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Review

Quantum systems evolve according to the 

Schrödinger equation

Such systems can be efficiently simulated by a 

universal quantum computer when H has an 

appropriate form.

Maybe these dynamics can be used to do 

interesting computations.



I. Quantum walk

H =



Graphs and matrices

Undirected graph G with no self loops

Adjacency matrix:

Laplacian: L = A – D  [D diagonal, Djj=deg(j)]

–L is positive semidefinite

L(¦j |jL) = 0

All other eigenvalues are positive (if G is connected)



Random walk

Random walks/Markov chains are used in many 

classical algorithms.

At each step, equal probability of jumping to 

each connected vertex

Discrete time random walk

Continuous time random walk
Probability per unit time a of jumping to each 

connected vertex



Quantum walk

How to define a quantum analogue of a 

random walk on an N-vertex graph G?

Proposal:
• Basis state |aL for each vertex a
• At each step, move to all adjacent sites 

with equal amplitude

|1L |2L |3L |4L |5L |6L |7L |8L
Example:

Walk cannot be unitary.

This does not work!

Meyer 96



Quantum walk

Two alternatives:

2. Continuous time

1. Introduce extra variables

State space: Directed edges |a,bL



Random walk Quantum walk
State space

N vertices j=1,…,N

pj = probability of being at 

vertex j

N basis states |1L,…, |NL

qj = K j|sL = amplitude to 

be at vertex j

Generator

aL, L = Laplacian of G Can choose H = –aL

Differential equation

Probability conservation

(or aA, etc.)



Walk on a line

Infinite line:

� Walk propagates with speed 2: in time t, walk 

moves a distance 2t.

Eigenstates of A:

Eigenvalues: Ep = 2 cos p

Big for y–x ~ 2t
Small for y–x > 2t

(Classical random walk: in time t, walk moves a 

distance .)

Amplitude to go from x to y:



Mixing times

Classical random walk: p approaches a limiting 

distribution as t��

E0 = 0

Ej > 0 for j>0

Mixing time: T � 1/E1

How long does it take for the walk to spread out 

over the entire graph?



Mixing times

Quantum walk: no limiting distribution —

dynamics are unitary!

Aharonov, Ambainis, Kempe, Vazirani 00

But consider:

for :

no degeneracy:



Hitting times

How long does it take for the walk to reach a 

particular vertex?

More precisely, we say the hitting time of the walk 

from a to b is polynomial in n if for some t=poly(n) 

there is a probability 1/poly(n) of being at b, 

starting from a.



Hitting times: quantum vs. classical

Theorem: Let Gn be a family of graphs with 

designated ENTRANCE and EXIT vertices.  Suppose 

the hitting time of the classical random walk from 

ENTRANCE to EXIT is polynomial in n.  Then the 

hitting time of the quantum walk from ENTRANCE to 

EXIT is also polynomial in n (for a closely related 

graph).

Proof idea: Analytically continue the classical 

walk, t � i t.

Farhi, Gutmann 97



Hypercube

000 001

010

100 101

011

111110

Let |s(0)L = |00L0L; then |s(t)L = e–iAt |00L0L.

Probability of reaching opposite corner in time t:
|Ks(t)|11L1L|2 = (sin t)2n

Classical hitting time is exponential in n!

Moore, Russell 02



Black box graph traversal problem

ENTRANCE
EXIT

Examples:

0110101

1110100

v1(ENTRANCE) = 0110101

v2(ENTRANCE) = 1110100

v3(ENTRANCE) = 1111111

v4(ENTRANCE) = 1111111

1001101

v1(0110101) = 1001101

v2(0110101) = ENTRANCE

v3(0110101) = 1110100

v4(0110101) = 1111111

Names of vertices: random 2n-bit strings (n=ªlog Nº)
Name of ENTRANCE is known

Oracle outputs the names of adjacent vertices

vc(a) = cth neighbor of a

CCDFGS 02



Exponential speedup

ENTRANCE EXIT

CCDFGS 02



Reduction of the quantum walk

Column subspace

where

Reduced Hamiltonian



Classical lower bound

ENTRANCE

Theorem: Any classical algorithm that makes at 

most 2n/6 queries to the oracle finds the EXIT with 

probability at most 4·2–n/6.

