , where dA ≥ dA′ and dB ≥ dB′ . For simplicity, we assume that H = HA ⊗HB is
a product Hamiltonian. If it were not, then we could expand H as a linear combination of
product Hamiltonians, H =

∑
iHA,i ⊗HB,i, and the following would hold for each of the

terms in the expansion. Let vectors |j〉A (1 ≤ j ≤ dA) denote an orthonormal basis in HA.
We can express HA as

HA =
(
J‖ C†

C J⊥

)
, (6.12)

where J‖ is the restriction of HA onto the subspace HA‖ ⊆ HA spanned by vectors |j〉A
(1 ≤ j ≤ dA′), and J⊥ the restriction onto its orthogonal complement. Consider also an
analogous decomposition for HB. Then we have the following:

Rule 6.8 (Reduction to a local subspace). The simulation

H =
(
J‖ C†

C J⊥

)
⊗
(
K‖ D†

D K⊥

)
−→ H ′ = J‖ ⊗K‖ (6.13)

is possible with rate γH′|H ≥ 1.

Proof. To establish this rule, we consider the simulation

H =
(
J‖ C†

C J⊥

)
⊗HB −→ H ′ = J‖ ⊗HB . (6.14)

Performing such a simulation twice, once in each direction, gives Rule 6.8.

107

We divide the simulation into two steps. First, by unitary mixing (Rule 6.7) with

p1 =
1
2
, U1 = IA ⊗ IB , (6.15)

p2 =
1
2
, U2 =

(
I‖ 0
0 −I⊥

)
⊗ IB , (6.16)

where I‖ and I⊥ denote restrictions of the identity operator, we achieve the simulation

H =
(
J‖ C†

C J⊥

)
⊗HB −→ H ′′ =

(
J‖ 0
0 J⊥

)
⊗HB (6.17)

with unit rate, so γH′′|H ≥ 1.
Second, we use H ′′ to simulate H ′ = J‖ ⊗HB as follows. The goal is to evolve a state

|ψ〉A′B according to e−iH
′t. We assume system A is locally prepared in the state |1〉A.

Therefore the joint state of systems AA′B is initially |1〉A|ψ〉A′B. Let VAA′ denote a unitary
transformation such that

VAA′ |1〉A|j〉A′ = |j〉A|1〉A′ , 1 ≤ j ≤ dA′ . (6.18)

Then the following three steps can be used to complete the desired simulation:

1. Apply the unitary operation VAA′ , placing |ψ〉A′B in the subspace HA‖⊗HB ⊂ HA⊗
HB.

2. Let AB evolve according to H ′′. Notice that at all times e−iH
′′t|ψ〉AB is supported in

HA‖ ⊗HB, and that H ′′ acts on this subspace as J‖ ⊗HB.

3. Apply the unitary operation V †
AA′ , so that the net evolution on |ψ〉A′B has been e−iH

′t.

This completes the proof.

6.3 Qualitative equivalence of all interaction Hamiltonians

In this section, we show that any interaction Hamiltonian between systems A and B, both of
dimension d, can simulate any other interaction at a nonzero rate. The simulation given here
does not require ancillary degrees of freedom. In fact, any nonlocal (dA × dB)-dimensional
bipartite Hamiltonian can simulate any other at a nonzero rate without the use of ancillas,
as shown in [187] using different methods.

We will work in a basis of d-dimensional Pauli operators, as used by Gottesman in the
investigation of stabilizer codes for d-level systems [96]. The d-dimensional Pauli group
consists of all d×d matrices of the form ωlXjZk, where j, k, l ∈ {0, 1, . . . , d−1}, ω = e2πi/d,
and

X|z〉 = |z + 1〉 (6.19)
Z|z〉 = ωz|z〉 (6.20)

where addition is performed modulo d. Note that Xd = Zd = I. These matrices satisfy the
commutation relation

(XjZk)(X lZm) = ωkl−jm(X lZm)(XjZk) . (6.21)

108

We will also use the simple fact

1
d

d−1∑
k=0

ωjk =

{
1 j = 0
0 otherwise.

(6.22)

Any d-dimensional operator M can be expanded in terms of the Pauli basis. Specifically,

M =
∑
j,k

mj,kX
jZk (6.23)

where mj,k = 1
d tr(Z−kX−jM). If M is Hermitian, then mj,k = ωjkm∗

−j,−k. This decompo-
sition can be easily extended to multiple systems.

For a Hamiltonian H expressed in this form, it is easy to see how to simulate its negation
(albeit not reversibly, as discussed above). For the purposes of this section, we will need
the following additional simulation rule:

Rule 6.9 (Negation). For any Hamiltonian H,

H −→ −H , γ−H|H > 0 . (6.24)

Proof. By direct calculation,

1
d

∑
j,k

(XjZk)M(Z−kX−j) = (trM) I (6.25)

for any operator M . Therefore,

1
d2

∑
(j,k,l,m) 6=(0,0,0,0)

(XjZk ⊗X lZm)H(Z−kX−j ⊗Z−mX−l) = − 1
d2
H + (trH) I ⊗ I , (6.26)

so by Rules 6.1, 6.6, and 6.7, H can be used to simulate −H at a nonzero rate.

Further discussion of the problem of reversing Hamiltonian evolution can be found in [110,
124].

The construction we use to simulate any interaction Hamiltonian with any other is based
on some simple number-theoretic ideas. First, we use Euclid’s algorithm to show that every
Pauli operator is isospectral to a diagonal one:

Lemma 6.1. For any dimension d and for integers j, k with 1 ≤ j, k ≤ d− 1, there exists
a unitary operator U such that UXjZkU † = Zgcd(j,k).

Proof. We claim that there is a unitary operation U that performs the transformations

X → XZ , Z → Z (6.27)

when acting by conjugation on the Pauli operators. If d is odd, U |z〉 := ωz(z−1)/2|z〉, and
if d is even, U |z〉 := ωz

2/2. Since the d-dimensional Fourier transformation takes X → Z,
Z → X−1, there is also a unitary operation U ′ that performs the transformation

X → X , Z → XZ . (6.28)

109

Therefore, there are unitary operations that perform the transformations

XjZk → XjZk+cj (6.29)

XjZk → Xj+ckZk (6.30)

for any integer c.
Now we simply apply Euclid’s algorithm to find gcd(j, k) [76, Book 7, Propositions 1

and 2]. If j > k, then we transform XjZk → Xj−ckZk) where c = j mod k (the remainder
left when j is divided by k). If j < k, then we transform XjZk → XjZk−cj where c =
k mod j. Note that in each such step, the gcd of the two terms is unchanged. Repeating
this transformation, we eventually reach either Xgcd(j,k) or Zgcd(j,k), which are isospectral
since they are related by the Fourier transform.

We will also need the following simple lemma.

Lemma 6.2. Suppose gcd(p, q) = 1. Then aq = bp (mod d) if and only if there exists an
n such that a = np (mod d) and b = nq (mod d).

Proof. The reverse implication follows by substitution. To prove the forward implication,
suppose aq = bp (mod d). Since gcd(p, q) = 1, there exist integers r, s such that rp+sq = 1.
Now choose n = ar + bs. Then we have

np = arp+ bsp (mod d) (6.31)
= arp+ asq (mod d) (6.32)
= a(rp+ sq) (6.33)
= a (mod d) (6.34)

as required. A similar calculation shows that nq = b (mod d).

Now we prove that any interaction Hamiltonian can simulate any other:

Theorem 6.3. Let H be a bipartite Hamiltonian that is not simply a sum of local terms,
and let H ′ be any bipartite Hamiltonian. Then the simulation H −→ H ′ is possible at some
rate γH′|H > 0.

The idea of the proof is to reduce H to a simple form, and then build back up to an arbitrary
Hamiltonian.

Proof. Given that H is nonlocal, it must contain at least one nonzero term XjZk ⊗X lZm

(and its Hermitian conjugate).
By Lemma 6.1 and Rule 6.4, H ←→ H1, where H1 contains a nonzero term Za ⊗ Zb,

where a = gcd(j, k) and b = gcd(l,m).
By Rule 6.7, H1 −→ H2 where

H2 :=
1
d

∑
r,s

(Zr ⊗ Zs)H1(Z−r ⊗ Z−s) . (6.35)

Using the commutation relation (6.21), we have Zr(XjZk)Z−r = ωrjXjZk. Summing over
r using (6.22), we see that all non-diagonal terms cancel. The same happens for system B,

110

so that
H2 =

∑
j,k

αj,k Z
j ⊗ Zk (6.36)

with αa,b 6= 0.

Now let a/b = p/q with p coprime to q. Again by Rule 6.7, we have H2 −→ H3 where

H3 :=
1
d

∑
l

(X−q ⊗Xp)lH2(Xq ⊗X−p)l (6.37)

=
∑
j,k

αj,k

(
1
d

∑
l

ω(qj−pk)l
)
Zj ⊗ Zk (6.38)

=
∑
n

βn(Zp ⊗ Zq)n (6.39)

with βn := αnp,nq. In the last line we have used Lemma 6.2 to show that only multiples of
p and q remain. Note that βf 6= 0, where f := a/p = b/q.

Since p and q are relatively prime, we can choose r, s such that rp + sq = 1. Using
Rule 6.7 a third time, we have H3 −→ H4 where

H4 :=
1
d

∑
j

(ωjf + ω−jf)(X−r ⊗X−s)jH3(Xr ⊗Xs)j (6.40)

=
∑
n

βn

(
1
d

∑
j

[
ωj(n+f) + ωj(n−f)

])
(Zp ⊗ Zq)n (6.41)

= βf Z
a ⊗ Zb + β∗f Z

−a ⊗ Z−b . (6.42)

Thus we have managed to isolate a single nonzero term.

At this point, the proof given in [152] converts H4 into a particular product Hamiltonian
and uses Uhlmann’s theorem to simulate an arbitrary product Hamiltonian, from which an
arbitrary Hamiltonian can be built using Rule 6.5. Here we give an alternate construction
that continues to use the Pauli basis. The goal of this construction is to use H4 to produce
an arbitrary term of the form XjZk ⊗X lZm (plus its Hermitian conjugate). We will just
show how to produce XjZk ⊗Zb for arbitrary j, k; then the same argument can be used to
modify system B.

The various terms XjZk can be separated into equivalence classes where the equivalence
relation is similarity (i.e., the members of a class are related by a unitary transformation). If
we show how to simulate one member of each class, then Rule 6.4 can be used to simulate an
arbitrary term. Lemma 6.1 shows that the Pauli operators can be classified by looking only
at the diagonal ones, of the form Zk. Thus we see that the equivalence classes correspond
exactly to the divisors of d. If d is prime, then Zk and Zk

′
are isospectral for any k, k′ 6= 0. In

general, if d is composite, then Zk and Zk
′
are isospectral if and only if gcd(k, d) = gcd(k′, d).

Starting from Za, we show how to simulate Z, and then how to simulate Za
′

for any
a′. Overall, this simulation uses Rule 6.7 four times. If a does not divide d, then clearly
Za ∼ Z, where ∼ denotes similarity. Otherwise, let gcd(a, d) = g. The spectrum of
Za is 1, ωg, ω2g, . . . , ω[(d/g)−1]g, where each eigenvalue has multiplicity g. In other words,
Za ∼ Zgd/g⊗ Ig, where a subscript on a Pauli matrix indicates its dimension (when different
from d). Now let Pd/g be a cyclic permutation of dimension d/g, and define the permutation

111

Vg := Id/g ⊗ |0〉〈0|+ Pd/g ⊗ (Ig − |0〉〈0|) . (6.43)

Since
g

d

d/g−1∑
j=0

V j
g (Zgd/g ⊗ Ig)V

−j
g = Zgd/g ⊗ |0〉〈0| (6.44)

(using
∑(d/g)−1

j=0 ωgj = 0), we find Za −→ Zgd/g ⊗ |0〉〈0|. This Hamiltonian can be used to
simulate Z using the unitary mixing

g−1∑
j=0

ωj(I ⊗ P jg)(Z
g
d/g ⊗ |0〉〈0|)(I ⊗ P

−j
g) =

g−1∑
j=0

ωj(Zgd/g ⊗ |j〉〈j|) (6.45)

= Zgd/g ⊗ Zg ∼ Z . (6.46)

If a′ does not divide d, then Za
′

is isospectral to Z, and we are done. Otherwise, let
gcd(a′, d) = g′. Note that Z ∼ Zg

′

d/g′ ⊗ Zg′ , and perform the simulation

g′

d

d/g′−1∑
j=0

V j
g′(Z

g′

d/g′ ⊗ Zg′)V
−j
g′ = Zg

′

d/g′ ⊗ |0〉〈0| . (6.47)

This Hamiltonian can then be used to simulate

g′−1∑
j=0

(I ⊗ P jg′)(Z
g′

d/g′ ⊗ |0〉〈0|)(I ⊗ P
−j
g′) =

g′−1∑
j=0

(Zg
′

d/g′ ⊗ |j〉〈j|) (6.48)

= Zg
′

d/g′ ⊗ Ig′ ∼ Z
a′ , (6.49)

which is our desired term. Overall, we have shown

Za ∼ Zgd/g ⊗ Ig −→ Zgd/g ⊗ |0〉〈0| −→ Z −→ Zg
′

d/g′ ⊗ |0〉〈0| −→ Zg
′

d/g′ ⊗ Ig′ ∼ Z
a′ (6.50)

for any a, a′.
Note that in this construction, we have had to multiply Pauli operators by powers of

ω, which is not a real number for d > 2, in which case it is not allowed by Rule 6.1.
Furthermore, when we produce some (complex) multiple of XjZk, we need the ability to
multiply it by an arbitrary complex number. However, this can easily be done by conjugating
by any Pauli operator that does not commute with the original one. This will produce the
same Pauli operator, but with a different complex phase that can be determined using
(6.21). Since any complex number can be expressed as a real linear combination of two
different phases, we are done.

We have shown that any d-dimensional bipartite interaction Hamiltonian can simulate
any other at a nonzero rate, even without the use of ancillas. This shows that all bipartite
Hamiltonians can be viewed as qualitatively equivalent. Extensions of this idea can also be
used to show that a fixed Hamiltonian consisting of pairwise coupling terms between many
d-dimensional systems is computationally universal when assisted by local operations, as
we discuss briefly in Section 6.6.

112

6.4 Reversible simulation of product Hamiltonians

In this section, we consider the set of bipartite Hamiltonians that can be written as a tensor
product,

H = HA ⊗HB , (6.51)

where HA acts on system A and HB acts on system B. We shall call such a Hamiltonian a
product Hamiltonian for short. An example of a product Hamiltonian in a two-qubit system
is the Ising interaction

HIsing := σz ⊗ σz . (6.52)

The main result of this section is an explicit protocol for the reversible simulation of
any product Hamiltonian by another. It follows that the nonlocal properties of a product
HamiltonianH depend entirely on a single parameter. We denote this parameter byK⊗(H),
and choose it to be the rate γHIsing|H at which H can simulate the Ising interaction. We
find that

K⊗(H) =
1
4
∆A∆B , (6.53)

where ∆A (∆B) denotes the difference between the largest and the smallest eigenvalues of
HA (HB). The optimal simulation rate between any two product Hamiltonians H and H ′

can be written in terms of K⊗ as

γH′|H =
K⊗(H)
K⊗(H ′)

, (6.54)

so that any capacity known for just one product Hamiltonian can be easily computed
for any other product Hamiltonian using (6.4) and (6.54). In particular, we can use the
entanglement capacity of the Ising interaction computed in Section 6.5 to obtain a simple
expression for the entanglement capacity of any product Hamiltonian.

To demonstrate the reversible simulation of tensor product Hamiltonians H = HA⊗HB,
we will consider product Hamiltonians in a certain standard form. Using Rule 6.4, we
may diagonalize HA and HB, so we need only consider their eigenvalues. It will also be
convenient to modify HA so that the largest and smallest eigenvalues, λmax

A and λmin
A , are

equal in magnitude, and similarly for HB. This can be done by adding a term proportional
to the identity to each of HA and HB, i.e.,

(HA + cI)⊗ (HB + dI) = HA ⊗HB + c I ⊗HB + dHA ⊗ I + cd I ⊗ I . (6.55)

The resulting Hamiltonian is locally equivalent to H since they differ only by local terms
(Rule 6.6). Furthermore, since

(cHA)⊗ (HB/c) = HA ⊗HB , (6.56)

we may assume λmax
A − λmin

A = λmax
B − λmin

B = ∆ without loss of generality.
Having put all product Hamiltonians into a standard form, we are ready to show that

they can reversibly simulate each other. By the transitivity of reversible simulation, it
suffices to show that all product Hamiltonians can reversibly simulate the Ising interaction
HIsing = σz ⊗ σz.

Theorem 6.4. Any tensor product Hamiltonian H = HA⊗HB can reversibly simulate the

113

Ising interaction:

H ←→ HIsing , γHIsing|H =
1
4
∆2 . (6.57)

Proof. For any nonlocal H1 and H2, we have

γH1|H2
γH2|H1

≤ 1 . (6.58)

Otherwise we could use H1 to simulate itself with simulation rate greater than 1, which is
a contradiction.4 It thus suffices to show that γHIsing|H ≥ ∆2/4 and γH|HIsing

≥ 4/∆2.
Let H act on a Hilbert space HA⊗HB with dimensions dA and dB. Since H = HA⊗HB

is in the standard form, we may write

H =
1
4
∆2 diag(1, a2, a3, . . . , adA−1,−1)⊗ diag(1, b2, b3, . . . , bdB−1,−1) (6.59)

where

1 = a1 ≥ a2 ≥ . . . ≥ adA
= −1 (6.60)

1 = b1 ≥ b2 ≥ . . . ≥ bdB
= −1 , (6.61)

and the corresponding eigenvectors are |j〉A (1 ≤ j ≤ dA) and |j〉B (1 ≤ j ≤ dB).
We can simulate the Ising interaction using H by restricting to the subspace spanned

by the extremal eigenvectors of HA and HB, {|1〉A|1〉B, |dA〉A|1〉B, |1〉A|dB〉B, |dA〉A|dB〉B},
according to Rule 6.8. In this subspace, H acts as (∆2/4)HIsing. Therefore we have

γHIsing|H ≥ ∆2/4 . (6.62)

In order to show how to use the Ising interaction HIsing to simulate H, we consider a
concatenation of two simulations,

HIsing −→ H ′′ −→ H . (6.63)

Here H ′′ = 1
4∆2H ′′

AA′ ⊗H ′′
BB′ acts on local Hilbert spaces of dimensions 2dA and 2dB, and

reads

H ′′ =
1
4
∆2 diag(1,−1, a2,−a2, · · · ,−1, 1)⊗ diag(1,−1, b2,−b2, . . . ,−1, 1) . (6.64)

Clearly, we can use Rule 6.8 to simulate H by H ′′ with unit simulation rate. Therefore we
need only focus on the simulation of H ′′ by HIsing. In turn, this can be decomposed into
two similar simulations,

HIsing −→ H ′′
AA′ ⊗ σz −→ H ′′

AA′ ⊗H ′′
BB′ , (6.65)

each one with unit rate. In order to simulate H ′′
AA′ ⊗ σz using σz ⊗ σz, we append a dA-

4If γH1|H2
γH2|H1 > 1, then we could concatenate several simulations H1 −→ H2 −→ H1 −→ · · · −→

H2 −→ H1 to obtain that the optimal simulation rate γH1|H1 is infinite. Recalling that any bipartite nonlocal
Hamiltonian can simulate any other one at finite rate, we would conclude that γH|H is also infinite for any
bipartite Hamiltonian. This would contradict, for instance, the results of [23] showing that γH|H = 1 for all
nonlocal two-qubit Hamiltonians.

114

dimensional ancilla A to qubit A′ (with HIsing acting on A′B′) to obtain the Hamiltonian

H ′
Ising = (I ⊗ σz,A′)⊗ σz (6.66)

= diag(1,−1, 1,−1, . . . , 1,−1)⊗ σz . (6.67)

We define
pj := (aj + 1)/2 (6.68)

so that
1 = p1 ≥ p2 ≥ . . . ≥ pdA

= 0 . (6.69)

Furthermore, we define dA local unitary operations Uj (1 ≤ j ≤ dA), where Uj exchanges
the (2j−1)th and (2j)th basis vectors of AA′. To evolve under H ′′

AA′ ⊗ σz for a small time
δ, we apply each Uj at time t = pjδ and U †

j at time t = δ. Equivalently, we can use Rule 6.7
with an appropriate probability distribution and set of unitaries. Thus we can use HIsing

to simulate H ′′
AA′ ⊗ σz with unit efficiency. The second simulation in (6.65) is achieved

similarly. The overall rate for HIsing to simulate H ′′ or H is thus 4/∆2 by Rule 6.1.

We have shown that any product Hamiltonian H can reversibly simulate the Ising in-
teraction HIsing with rate γHIsing|H = K⊗(H), where

K⊗(H) =
1
4
∆A∆B . (6.70)

Therefore, any product Hamiltonian H can reversibly simulate any other product Hamilto-
nian H ′, with simulation rate given by

γH′|H =
K⊗(H)
K⊗(H ′)

. (6.71)

As discussed previously, in general a bipartite Hamiltonian H cannot reversibly simulate
−H. Similarly, in general H cannot reversibly simulate its complex conjugate H∗, nor
the Hamiltonian H↔ resulting from swapping systems A and B. However, for product
Hamiltonians, all these Hamiltonians are locally equivalent: for any product Hamiltonian
H,

K⊗(H) = K⊗(−H) = K⊗(H∗) = K⊗(H↔) . (6.72)

Theorem 6.4 can be extended to the case of a sum of bipartite product Hamiltonians
acting on separate subsystems. If H1 and H2 are two Hamiltonians acting, respectively, on
bipartite systems A1B1 and A2B2, we let H1 �H2 denote their sum.5 In fact, H1 �H2 can
reversibly simulate a product Hamiltonian H acting on a single bipartite system AB.