CCDFGS 02



II. Quantum computation
by adiabatic evolution

H(t)

|solutionL



Computation and ground states

Notation: Eigenstates of H: H |qjL = Ej |qjL

E0 y E1 y L y EN

Encode the solution of a computational problem 

in the ground state of a Hamiltonian.

Example: k-SAT

� x1,…,xn � {0,1}:

(x1 B x3 B ¬x11) AL A (¬x23 B x42 B ¬x17) = 1

Let hC=0 if clause C is satisfied

hC=1 if clause C is not satisfied

Minimize h=¦C hC

Equivalently, find the ground state of

H = ¦x h(x) |xLKx|



The adiabatic theorem

Let H(t) be slowly varying.

Let |s(0)L=|Ej(0)L.
Then |s(T)L~|Ej(T)L.

Rough version:

More precisely:
Let H(s) be a smooth function of s�[0,1].

Let H(t)=H(t/T)

Let |s(0)L=|E0(0)L.
Then |s(T)L~|E0(T)L so long as

~

~

where



Adiabatic quantum computation

Farhi, Goldstone, Gutmann, Sipser 00

Example: , ground state 

Example: HP = ¦z h(z) |zLKz| to minimize h(z)

Let H(0)=HB be a Hamiltonian whose ground state 

is easy to prepare.

~

Let H(1)=HP be a Hamiltonian whose ground state 

encodes the solution to the problem.

~

Let H(s) interpolate from HB to HP.
~

Example: H(s) = (1–s) HB + s HP
~

Start in |E0(0)L, evolve for time T, and measure.



E1–E0

Adiabatic Grover search

Roland, Cerf 01; van Dam, Mosca, Vazirani 01

HP = –|wLKw|

Minimize function

HB = –|sLKs|



Adiabatic Grover search

Roland, Cerf 01; van Dam, Mosca, Vazirani 01

Minimize function

H(s)=[1–f(s)] HB

+ f(s) HP

~

f(s)

HP = –|wLKw|

HB = –|sLKs|



Hard problems

How well does the adiabatic algorithm work 

on hard problems?

Note: We could learn a lot more if we had 

even a small quantum computer (say 30 

qubits)!

Farhi, Goldstone, Gutmann, Lapan, Lundgren, Preda 02



Adiabatic computation is universal

Aharonov, Ta-Shma 03; Aharonov et al., in preparation

Theorem: The output of any quantum circuit 

(acting on the |0L state) can be efficiently 

simulated by an adiabatic quantum computation 

with linear interpolation H(s) = (1–s) HB + s HP

where HB and HP are sums of Hermitian operators 

acting on a constant number of qubits. 

~

Proof: Based on Feynman’s proof that any 

(quantum) computation can be performed by 

time-independent Hamiltonian evolution.

Also related to the proof that LOCAL HAMILTONIAN is 

QMA-Complete (Kitaev).



Adiabatic computation is robust

Robustness to control error: Computation 

depends on going smoothly from HB to HP, not on 

the particular path between them.

H(t)

HB
HP

H’(t)

Robustness to thermal noise: Computation 

depends on (and is protected by) a gap E1–E0.  If 

kB T � 1/(E1 – E0) then thermal transitions are 

suppressed.

CFP 01



Summary

Hamiltonian evolution can also be used to 

build quantum algorithms.

• Quantum walks

• Adiabatic quantum computation

• …

Many kinds of Hamiltonian evolution can be 

efficiently simulated by universal quantum 

computers.

This allows us to simulate quantum physics 

much more efficiently than is possible using 

classical computers.
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