Corollary 6.5. If H1, H2, and H ′ are product Hamiltonians, the simulation

H1 �H2 ←→ H ′ (6.73)

can be achieved reversibly, with simulation rate

γH′|H1�H2
= γH′|H1

+ γH′|H2
. (6.74)

5We use the symbol � rather than + to emphasize that the Hamiltonians being summed act on different
pairs of systems. In other words, HAB � HA′B′ = HAB ⊗ IA′B′ + IAB ⊗HA′B′ .

115

Proof. Because of (6.71), we only need to show that the HamiltonianH ′ = cHIsing�dHIsing,
c, d ∈ R, can reversibly simulate H = (|c|+|d|)HIsing at unit rate. In addition, (6.72) implies
that we need only consider the case c, d > 0.

By Rule 6.2, H = (c+ d)HIsing is locally equivalent to

J1 = (c+ d)σzA ⊗ σzB ⊗ IA′B′ . (6.75)

In turn, using local unitaries to swap A with A′ and B with B′ (Rule 6.4), J1 is locally
equivalent to

J2 = (c+ d) IAB ⊗ σzA′ ⊗ σzB′ . (6.76)

Then we can simulate H ′ = [c/(c+ d)]J1 + [d/(c+ d)]J2 by convex combination (Rule 6.5)
of J1 and J2, which shows that γH′|H ≥ 1.

For the reverse simulation, note that H ′ is locally equivalent to each of the following
four Hamiltonians:

c(σzA⊗ IA′ ⊗σzB ⊗ IB′) + d(IA ⊗σzA′ ⊗ IB ⊗σzB′) ,
c(IA ⊗σzA′ ⊗σzB ⊗ IB′) + d(σzA⊗ IA′ ⊗ IB ⊗σzB′) ,
c(σzA⊗ IA′ ⊗ IB ⊗σzB′) + d(IA ⊗σzA′ ⊗σzB ⊗ IB′) ,
c(IA ⊗σzA′ ⊗ IB ⊗σzB′) + d(σzA⊗ IA′ ⊗σzB ⊗ IB′) .

(6.77)

Each of these Hamiltonians can be obtained from H ′ according to Rule 6.4 by swapping A
with A′ and B with B′ as necessary. An equally weighted convex combination of these four
Hamiltonians gives, after rearranging terms,

c+ d

4
(σzA ⊗ IA′ + IA ⊗ σA′)⊗ (σzB ⊗ IB′ + IB ⊗ σB′) , (6.78)

a tensor product Hamiltonian with ∆2 = 4 (c + d). Therefore γH|H′ ≥ 1, which completes
the proof.

It follows from Corollary 6.5 that K⊗ is additive under the sum of product Hamiltonians
acting on different pairs of systems,

K⊗(H1 �H2) = K⊗(H1) +K⊗(H2) . (6.79)

More generally, for H = �iHi and H ′ = �iH
′
i, where all Hi and H ′

i are bipartite product
Hamiltonians, we can perform the simulation

H = �
i
Hi ←→ H ′ = �

i
H ′
i (6.80)

reversibly, with simulation rate given by

γH′|H =
∑

iK⊗(Hi)∑
iK⊗(H ′

i)
. (6.81)

Finally, we present a case of reversible Hamiltonian simulation that is possible when
in addition to local operations and ancillas, catalytic pre-shared entanglement is available.
The simulation can be made reversible only in the presence of entanglement, but the en-
tanglement is not used up during the simulation [175]. This simulation is possible for
Hamiltonians that are a sum of two tensor product terms that share the same extremal

116

eigenspace. Consider Hamiltonians of the form

H = JA ⊗ JB +GA ⊗GB . (6.82)

Let Je
A denote the restriction of JA to the subspace corresponding to its two extremal

eigenvalues. By Rule 6.3, Je
A can be assumed to be traceless. Let Ge

A, Je
B, Ge

B be similarly
defined. In terms of these Hamiltonians, we have

Corollary 6.6. Given the resource of catalytic entanglement, H = JA ⊗ JB +GA ⊗GB is
locally equivalent to [(∆2

J + ∆2
G)/4]HIsing if the following conditions hold: (i) Je

A and Ge
A

are supported on the same 2-dimensional Hilbert space, and similarly for Je
B and Ge

B. (ii)
trJe

AG
e
A = tr Je

BG
e
B.

Proof. [(∆2
J +∆2

G)/4]HIsing can simulate H termwise using Theorem 6.4 and Rule 6.5, with
no need for catalytic entanglement.

The following procedure uses H to simulate [(∆2
J + ∆2

G)/4]HIsing:

1. Following Rule 6.8, Alice and Bob restrict to the extremal eigenspace, which is com-
mon to both terms in H by condition (i). This preserves the extremal eigenvalues.
The resulting Hamiltonian is essentially a two-qubit Hamiltonian.

2. We can assume Je
A ⊗ Je

B = (∆2
J/4)σzA ⊗ σzB by a local change of basis. This can be

chosen so that Ge
A ⊗ Ge

B = (∆2
G/4) (cos θσzA + sin θσxA) ⊗ (cos θσzB + sin θσxB) for

some θ because of condition (ii).

3. A further local change of basis takes Je
A⊗Je

B+Ge
A⊗Ge

B to its normal form (∆2
x/4)σxA⊗

σxB + (∆2
z/4)σzA ⊗ σzB [70], where ∆2

x + ∆2
z = ∆2

J + ∆2
G.

4. Finally, (∆2
x/4)σxA ⊗ σxB + (∆2

z/4)σzA ⊗ σzB can simulate [(∆2
x + ∆2

z)/4]σzA ⊗ σzB
using catalytic entanglement [175].

This completes the proof.

To conclude, we have seen that all tensor product Hamiltonians can simulate each other
reversibly, so that their nonlocal properties are characterized entirely by the quantityK⊗(H)
given in (6.53). This is an example of lossless interconversion of resources. A related example
is the problem of communication through a one-way classical channel. By Shannon’s noisy
coding theorem [163] together with the reverse Shannon theorem [29], all classical channels
can simulate each other reversibly (in the presence of free shared randomness), and hence
they can be characterized entirely in terms of a single quantity, their capacity. Similarly, in
the presence of free shared entanglement, all one-way quantum channels can simulate each
other reversibly (at least on certain input ensembles [24]), and thus they are characterized
entirely in terms of their entanglement-assisted capacity for sending classical information.

We noted that Theorem 6.4 can be used to extend results for two-qubit Hamiltonians
to arbitrary product Hamiltonians. We will see this in the next section, where we calculate
the entanglement capacity of the Ising interaction, thereby determining the entanglement
capacity of all product Hamiltonians (as well as Hamiltonians that are a sum of product
Hamiltonians acting on different subsystems, and those satisfying the conditions of Corol-
lary 6.6). A similar extension can be obtained for the problem of using bipartite Hamil-
tonians to simulate bipartite unitary gates. In the case of two-qubit systems, it is known
how to optimally produce any two-qubit gate using any two-qubit Hamiltonian [117, 177].

117

Since all product Hamiltonians are equivalent to some multiple of the Ising interaction, this
result immediately provides the optimal way to use any product Hamiltonian to simulate
any two-qubit unitary gate, such as the controlled-not gate.

In view of our results, it will be interesting to improve our understanding of the prop-
erties of the Ising interaction. For example, a calculation of the communication capacity of
the Ising interaction (which is currently unknown) would provide a formula for the commu-
nication capacity of all product Hamiltonians.

Of course, the set of product Hamiltonians is clearly a special subset of all bipartite
Hamiltonians, and thus may not be representative of the general problem of bipartite Ham-
iltonian simulation. For example, we have seen that product Hamiltonians admit a total
order, whereas even in the two-qubit case, general Hamiltonians only admit a partial order.
Also, note that for product Hamiltonians, H and −H are locally equivalent, so that in
particular, their capacities to generate entanglement are equal. However, while this is true
for all two qubit Hamiltonians, numerical evidence suggests that it is not true in general
[48]. Understanding optimal Hamiltonian simulation and the capacities of Hamiltonians in
the general case remains an interesting open problem.

6.5 Entanglement capacity

We now focus on a particular application of bipartite Hamiltonian dynamics, the genera-
tion of entanglement between two quantum systems. Much experimental effort has been
devoted to creating entangled states of quantum systems [86]. Determining the ability of
a system to create entangled states provides a benchmark of the “quantumness” of the
system (for example, through the violation of Bell inequalities [16, 13]). Furthermore, such
states could ultimately be put to practical use in various quantum information processing
tasks, such as superdense coding [30], quantum teleportation [22], quantum key distribu-
tion [72, 133], remote state preparation [132, 25, 27], and entanglement-assisted classical
communication [28, 29, 26].

The problem of optimal entanglement generation by an interaction Hamiltonian can
be approached in different ways. For example, [70] considers a single-shot scenario. This
situation is of interest for present-day experiments attempting to create entangled states.
For two-qubit interactions, assuming that ancillary systems are not available, [70] presents
an expression for the maximum rate of entanglement generation and optimal protocols
by which it can be achieved. In contrast, [123, 26] consider the asymptotic entanglement
capacity, where a collective input state for many uses of the interacting systems (and lo-
cal ancillas) can be used to produce entanglement, possibly at a higher rate than in the
single-shot case. The asymptotic entanglement capacity is of interest in the context of
understanding the ultimate limitations of quantum mechanical systems to process informa-
tion. References [123, 26] show that if ancillas are allowed, the optimal single-shot rate of
entanglement generation is equal to the asymptotic entanglement capacity. However, such
capacities can nevertheless be difficult to calculate because the ancillary systems may in
principle be arbitrarily large.

In this section, we calculate the asymptotic entanglement capacity of the Ising interac-
tion σz ⊗ σz, and more generally, of any two-qubit interaction that is locally equivalent to
µx σx ⊗ σx + µy σy ⊗ σy. We consider the use of ancillary systems, and show that they do
not increase the rate of entanglement generation for these interactions. Thus in these cases,
the asymptotic capacity discussed in [123, 26] is in fact given by the expression presented in

118

[70]. Furthermore, the results of the previous section allow us to calculate the asymptotic
entanglement capacity of an arbitrary product Hamiltonian.

We begin by reviewing some definitions and known results. Let |ψ〉 be a state of systems
A and B. This state can always be written using the Schmidt decomposition [155],

|ψ〉 :=
∑
j

√
λj |φj〉A ⊗ |ηj〉B , (6.83)

where {|φi〉A} and {|ηi〉B} are orthonormal bases for the two systems, and λj > 0 with∑
j λj = 1. The entanglement between A and B is defined as6

E(|ψ〉) := −
∑
j

λj log λj ; (6.84)

equivalently, it is the entropy of the reduced density matrix of either system A or B. We
say that the state |ψ〉 contains E(|ψ〉) ebits of entanglement between A and B. Two pure
states with the same amount of entanglement are asymptotically interconvertible using
local operations and an asymptotically vanishing amount of classical communication [20,
134, 132, 103, 102].

Reference [70] considers maximizing the rate of increase of entanglement when a pure
state is acted on by e−iHt, the evolution according to a time-independent bipartite Hamilto-
nian H. Ancillary systems cannot be used in the procedure. This maximal rate is referred
to as the entanglement capability,

ΓH := max
|ψ〉∈HAB

lim
t→0

E(e−iHt|ψ〉)− E(|ψ〉)
t

. (6.85)

Here the rate of increasing entanglement is optimized over all possible pure initial states of
the joint Hilbert space HAB (without ancillary systems). In fact, the single-shot capacity
may be higher if ancillary systems A′ and B′, not acted on by H, are used. For this reason,
we may consider the alternative single-shot capacity

Γ′H := sup
|ψ〉∈HAA′BB′

lim
t→0

E(e−iHt ⊗ IA′B′ |ψ〉)− E(|ψ〉)
t

. (6.86)

Note that in (6.85) and (6.86), the limit is the same from both sides even though it might
in general be the case that ΓH 6= Γ−H (and similarly for Γ′H).

The single-shot entanglement capability (6.85) has been completely characterized for
two-qubit Hamiltonians. Reference [70] shows that any two-qubit Hamiltonian H is locally
equivalent to a Hamiltonian in the canonical form∑

i=x,y,z

µi σi ⊗ σi , µx ≥ µy ≥ |µz| . (6.87)

In terms of this canonical form, the entanglement capability of any two-qubit Hamiltonian
is given by

ΓH = α(µx + µy) , (6.88)

6We use log to denote the base 2 logarithm.

119

Create initial
entanglement
(inefficiently)

Dilute
nE(|ψ〉) ebits

↓
|ψ〉⊗n

Apply
(e−iHt)⊗n

Concentrate
(e−iHt|ψ〉)⊗n

↓
nE(e−iHt|ψ〉) ebits

- - -

?

Excess
entanglement:
ntEH ebits

Figure 6-1: Cycle for optimal asymptotic entanglement generation.

where

α := 2 max
x∈[0,1]

√
x(1− x) log

(
x

1− x

)
= 1.9123 (6.89)

with the maximum obtained at x0 = 0.9168. In addition, Γ′H may be strictly larger than
ΓH when |µz| > 0 [70].

References [123, 26] consider the asymptotic entanglement capacity EH for an arbitrary
Hamiltonian H. This capacity is defined as the maximum rate at which entanglement can
be produced by using many interacting pairs of systems. These systems may be acted on
by arbitrary collective local operations (attaching or discarding ancillary systems, unitary
transformations, and measurements). Furthermore, classical communication between A
and B and possibly mixed initial states are allowed. In fact, the asymptotic entanglement
capacity in this general setting turns out to be just the single-shot capacity (6.86): EH = Γ′H
for allH [123, 26]. Note that the definition of EH involves a supremum over both all possible
states and all possible interaction times, but in fact it can be expressed as a supremum over
states and a limit as t→ 0, with the limit and the supremum taken in either order.

Because the capacity EH is equal to a single-shot capacity, there is a simple protocol
for achieving it. Let |ψ〉 be the optimal input in (6.86). Assuming |ψ〉 is finite-dimensional,
the entanglement capacity can be achieved by first inefficiently generating some EPR pairs,
and then repeating the following three steps [70, 123, 26]:

1. Transform nE(|ψ〉) EPR pairs into |ψ〉⊗n [20, 134, 132, 103, 102],

2. Evolve each |ψ〉 according to H for a short time t, and

3. Concentrate the entanglement into n[E(|ψ〉) + tEH] EPR pairs [20].

This protocol is illustrated in Figure 6-1.
Below, we show that EK = ΓK for any two-qubit Hamiltonian with canonical form

K = µx σx ⊗ σx + µy σy ⊗ σy , µx ≥ µy ≥ 0 , (6.90)

so that in this case, all three rates of entanglement generation are equal:

EK = Γ′K = ΓK . (6.91)

The optimal input is therefore a two-qubit state, and the above protocol applies. In partic-
ular, for these Hamiltonians, which include the Ising interaction σz⊗σz and the anisotropic

120

Heisenberg interaction σx ⊗ σx + σy ⊗ σy, entanglement can be optimally generated from a
two-qubit initial state |ψ〉 without ancillary systems A′B′. As mentioned above, this result is
not generic, since ancillas increase the amount of entanglement generated by some two-qubit
interactions, such as the isotropic Heisenberg interaction σx ⊗ σx + σy ⊗ σy + σz ⊗ σz.

We will focus on computing the asymptotic entanglement capacity of the Ising interac-
tion HIsing = σz ⊗ σz. This is sufficient to determine the asymptotic entanglement capacity
of K in (6.90) since (µx + µy)HIsing can be used to simulate K at unit rate using Rule 6.5.
According to (6.3), this demonstrates that EK ≤ (µx+µy)EHIsing

. After computing EHIsing
,

we will see that the protocol of [70] saturates this bound, so in fact EK = EHIsing
with no

need for ancillas to saturate either capacity.7

Consider the entanglement capacity of a general bipartite Hamiltonian H. We suppose
that in addition to the systems A and B on which H acts, d-dimensional ancillas A′ and
B′ are used, where d is arbitrary. The entanglement capacity of H is given by

EH = sup
|ψ〉

(
− d

dt

∑
j

λj log λj
)

(6.92)

= sup
|ψ〉

(
−
∑
j

dλj
dt

log λj
)

(6.93)

where the λj are the Schmidt coefficients of |ψ〉, from (6.83). The Schmidt coefficients are
simply the eigenvalues of the reduced density matrix ρ := trBB′ |ψ〉〈ψ| =

∑
j λj |φj〉〈φj |. By

first-order perturbation theory,

dλj
dt

= 〈φj |
dρ
dt
|φj〉 (6.94)

= −i〈φj |(trBB′ [H, |ψ〉〈ψ|])|φj〉 (6.95)

= −i
∑
k,l,m

√
λlλm 〈φj , ηk|[H, |φl, ηl〉〈φm, ηm|]|φj , ηk〉 (6.96)

=
∑
k

√
λjλk Im 〈φj , ηj |H|φk, ηk〉 , (6.97)

where in the second line we have used the Schrödinger equation for the reduced density
matrix, idρdt = trBB′ [H, |ψ〉〈ψ|]. Putting this into (6.93), we see that

EH = sup
|ψ〉

∑
j,k

√
λjλk log(λk/λj)Bjk (6.98)

where
Bjk := Im 〈φj , ηj |H|φk, ηk〉 . (6.99)

Now define qjk := λj/(λj + λk). We have

EH = sup
|ψ〉

∑
j,k

√
qjk(1− qjk) log

(
1− qjk
qjk

)
(λj + λk)Bjk (6.100)

7Another argument that shows that K and (µx + µy)HIsing have the same capacity is to note that these
interactions are asymptotically equivalent, in that K can simulate HIsing given catalytic entanglement [175].
We will return to this argument below.

121

≤ α sup
|ψ〉

∑
j,k

λj + λk
2
|Bjk| (6.101)

= α sup
|ψ〉

∑
j,k

λj |Bjk| (6.102)

≤ α sup
|ψ〉

max
j

∑
k

|Bjk| , (6.103)

where in the second line we have used (6.89) with x = 1− qjk.
The formula (6.98) and the bound (6.103) apply to any bipartite Hamiltonian H. Now

we specialize to the Hamiltonian HIsing. To simplify the argument, we find it convenient to
add local terms using Rule 6.6 to produce the locally equivalent Hamiltonian

HIsing + σz ⊗ I + I ⊗ σz + I ⊗ I = 4 |0〉〈0| ⊗ |0〉〈0| . (6.104)

On the full Hilbert space HABA′B′ , the Hamiltonian is 4ΠA ⊗ ΠB, where ΠA := |0〉〈0| ⊗
IA′ and ΠB := |0〉〈0| ⊗ IB′ . Using the Cauchy-Schwartz inequality, we find that for this
Hamiltonian,

∑
k

|Bjk| ≤ 4

(∑
k 6=j
|〈φj |ΠA|φk〉|2 ×

∑
k 6=j
|〈ηj |ΠB|ηk〉|2

)1/2

. (6.105)

Since ∑
k 6=j
|〈φj |ΠA|φk〉|2 =

(∑
k

〈φj |ΠA|φk〉〈φk|ΠA|φj〉
)
− 〈φj |ΠA|φj〉2 (6.106)

= 〈φj |ΠA|φj〉(1− 〈φj |ΠA|φj〉) (6.107)
≤ 1/4 (6.108)

and similarly for the term involving ΠB, we find
∑

k |Bjk| ≤ 1. Putting this into (6.103),
we find EHIsing

≤ α. But since EHIsing
≥ ΓHIsing

= α, this shows EHIsing
= α.

We have shown that ancillary systems are not needed to optimize the rate of entangle-
ment generation for any two-qubit Hamiltonian with canonical form µx σx⊗σx+µy σy⊗σy.
Furthermore, there is a universal optimal two-qubit initial state given by [70]

|ψmax〉 :=
√
x0|0〉A ⊗ |1〉B − i

√
1− x0|1〉A ⊗ |0〉B . (6.109)

As discussed above, ancillas are necessary to achieve the capacity in general. Although
we do not have a closed-form expression for the capacity of an arbitrary two-qubit Hamil-
tonian, we can present partial results in this direction. The numerically optimized entan-
glement capacity of a general two-qubit Hamiltonian is shown in Figure 6-2. Numerically,
we find that the optimum can be achieved with single-qubit ancillas on both sides. For
Hamiltonians of the form Kµxy = µxy(σx ⊗ σx + σy ⊗ σy) + σz ⊗ σz, we conjecture that the
entanglement capacity is given by

EKµxy
= 2max

{√
λ1λ2 log(λ1/λ2) [sin θ + µxy sin(ϕ− ξ)]

+
√
λ2λ4 log(λ2/λ4) [sinϕ+ µxy sin(θ − ξ)]

+
√
λ1λ4 log(λ1/λ4)µxy sin ξ

} (6.110)

122

Figure 6-2: Numerically optimized entanglement capacity of the two-qubit Hamiltonian
µx σx ⊗ σx + µy σy ⊗ σy + σz ⊗ σz with single-qubit ancillas on each side. The right figure
is a contour plot of the left figure. The vertical axis in the left figure is in units of α.

where the maximum is taken over λ1 > 0, λ2 > 0, λ4 = 1−λ1−2λ2 > 0, and θ, ϕ, ξ ∈ [0, 2π).
This expression was found by investigating the structure of the numerical optimum, and it
agrees well with the numerical results. It does not seem possible to simplify this expression
further, which suggests that in general, capacities may not have simple expressions, but can
only be expressed as maximizations of multivariable transcendental functions. Nevertheless,
it would be useful to show that this maximization can be taken over a finite number of
parameters by proving an upper bound on the dimension of the ancillas.

Finally, using the results on reversible simulation from Section 6.4, we can now determine
the entanglement capacity of any product Hamiltonian. Combining (6.4) and (6.71), we
obtain an expression for the entanglement capacity of any product Hamiltonian H, since
we have EH = K⊗(H)EHIsing

. Thus, for any product Hamiltonian H,

EH =
α

4
∆A∆B . (6.111)

Note that [179] reported the restricted case of this result in which HA and HB have eigen-
values ±1, but we see that this property has no special significance.

In fact, (6.111) also corresponds to the single-shot capability ΓH , since it can be obtained
without using ancillas. In other words, for any product Hamiltonian H,

ΓH =
α

4
∆A∆B . (6.112)

The explicit optimal input state is

|ψ〉 =
√
x0|+〉A ⊗ |+〉B + i

√
1− x0|−〉A ⊗ |−〉B (6.113)

where
|±〉A =

1√
2
(|1〉A ± |dA〉A) (6.114)

and similarly for system B. Here |1〉A and |dA〉A represent the eigenstates of HA corre-
sponding to the largest and smallest eigenvalues, respectively. That this state achieves ΓH

123

can be seen by substitution into (6.98).
Similarly, we can compute EH1�H2

for the sum of two product Hamiltonians H1 and H2

acting on different pairs of systems:

EH1�H2
= EH1 + EH2 . (6.115)

This capacity can also be achieved without ancillas, because the protocol used in Corol-
lary 6.5 does not involve ancillas:

ΓH1�H2
= ΓH1 + ΓH2 . (6.116)

Finally, we note that (6.111) can be extended to Hamiltonians that can be reversibly
simulated using catalytic entanglement. In general, if H satisfies conditions (i) and (ii) of
Corollary 6.6, then

EH =
α

4
(∆2

J + ∆2
G) . (6.117)

This class of Hamiltonians includes, as a special case, the full set of two-qubit Hamiltonians
of the form µx σx ⊗ σx + µy σy ⊗ σy considered above. In the context of asymptotic en-
tanglement capacity, catalytic resources need not be considered as additional requirements
since the cost of first obtaining any catalytic resource can be made negligible [26]. However,
it turns out that for these Hamiltonians, catalytic entanglement is actually not necessary
to achieve the entanglement capacity. There is an input state that achieves EH without
making use of ancillas (and in particular, without using catalytic entanglement), so in fact
ΓH = EH .

6.6 Discussion

In this chapter, we have studied properties of bipartite Hamiltonians, including their ability
to simulate other bipartite Hamiltonians and to generate entanglement. We showed that any
interaction can simulate any other at a nonzero rate and that tensor product Hamiltonians
can simulate each other reversibly. We also computed the optimal asymptotic rate at
which any product Hamiltonian (and a few other closely related Hamiltonians) can generate
entanglement.

In addition to performing simulations in purely bipartite systems and bounding the
capacities of various information processing tasks, understanding bipartite Hamiltonian
simulation may also be useful for developing implementations of quantum computers. A
bipartite Hamiltonian can serve as a model of the type of interaction used to perform
two-qubit gates (or perhaps gates between a pair of higher-dimensional subsystems) in a
quantum computer. In certain quantum systems, such as in nuclear magnetic resonance
(NMR), it may be easy to apply local operations to individual particles, which interact only
through a fixed many-particle Hamiltonian. By manipulating the system locally, it can be
made to evolve under some different effective Hamiltonian, thereby implementing quantum
gates or simulating another Hamiltonian of interest. Specific techniques along these lines are
well known in NMR [75], and have been applied to the problem of implementing quantum
logic gates [111, 126]. Building on these ideas using constructions like those given in 6.3,
one can show that any system of n d-dimensional systems with a Hamiltonian consisting
of two-body interactions can simulate any other such system efficiently using only local
operations [152]. This provides an alternative universal model of computation in terms

124

of Hamiltonian dynamics using different physical resources than the model discussed in
Chapter 1. In the alternative model, there is no need to engineer the interactions, only to
locally manipulate the individual particles.

125

126

Bibliography

[1] S. Aaronson and A. Ambainis, Quantum search of spatial regions, Proc. 44th
IEEE Symposium on Foundations of Computer Science, pp. 200–209, 2003,
quant-ph/0303041.

[2] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New
York, 1972.

[3] D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase
for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83 (1999), 5162–5165,
quant-ph/9807070.

[4] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum walks on
graphs, Proc. 33rd ACM Symposium on Theory of Computing, pp. 50–59, 2001,
quant-ph/0012090.

[5] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Univer-
sality of adiabatic quantum computation with two-body interactions.

[6] D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero
knowledge, Proc. 35th ACM Symposium on Theory of Computing, pp. 20–29, 2003,
quant-ph/0301023.

[7] Y. Aharonov and M. Vardi, Meaning of an individual “Feynman path”, Phys. Rev. D
21 (1980), 2235–2240.

[8] G. Ahokas and R. Cleve, personal communication, July 2003.

[9] R. Aleliunas, R. Karp, R. Lipton, L. Lovász, and C. Rackoff, Random walks, univer-
sal traversal sequences, and the time complexity of maze problems, Proc. 20th IEEE
Symposium on Foundations of Computer Science, pp. 218–223, 1979.

[10] A. Ambainis, Quantum walk algorithm for element distinctness, quant-ph/0311001.

[11] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, One-dimensional
quantum walks, Proc. 33rd ACM Symposium on Theory of Computing, pp. 37–49,
2001.

[12] A. Ambainis, J. Kempe, and A. Rivosh, Coins make quantum walks faster,
quant-ph/0402107.

[13] A. Aspect, J. Dalibard, and G. Roger, Experimental tests of Bell’s inequalities using
time-varying analyzers, Phys. Rev. Lett. 49 (1982), 1804–1807.

127

http://arxiv.org/abs/quant-ph/0303041
http://arxiv.org/abs/quant-ph/9807070
http://arxiv.org/abs/quant-ph/0012090
http://arxiv.org/abs/quant-ph/0301023
http://arxiv.org/abs/quant-ph/0311001
http://arxiv.org/abs/quant-ph/0402107

[14] F. Barahona, On the computational complexity of Ising spin-glass models, J. Phys. A
15 (1982), 3241–3253.

[15] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill, Causal and localizable
quantum operations, Phys. Rev. A 64 (2001), 052309, quant-ph/0102043.

[16] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1 (1964), 195–200.

[17] , On the impossible pilot wave, Found. Phys. 12 (1982), 989–999.

[18] P. Benioff, Space searches with a quantum robot, Quantum Computation and Infor-
mation (S. J. Lomonaco and H. E. Brandt, eds.), AMS Contemporary Mathematics
Series, vol. 305, AMS, Providence, RI, 2002, quant-ph/0003006.

[19] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses
of quantum computing, SIAM J. Comput. 26 (1997), 1510–1523, quant-ph/9701001.

[20] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrat-
ing partial entanglement by local operations, Phys. Rev. A 53 (1996), 2046–2052,
quant-ph/9511030.

[21] C. H. Bennett and G. Brassard, Quantum cryptography: public key distribution and
coin tossing, Proc. IEEE International Conference on Computers, Systems, and Signal
Processing, pp. 175–179, 1984.

[22] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels, Phys. Rev. Lett. 70 (1993), 1895–1899.

[23] C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu, and
G. Vidal, Optimal simulation of two-qubit Hamiltonians using general local operations,
Phys. Rev. A 66 (2002), 012305, quant-ph/0107035.

[24] C. H. Bennett, I. Devetak, P. Shor, and A. Winter, in preparation.

[25] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and
W. K. Wootters, Remote state preparation, Phys. Rev. Lett. 87 (2001), 077902,
quant-ph/0006044.

[26] C. H. Bennett, A. W. Harrow, D. W. Leung, and J. A. Smolin, On the capacities of
bipartite Hamiltonians and unitary gates, IEEE Trans. Inf. Theory 49 (2003), 1895–
1911, quant-ph/0205057.

[27] C. H. Bennett, P. Hayden, D. W. Leung, P. W. Shor, and A. Winter, Remote prepa-
ration of quantum states, quant-ph/0307100.

[28] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Entanglement-assisted
classical capacity of noisy quantum channels, Phys. Rev. Lett. 83 (1999), 3081–3084,
quant-ph/9904023.

[29] , Entanglement-assisted capacity of a quantum channel and the reverse Shan-
non theorem, IEEE Trans. Inf. Theory 48 (2002), 2637–2655, quant-ph/0106052.

128

http://arxiv.org/abs/quant-ph/0102043
http://arxiv.org/abs/quant-ph/0003006
http://arxiv.org/abs/quant-ph/9701001
http://arxiv.org/abs/quant-ph/9511030
http://arxiv.org/abs/quant-ph/0107035
http://arxiv.org/abs/quant-ph/0006044
http://arxiv.org/abs/quant-ph/0205057
http://arxiv.org/abs/quant-ph/0307100
http://arxiv.org/abs/quant-ph/9904023
http://arxiv.org/abs/quant-ph/0106052

[30] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators
on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992), 2881–2884.

[31] E. Bernstein and U. Vazirani, Quantum complexity theory, Proc. 25th ACM Sympo-
sium on Theory of Computing, pp. 11–20, 1993.

[32] D. W. Berry and B. C. Sanders, Relations for classical communication capacity and
entanglement capability of two-qubit operations, Phys. Rev. A 67 (2003), 040302(R),
quant-ph/0205181.

[33] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplification
and estimation, Quantum Computation and Information (S. J. Lomonaco and H. E.
Brandt, eds.), AMS Contemporary Mathematics Series, vol. 305, AMS, Providence,
RI, 2002, quant-ph/0005055.

[34] M. J. Bremner, J. L. Dodd, M. A. Nielsen, and D. Bacon, Fungible dynamics: there
are only two types of entangling multiple-qubit interactions, Phys. Rev. A 69 (2004),
012313, quant-ph/0307148.

[35] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum annealing of a
disordered magnet, Science 284 (1999), 779–781, cond-mat/0105238.

[36] K. Brown and A. W. Harrow, personal communication, October 2003.

[37] H. Buhrman, R. Cleve, and A. Wigderson, Quantum vs. classical communication and
computation, Proc. 30th ACM Symposium on Theory of Computing, pp. 63–68, 1998,
quant-ph/9802040.

[38] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and
R. de Wolf, Quantum algorithms for element distinctness, Proc. 16th IEEE Con-
ference on Computational Complexity, pp. 131–137, 2001, quant-ph/0007016.

[39] H. Chen, Necessary conditions for the efficient simulation of Hamiltonians using lo-
cal unitary operations, Quantum Information and Computation 3 (2003), 249–257,
quant-ph/0109115.

[40] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman,
Exponential algorithmic speedup by quantum walk, Proc. 35th ACM Symposium on
Theory of Computing, pp. 59–68, 2003, quant-ph/0209131.

[41] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, and A. J. Landahl,
Quantum search by measurement, Phys. Rev. A 66 (2002), 032314, quant-ph/0204013.

[42] A. M. Childs and J. M. Eisenberg, Quantum algorithms for subset finding,
quant-ph/0311038.

[43] A. M. Childs, E. Farhi, J. Goldstone, and S. Gutmann, Finding cliques by quan-
tum adiabatic evolution, Quantum Information and Computation 2 (2002), 181–191,
quant-ph/0012104.

[44] A. M. Childs, E. Farhi, and S. Gutmann, An example of the difference between quan-
tum and classical random walks, Quantum Information Processing 1 (2002), 35–43,
quant-ph/0103020.

129

http://arxiv.org/abs/quant-ph/0205181
http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/quant-ph/0307148
http://arxiv.org/abs/cond-mat/0105238
http://arxiv.org/abs/quant-ph/9802040
http://arxiv.org/abs/quant-ph/0007016
http://arxiv.org/abs/quant-ph/0109115
http://arxiv.org/abs/quant-ph/0209131
http://arxiv.org/abs/quant-ph/0204013
http://arxiv.org/abs/quant-ph/0311038
http://arxiv.org/abs/quant-ph/0012104
http://arxiv.org/abs/quant-ph/0103020

[45] A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic quantum computation,
Phys. Rev. A 65 (2002), 012322, quant-ph/0108048.

[46] A. M. Childs and J. Goldstone, Spatial search by quantum walk, quant-ph/0306054,
submitted to Phys. Rev. A.

[47] , Spatial search and the Dirac equation, manuscript in preparation.

[48] A. M. Childs, D. W. Leung, and J. A. Smolin, unpublished.

[49] A. M. Childs, D. W. Leung, F. Verstraete, and G. Vidal, Asymptotic entanglement
capacity of the Ising and anisotropic Heisenberg interactions, Quantum Information
and Computation 3 (2003), 97–105, quant-ph/0207052.

[50] A. M. Childs, D. W. Leung, and G. Vidal, Reversible simulation of bipartite product
Hamiltonians, to appear in IEEE Trans. Inf. Theory 50 (2004), quant-ph/0303097.

[51] J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev.
Lett. 74 (1995), 4091–4094.

[52] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited,
Proc. Roy. Soc. London A 454 (1998), 339–354, quant-ph/9708016.

[53] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak ran-
dom sources, Proc. 30th IEEE Symposium on Foundations of Computer Science,
pp. 14–19, 1989.

[54] D. Coppersmith, An approximate Fourier transform useful in quantum factoring,
Tech. Report RC 19642, IBM Research Division, Yorktown Heights, NY, 1994,
quant-ph/0201067.

[55] D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by NMR
spectroscopy, Proc. Natl. Acad. Sci. 94 (1997), 1634–1639.

[56] M. Creutz, Quarks, gluons, and lattices, Cambridge University Press, Cambridge,
1983.

[57] W. van Dam, A universal quantum cellular automaton, Proc. PhysComp96 (T. Toffoli,
M. Biafore, and J.Leão, eds.), pp. 323–331, 1996.

[58] W. van Dam, S. Hallgren, and L. Ip, Quantum algorithms for some hidden shift
problems, Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 489–498, 2002,
quant-ph/0211140.

[59] W. van Dam, M. Mosca, and U. Vazirani, How powerful is adiabatic quantum compu-
tation?, Proc. 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–
287, 2001, quant-ph/0206003.

[60] E. B. Davies, Markovian master equations, Comm. Math. Phys. 39 (1974), 91–110.

[61] E. B. Davies and H. Spohn, Open quantum systems with time-dependent Hamiltonians
and their linear response, J. Stat. Phys. 19 (1978), 511–523.

130

http://arxiv.org/abs/quant-ph/0108048
http://arxiv.org/abs/quant-ph/0306054
http://arxiv.org/abs/quant-ph/0207052
http://arxiv.org/abs/quant-ph/0303097
http://arxiv.org/abs/quant-ph/9708016
http://arxiv.org/abs/quant-ph/0201067
http://arxiv.org/abs/quant-ph/0211140
http://arxiv.org/abs/quant-ph/0206003

[62] J. N. de Beaudrap, R. Cleve, and J. Watrous, Sharp quantum vs. classical query
complexity separations, Algorithmica 34 (2002), 449–461, quant-ph/0011065.

[63] D. Deutsch, Quantum theory, the Church-Turing principle, and the universal quantum
computer, Proc. Roy. Soc. London A 400 (1985), 97–117.

[64] , Quantum computational networks, Proc. Roy. Soc. London A 425 (1989),
73–90.

[65] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc.
Roy. Soc. London A 439 (1992), 553–558.

[66] P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. London A 117
(1928), 610–624.

[67] D. P. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev.
A 51 (1995), 1015–1022, cond-mat/9407022.

[68] J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. Thew, Universal quantum com-
putation and simulation using any entangling Hamiltonian and local unitaries, Phys.
Rev. A 65 (2002), 040301(R), quant-ph/0106064.

[69] R. Dümcke and H. Spohn, The proper form of the generator in the weak coupling
limit, Z. Phys. B 34 (1979), 419–422.

[70] W. Dür, G. Vidal, J. I. Cirac, N. Linden, and S. Popescu, Entanglement capabilities
of non-local Hamiltonians, Phys. Rev. Lett. 87 (2001), 137901, quant-ph/0006034.

[71] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla, Quantum query complexity of some
graph problems, quant-ph/0401091.

[72] A. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67 (1991),
661–663.

[73] A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. L. Oi, and
V. Vedral, Geometric quantum computation, J. Mod. Opt. 47 (2000), 2501–2513,
quant-ph/0004015.

[74] P. Erdős, P. Frankl, and Z. Füredi, Familes of finite sets in which no set is covered
by the union of r others, Israel J. Math. 51 (1985), 79–89.

[75] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of nuclear magnetic reso-
nance in one and two dimensions, Oxford University Press, Oxford, 1994.

[76] Euclid, Elements, Cambridge University Press, Cambridge, 1908, original version c.
300 BC, translated by Thomas L. Heath.

[77] E. Farhi, J. Goldstone, and S. Gutmann, A numerical study of the performance of a
quantum adiabatic evolution algorithm for satisfiability, quant-ph/0007071.

[78] , Quantum adiabatic evolution algorithms with different paths,
quant-ph/0208135.

131

http://arxiv.org/abs/quant-ph/0011065
http://arxiv.org/abs/cond-mat/9407022
http://arxiv.org/abs/quant-ph/0106064
http://arxiv.org/abs/quant-ph/0006034
http://arxiv.org/abs/quant-ph/0401091
http://arxiv.org/abs/quant-ph/0004015
http://arxiv.org/abs/quant-ph/0007071
http://arxiv.org/abs/quant-ph/0208135

[79] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A quantum
adiabatic evolution algorithm applied to random instances of an NP-complete problem,
Science 292 (2001), 472–475, quant-ph/0104129.

[80] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by adia-
batic evolution, quant-ph/0001106.

[81] E. Farhi and S. Gutmann, Analog analogue of a digital quantum computation, Phys.
Rev. A 57 (1998), 2403–2406, quant-ph/9612026.

[82] , Quantum computation and decision trees, Phys. Rev. A 58 (1998), 915–928,
quant-ph/9706062.

[83] S. A. Fenner and Y. Zhang, A note on the classical lower bound for a quantum walk
algorithm, quant-ph/0312230.

[84] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982),
467–488.

[85] , Quantum mechanical computers, Optics News 11 (1985), 11–20.

[86] Fortschr. Phys. 48, no. 9–11 (2000), Special issue on experimental proposals for quan-
tum computation.

[87] M. H. Freedman, A. Yu. Kitaev, M. J. Larsen, and Z. Wang, Topological quantum
computation, Bull. Amer. Math. Soc. 40 (2003), 31–38, quant-ph/0101025.

[88] M. H. Freedman, A. Yu. Kitaev, and Z. Wang, Simulation of topological field theories
by quantum computers, Comm. Math. Phys. 227 (2002), 587–603, quant-ph/0001071.

[89] M. H. Freedman, M. J. Larsen, and Z. Wang, A modular functor which is universal for
quantum computation, Comm. Math. Phys. 227 (2002), 605–622, quant-ph/0001108.

[90] H. Gerhardt, Continous-time quantum walks on the symmetric group, Master’s thesis,
University of Calgary, Calgary, Alberta, December 2003.

[91] H. Gerhardt and J. Watrous, Continuous-time quantum walks on the symmetric group,
Proc. RANDOM-APPROX (Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit
Sahai, eds.), Lecture Notes in Computer Science, vol. 2764, pp. 290–301, Springer-
Verlag, 2003, quant-ph/0305182.

[92] N. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science
275 (1997), 350–356.

[93] A. V. Goldberg and S. A. Plotkin, Efficient parallel algorithms for (δ + 1)-coloring
and maximal independent set problems, Proc. 19th ACM Symposium on Theory of
Computing, pp. 315–324, 1987.

[94] J. Goldstone, personal communication, September 2002.

[95] , personal communication, January 2003.

[96] D. Gottesman, Fault-tolerant quantum computation with higher-dimensional systems,
Proc. 1st NASA International Conference on Quantum Computing and Quantum
Communications (C. P. Williams, ed.), Springer-Verlag, 1999, quant-ph/9802007.

132

http://arxiv.org/abs/quant-ph/0104129
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/quant-ph/9612026
http://arxiv.org/abs/quant-ph/9706062
http://arxiv.org/abs/quant-ph/0312230
http://arxiv.org/abs/quant-ph/0101025
http://arxiv.org/abs/quant-ph/0001071
http://arxiv.org/abs/quant-ph/0001108
http://arxiv.org/abs/quant-ph/0305182
http://arxiv.org/abs/quant-ph/9802007

[97] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani, Quantum mechanical algo-
rithms for the nonabelian hidden subgroup problem, Proc. 33rd ACM Symposium on
Theory of Computing, pp. 68–74, 2001.

[98] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys.
Rev. Lett. 79 (1997), 325–328, quant-ph/9706033.

[99] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the principal
ideal problem, Proc. 34th ACM Symposium on Theory of Computing, pp. 653–658,
2002.

[100] S. Hallgren, A. Russell, and A. Ta-Shma, Normal subgroup reconstruction and quan-
tum computation using group representations, Proc. 32nd ACM Symposium on Theory
of Computing, pp. 627–635, 2000.

[101] K. Hammerer, G. Vidal, and J. I. Cirac, Characterization of non-local gates, Phys.
Rev. A 66 (2002), 062321, quant-ph/0205100.

[102] A. W. Harrow and H.-K. Lo, A tight lower bound on the classical communica-
tion cost of entanglement dilution, IEEE Trans. Inf. Theory 50 (2004), 319–327,
quant-ph/0204096.

[103] P. Hayden and A. Winter, On the communication cost of entanglement transforma-
tions, Phys. Rev. A 67 (2003), 012326, quant-ph/0204092.

[104] M. Hillery, J. Bergou, and E. Feldman, Quantum walks based on an interferometric
analogy, Phys. Rev. A 68 (2003), 032314, quant-ph/0302161.

[105] T. Hogg, Quantum search heuristics, Phys. Rev. A 61 (2000), 052311.

[106] , Adiabatic quantum computing for random satisfiability problems, Phys. Rev.
A 67 (2003), 022314, quant-ph/0206059.

[107] P. Høyer, M. Mosca, and R. de Wolf, Quantum search on bounded-error inputs, Proc.
30th International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Computer Science, vol. 2719, pp. 291–299, 2003, quant-ph/0304052.

[108] R. Impagliazzo and D. Zuckerman, How to recycle random bits, Proc. 30th IEEE
Symposium on Foundations of Computer Science, pp. 222–227, 1989.

[109] G. Ivanyos, F. Magniez, and M. Santha, Efficient quantum algorithms for some in-
stances of the non-abelian hidden subgroup problem, Proc. 13th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 263–270, 2001, quant-ph/0102014.

[110] D. Janzing, P. Wocjan, and T. Beth, Complexity of decoupling and time-reversal for
n spins with pair-interactions: Arrow of time in quantum control, Phys. Rev. A 66
(2002), 042311, quant-ph/0106085.

[111] J. A. Jones and E. Knill, Efficient refocussing of one spin and two spin interactions
for NMR quantum computation, Journal of Magnetic Resonance 141 (1999), 322–325,
quant-ph/9905008.

[112] T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model,
Phys. Rev. E 58 (1998), 5355–5363, cond-mat/9804280.

133

http://arxiv.org/abs/quant-ph/9706033
http://arxiv.org/abs/quant-ph/0205100
http://arxiv.org/abs/quant-ph/0204096
http://arxiv.org/abs/quant-ph/0204092
http://arxiv.org/abs/quant-ph/0302161
http://arxiv.org/abs/quant-ph/0206059
http://arxiv.org/abs/quant-ph/0304052
http://arxiv.org/abs/quant-ph/0102014
http://arxiv.org/abs/quant-ph/0106085
http://arxiv.org/abs/quant-ph/9905008
http://arxiv.org/abs/cond-mat/9804280

[113] W. M. Kaminsky and S. Lloyd, Scalable architecture for adiabatic quantum comput-
ing of NP-hard problems, Quantum Computing and Quantum Bits in Mesoscopic
Systems (Anthony Leggett, Berardo Ruggiero, and Paolo Silvestrini, eds.), Kluwer,
2002, quant-ph/0211152.

[114] W. M. Kaminsky, S. Lloyd, and T. P. Orlando, Scalable superconducting architecture
for adiabatic quantum computation, quant-ph/0403090.

[115] T. Kato, On the adiabatic theorem of quantum mechanics, Phys. Soc. Jap. 5 (1950),
435–439.

[116] J. Kempe, Quantum random walks hit exponentially faster, Proc. 7th International
Workshop on Randomization and Approximation Techniques in Computer Science,
pp. 354–369, 2003, quant-ph/0205083.

[117] N. Khaneja, R. Brockett, and S. J. Glaser, Time optimal control in spin systems,
Phys. Rev. A 63 (2001), 032308, quant-ph/0006114.

[118] A. Yu. Kitaev, Quantum measurements and the abelian stabilizer problem,
quant-ph/9511026.

[119] , Fault-tolerant quantum computation by anyons, quant-ph/9707021.

[120] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation,
AMS, Providence, RI, 2002.

[121] B. Kraus and J. I. Cirac, Optimal creation of entanglement using a two-qubit gate,
Phys. Rev. A 63 (2001), 062309, quant-ph/0011050.

[122] R. Landauer, Information is physical, Physics Today 44 (1991), 23–29.

[123] M. S. Leifer, L. Henderson, and N. Linden, Optimal entanglement generation from
quantum operations, Phys. Rev. A 67 (2003), 012306, quant-ph/0205055.

[124] D. W. Leung, Simulation and reversal of n-qubit Hamiltonians using Hadamard ma-
trices, J. Mod. Opt. 49 (2002), 1199–1217, quant-ph/0107041.

[125] , Quantum computation by measurements, International Journal of Quantum
Information 2 (2004), 33–43, quant-ph/0310189.

[126] D. W. Leung, I. L. Chuang, F. Yamaguchi, and Y. Yamamoto, Efficient implemen-
tation of selective recoupling in heteronuclear spin systems using Hadamard matrices,
Phys. Rev. A 61 (2000), 042310, quant-ph/9904100.

[127] G. Lindblad, Non-equilibrium entropy and irreversibility, Reidel, Dordrecht, 1983.

[128] N. Linial, Distributive graph algorithms—global solutions from local data, Proc. 28th
IEEE Symposium on Foundations of Computer Science, pp. 331–335, 1987.

[129] , Locality in distributed graph algorithms, SIAM J. Comput. 21 (1992), 193–
201.

[130] S. Lloyd, Universal quantum simulators, Science 273 (1996), 1073–1078.

134

http://arxiv.org/abs/quant-ph/0211152
http://arxiv.org/abs/quant-ph/0403090
http://arxiv.org/abs/quant-ph/0205083
http://arxiv.org/abs/quant-ph/0006114
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/quant-ph/0011050
http://arxiv.org/abs/quant-ph/0205055
http://arxiv.org/abs/quant-ph/0107041
http://arxiv.org/abs/quant-ph/0310189
http://arxiv.org/abs/quant-ph/9904100

[131] , Quantum computation with abelian anyons, Quantum Information Processing
1 (2002), 13–18, quant-ph/0004010.

[132] H.-K. Lo, Classical-communication cost in distributed quantum-information process-
ing: A generalization of quantum-communication complexity, Phys. Rev. A 62 (2000),
012313, quant-ph/9912009.

[133] H.-K. Lo and H. F. Chau, Unconditional security of quantum key distribution over
arbitrarily long distances, Science 283 (1999), 2050–2056, quant-ph/9803006.

[134] H.-K. Lo and S. Popescu, The classical communication cost of entanglement manip-
ulation: Is entanglement an inter-convertible resource?, Phys. Rev. Lett. 83 (1999),
1459–1462, quant-ph/9902045.

[135] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev.
A 57 (1998), 120–126, cond-mat/9701055.

[136] F. Magniez, M. Santha, and M. Szegedy, An Õ(n1.3) quantum algorithm for the tri-
angle problem, quant-ph/0310134.

[137] Yu. Manin, Computable and uncomputable, Sovetskoye Radio, 1980.

[138] N. Margolus, Parallel quantum computation, Complexity, Entropy, and the Physics of
Information (W. H. Zurek, ed.), Addison-Wesley, Redwood City, 1990, pp. 273–287.

[139] Ll. Masanes, G. Vidal, and J. I. Latorre, Time-optimal Hamiltonian simulation and
gate synthesis using homogeneous local unitaries, Quantum Information and Compu-
tation 2 (2002), 285–296, quant-ph/0202042.

[140] J. McBride, An evaluation of the performance of the quantum adiabatic algorithm
on random instances of k-SAT, Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, MA, May 2002.

[141] C. J. H. McDiarmid, On a random recoloring method for graphs and hypergraphs,
Combin. Probab. Comput. 2 (1993), 363–365.

[142] A. Messiah, Quantum mechanics, vol. II, North-Holland, Amsterdam, 1961.

[143] D. A. Meyer, From quantum cellular automata to quantum lattice gasses, J. Stat.
Phys. 85 (1996), 551–574, quant-ph/9604003.

[144] , On the absence of homogeneous scalar unitary cellular automata, Phys. Lett.
A 223 (1996), 337–340, quant-ph/9604011.

[145] E. W. Montroll, Random walks in multidimensional spaces, especially on periodic
lattices, J. Soc. Indust. Appl. Math. 4 (1956), 241–260.

[146] , Random walks on lattices. III. Calculation of first-passage times with applica-
tions to exciton trapping on photosynthetic units, J. Math. Phys. 10 (1969), 753–765.

[147] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd,
Josephson persistent-current qubit, Science 285 (1999), 1036–1039.

135

http://arxiv.org/abs/quant-ph/0004010
http://arxiv.org/abs/quant-ph/9912009
http://arxiv.org/abs/quant-ph/9803006
http://arxiv.org/abs/quant-ph/9902045
http://arxiv.org/abs/cond-mat/9701055
http://arxiv.org/abs/quant-ph/0310134
http://arxiv.org/abs/quant-ph/0202042
http://arxiv.org/abs/quant-ph/9604003
http://arxiv.org/abs/quant-ph/9604011

[148] C. Moore and A. Russell, Quantum walks on the hypercube, Proc. 6th International
Workshop on Randomization and Approximation Techniques in Computer Science
(J. D. P. Rolim and S. Vadhan, eds.), Lecture Notes in Computer Science, vol. 2483,
pp. 164–178, Springer-Verlag, 2002, quant-ph/0104137.

[149] M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation on
a quantum computer, Proc. 1st NASA International Conference on Quantum Com-
puting and Quantum Communication, Lecture Notes in Computer Science, vol. 1509,
Springer-Verlag, 1999, quant-ph/9903071.

[150] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Uni-
versity Press, Princeton, NJ, 1955, original version 1932, translated by Robert T.
Beyer.

[151] M. A. Nielsen, Quantum computation by measurement and quantum memory, Phys.
Lett. A 308 (2003), 96–100, quant-ph/0108020.

[152] M. A. Nielsen, M. J. Bremner, J. L. Dodd, A. M. Childs, and C. M. Dawson, Univer-
sal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional
state spaces, Phys. Rev. A 66 (2002), 022317, quant-ph/0109064.

[153] W. Ogburn and J. Preskill, Topological quantum computation, Lecture Notes in Com-
puter Science, vol. 1509, Springer-Verlag, Berlin, 1999, pp. 341–356.

[154] C. H. Papadimitriou, On selecting a satisfying truth assignment, Proc. 32nd IEEE
Symposium on Foundations of Computer Science, pp. 163–169, 1991.

[155] A. Peres, Quantum theory: Concepts and methods, Kluwer, Dordrecht, 1995.

[156] J. Preskill, Fault-tolerant quantum computation, Introduction to Quantum Computa-
tion and Information (H.-K. Lo, S. Popescu, and T. Spiller, eds.), World Scientific,
Singapore, 1998, quant-ph/9712048.

[157] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86
(2001), 5188–5191, quant-ph/0010033.

[158] J. Roland and N. J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A
65 (2002), 042308, quant-ph/0107015.

[159] , Quantum circuit implementation of the Hamiltonian versions of Grover’s
algorithm, Phys. Rev. A 68 (2003), 062311, quant-ph/0302138.

[160] U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems,
Proc. 40th IEEE Symposium on Foundations of Computer Science, pp. 17–19, 1999.

[161] L. S. Schulman, A. Ranfagni, and D. Mugnai, Characteristic scales for dominated
time evolution, Physica Scripta 49 (1994), 536–542.

[162] S. Severini, On the digraph of a unitary matrix, SIAM J. Matrix Anal. Appl. 25
(2003), 295–300, math.CO/0205187.

[163] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27
(1948), 379–423, 623–656.

136

http://arxiv.org/abs/quant-ph/0104137
http://arxiv.org/abs/quant-ph/9903071
http://arxiv.org/abs/quant-ph/0108020
http://arxiv.org/abs/quant-ph/0109064
http://arxiv.org/abs/quant-ph/9712048
http://arxiv.org/abs/quant-ph/0010033
http://arxiv.org/abs/quant-ph/0107015
http://arxiv.org/abs/quant-ph/0302138
http://arxiv.org/abs/math.CO/0205187

[164] N. Shenvi, J. Kempe, and K. B. Whaley, A quantum random walk search algorithm,
Phys. Rev. A 67 (2003), 052307, quant-ph/0210064.

[165] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring,
Proc. 35th IEEE Symposium on Foundations of Computer Science (S. Goldwasser,
ed.), pp. 124–134, IEEE Press, 1994, quant-ph/9508027.

[166] , Scheme for reducing decoherence in quantum computer memory, Phys. Rev.
A 52 (1995), 2493–2496.

[167] , Fault-tolerant quantum computation, Proc. 37th IEEE Symposium on Foun-
dations of Computer Science, pp. 56–65, 1996, quant-ph/9605011.

[168] D. Simon, On the power of quantum computation, Proc. 35th IEEE Symposium on
Foundations of Computer Science, pp. 116–123, 1994.

[169] A. Sinclair, Algorithms for random generation and counting: A Markov chain ap-
proach, Birkhauser, Boston, 1993.

[170] A. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (1996),
793–797.

[171] M. Suzuki, General theory of higher-order decomposition of exponential operators and
symplectic integrators, Phys. Lett. A 165 (1992), 387–395.

[172] M. Szegedy, Spectra of quantized walks and a
√
δε rule, quant-ph/0401053.

[173] M. Szegedy and S. Vishwanathan, Locality based graph coloring, Proc. 25th ACM
Symposium on Theory of Computing, pp. 201–207, 1993.

[174] B. C. Travaglione, G. J. Milburn, and T. C. Ralph, Phase estimation as a quantum
nondemolition measurement, quant-ph/0203130.

[175] G. Vidal and J. I. Cirac, Catalysis in non-local quantum operations, Phys. Rev. Lett.
88 (2002), 167903, quant-ph/0108077.

[176] , Optimal simulation of nonlocal Hamiltonians using local operations and clas-
sical communication, Phys. Rev. A 66 (2002), 022315, quant-ph/0108076.

[177] G. Vidal, K. Hammerer, and J. I. Cirac, Interaction cost of non-local gates, Phys.
Rev. Lett. 88 (2002), 237902, quant-ph/0112168.

[178] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3
(1964), 25–30.

[179] X. Wang and B. C. Sanders, Entanglement capability of self-inverse Hamiltonian evo-
lution, Phys. Rev. A 68 (2003), 014301, quant-ph/0212035.

[180] J. Watrous, On one-dimensional quantum cellular automata, Proc. 36th IEEE Sym-
posium on Foundations of Computer Science, pp. 528–537, 1995.

[181] , Quantum algorithms for solvable groups, Proc. 33rd ACM Symposium on
Theory of Computing, pp. 60–67, 2001, quant-ph/0011023.

137

http://arxiv.org/abs/quant-ph/0210064
http://arxiv.org/abs/quant-ph/9508027
http://arxiv.org/abs/quant-ph/9605011
http://arxiv.org/abs/quant-ph/0401053
http://arxiv.org/abs/quant-ph/0203130
http://arxiv.org/abs/quant-ph/0108077
http://arxiv.org/abs/quant-ph/0108076
http://arxiv.org/abs/quant-ph/0112168
http://arxiv.org/abs/quant-ph/0212035
http://arxiv.org/abs/quant-ph/0011023

[182] , Quantum simulations of classical random walks and undirected graph connec-
tivity, J. Computer and System Sciences 62 (2001), 376–391, cs.CC/9812012.

[183] G. N. Watson, Three triple integrals, Quart. J. Math. Oxford Scr. 10 (1939), 266–276.

[184] S. Wiesner, Simulations of many-body quantum systems by a quantum computer,
quant-ph/9603028.

[185] A. Wigderson, The complexity of graph connectivity, Proc. 17th Mathematical Foun-
dations of Computer Science Conf., Lecture Notes in Computer Science, vol. 629,
pp. 112–132, 1992.

[186] P. Wocjan, D. Janzing, and T. Beth, Simulating arbitrary pair-interactions by a given
Hamiltonian: Graph-theoretical bounds on the time complexity, Quantum Information
and Computation 2 (2002), 117–132, quant-ph/0106077.

[187] P. Wocjan, M. Rotteler, D. Janzing, and T. Beth, Universal simulation of Hamiltoni-
ans using a finite set of control operations, Quantum Information and Computation
2 (2002), 133–150, quant-ph/0109063.

[188] A. C.-C. Yao, Quantum circuit complexity, Proc. 34th IEEE Symposium on Founda-
tions of Computer Science, pp. 352–361, 1993.

[189] C. Zalka, Simulating quantum systems on a quantum computer, Proc. Roy. Soc. Lon-
don A 454 (1998), 313–322, quant-ph/9603026.

[190] P. Zanardi and M. Rasetti, Holonomic quantum computation, Phys. Lett. A 264
(1999), 94–99, quant-ph/9904011.

[191] P. Zanardi, C. Zalka, and L. Faoro, On the entangling power of quantum evolutions,
Phys. Rev. A 62 (2000), 030301(R), quant-ph/0005031.

138

http://arxiv.org/abs/cs.CC/9812012
http://arxiv.org/abs/quant-ph/9603028
http://arxiv.org/abs/quant-ph/0106077
http://arxiv.org/abs/quant-ph/0109063
http://arxiv.org/abs/quant-ph/9603026
http://arxiv.org/abs/quant-ph/9904011
http://arxiv.org/abs/quant-ph/0005031

Index

adiabatic algorithm, 12, 25–27
for exact cover, 28
for spatial search, 80
for unstructured search, 46–50
implemented by measurement, 39–50
robustness of, 29–39

adiabatic theorem, 26
adjacency matrix, 51
angular momentum, 24, 49

Bessel function, 54, 55, 66, 85, 88
binary tree, 84, 90
bipartite Hamiltonians

capacities of, 104
entanglement generation, 118–124
qualitative equivalence, 108–112
simulation, 103–118

black-box problem, see oracular problem

capacity, Hamiltonian, 104
catalysis, 116–117, 124
Cauchy-Schwartz inequality, 45, 94, 122
column subspace, 24, 91
computational basis, 15
control error, 10, 34–38

database search, 57
decoherence, 10, 30–34
degree, 51
Dirac equation, 74
dispersion relation

linear, 75
quadratic, 74

ebit, 119
entanglement, 10, 119
entanglement capability, 119
entanglement capacity, asymptotic, 120

of a product Hamiltonian, 123
of the Ising interaction, 121

entropy, 119

Euclid’s algorithm, 109
exact cover problem, 28

fault tolerance, 10, 29
fermion doubling problem, 22, 75

gap, see spectral gap
Gibbs state, 32
graph, 51

of a Hamiltonian, 20
regular, 52

graph coloring, 19

Hamiltonian, 10
Hamiltonian simulation

bipartite, 103–118
for sparse Hamiltonians, 19
in quantum circuit model, 15–21
physical systems, 9, 21
spatially local, 79

hitting time, 101
hypercube

and universality of time-independent
Hamiltonians, 24

quantum walk on, 53, 56
random walk on, 54
search on, 58, 60
traversal problem on, 90

Ising interaction, 113

Laplacian, 51
Lie product formula, 17, 106
line

and universality of time-independent
Hamiltonians, 23

quantum walk on, 54, 56, 85, 91
random walk on, 55
search on, 57

local equivalence, 105

Markov chain, see random walk

139

Markovian master equation, 31
measurement of an operator, 22, 40
mixing time, 101
models of computation, 16, 125
momentum, 22, 40, 74

eigenstates, 54, 62

nuclear magnetic resonance, 124

open problem
ancilla dimension for entanglement

generation, 123
communication capacity of Ising

interaction, 118
complexity of two-dimensional search,

81
computational power of adiabatic

algorithm, 25
finding a path through G′

n, 101
linear-time Hamiltonian simulation, 18,

22
optimal bipartite Hamiltonian

simulation, 118
quantum simulation of quantum field

theories, 22
quantum walk algorithms for natural

problems, 101
oracle Hamiltonian, 46, 58
oracular problem, 11, 46, 57, 88

Pauli operators, d-dimensional, 108
spectral equivalence classes of, 111

perturbation theory, 45, 59, 121
phase estimation, 41
phase transition, 67

quantum algorithm, 11, see also adiabatic
algorithm, quantum walk algorithm

Grover, 12, 46, 57
Shor, 9, 11–12, 22, 83

quantum circuit model, 15
quantum computer, 9

physical implementation of, 9–10, 27
quantum Fourier transform, 11, 22, 41, 83
quantum robot, 57
quantum walk, 12, 51–101

continuous-time, 52
discrete-time, 11, 55, 58, 74, 78

quantum walk algorithm, 12

demonstrating exponential speedup, 91
for element distinctness, 56
for spatial search, 58–59, 75

qubit, 15

random walk, 51
continuous-time, 52
on a hypercube, 54
on a line, 55
on Gn, 84

reversible simulation, 104
of product Hamiltonians, 113–118

scattering theory, 85, 92
Schmidt decomposition, 119
Schrödinger equation, 10
spectral gap, 25, 59, 94

temperature, 32
traversal problem, 90

unary representation, 24
universality, 9

of adiabatic quantum computation, 25
of fixed interactions and local

operations, 125
of measurement, 39
of quantum circuits, 15
of time-independent Hamiltonians, 23

unstructured search, 12, 46, 57

Zeno effect, quantum, 39

140

	0 Introduction
	0.1 Quantum information processing
	0.2 Continuous time
	0.3 Quantum algorithms
	0.4 Summary of results

	1 Simulating Hamiltonian dynamics
	1.1 Introduction
	1.2 Simulation rules
	1.3 Sparse Hamiltonians
	1.4 Simulating physical systems
	1.5 Time-independent local Hamiltonians are universal

	2 Adiabatic quantum computation
	2.1 Introduction
	2.2 Review of adiabatic quantum computation
	2.3 An example: The exact cover problem
	2.4 Robustness
	2.4.1 Decoherence
	2.4.2 Unitary control error
	2.4.3 Discussion

	2.5 Search by measurement
	2.5.1 The measurement algorithm
	2.5.2 Running time
	2.5.3 The measurement process
	2.5.4 The unstructured search problem
	2.5.5 Eigenstates in the unstructured search problem
	2.5.6 Discussion

	3 Quantum walk
	3.1 Introduction
	3.2 From random walk to quantum walk
	3.3 Examples
	3.3.1 Quantum walk on a hypercube
	3.3.2 Quantum walk on a line

	3.4 Discrete-time quantum walk
	3.5 Discussion

	4 Spatial search by quantum walk
	4.1 Introduction
	4.2 Quantum walk algorithm
	4.3 High dimensions
	4.3.1 Complete graph
	4.3.2 Hypercube

	4.4 Finite dimensions
	4.4.1 Preliminaries
	4.4.2 Phase transition
	4.4.3 Failure of the algorithm away from the critical point
	4.4.4 The critical point in four dimensions and higher
	4.4.5 The critical point below four dimensions

	4.5 The Dirac equation and an improved algorithm in low dimensions
	4.6 Simulation in the local unitary model
	4.7 Discussion

	5 Exponential speedup by quantum walk
	5.1 Introduction
	5.2 Speedup over classical random walk
	5.3 Algorithmic speedup
	5.3.1 The problem
	5.3.2 Quantum walk algorithm
	5.3.3 Upper bound on the traversal time
	5.3.4 Classical lower bound

	5.4 Discussion

	6 Bipartite Hamiltonians as quantum channels
	6.1 Introduction
	6.2 Simulation rules
	6.3 Qualitative equivalence of all interaction Hamiltonians
	6.4 Reversible simulation of product Hamiltonians
	6.5 Entanglement capacity
	6.6 Discussion

	Bibliography
	Index

