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Resources in (quantum)
information theory

Information is a resource.
e Physical
e Fungible

Examples for two-party problems:
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Quantum information theory is about the interconversion
of informational resources.



What is entanglement?

Entangled pure state:

V) aB 7 |0) alm) B

Canonical example: EPR pair

n_ b
) = \/5(|0>AIO>B+ 1)all)s)

Entanglement = non-classical correlations
e Violation of Bell inequalities

e Can be used to perform classically impossible tasks!



The many uses of entanglement

° Superdense coding [Bennett, Wiesner 92]
e Quantum teleportation [Bennett et al. 93]
e Quantum key distribution [Lo, Chau 98]

e Entanglement-assisted classical communication

... through unidirectional channels [Shor et al. 99]
... through bidirectional channels [Bennett et al. 02]
e Remote state preparation [Lo 00, Bennett et al. 00]
e Data hiding [DiVincenzo et al. 00]

e Quantum Vernam cipher [Leung 00]



Quantifying entanglement

Consider a bipartite state [1)).
Any such state has a Schmidt decomposition:

V) = 3 Viliali)s

where Z,pj — 1 and {[j)4}, {|7)5} are orthonormal
J
bases.

Entanglement:

E(l¢)) = — ij log p;

measured in ebits.

1 ebit = B(|TF))



Entanglement is fungible

Theorem. Asymptotically, states with the
same entanglement are interconvertible.
[Bennett et al. 95]

Entanglement concentration

n copies of |¢) — nE(]1))) ebits

Entanglement dilution

nE(]1))) ebits — m copies of [1))



Physical systems for entanglement
generation

e Adjacent quantum dots

bac;: gates : heterostructure magnetized

quantum well or high-g layer

e Distant labs connected by optical fiber

General model:




How to make entanglement
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Choose [1)) so that U|1)) is more entangled than |1)).



Entanglement generating capacity

Ey = sup [EU[Y))— E(|¥))]
[)cAA' BB/

Three technical points:
e Ancillary systems
e Mixed states

e Asymptotic vs. one-shot capacity
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Using ancillas

Consider U = SWAP:
Ula)|8) = [B8)|a)

Clearly E([¢)) ap) = E(U[¢) ap).

But:

e
-

In general, you can make more entanglement when
ancillary systems are available. This makes it hard to
compute Fp!
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Mixed states

Theorem. For unitary interactions, the op-
timal input state is always pure.
[Bennett, Harrow, Leung, Smolin 02]

Proof:
Ey; = sup[D(UpUT) = E.(p)
- Sép[EcwpU*) ~ Ep)
 oup HEL (W) — Byl
= sup = " pIE(UI)) — E()*")] +
— sup " nlB(UI) — B()]
_ sgl_p[éwwm )
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Asymptotic vs. one-shot

Theorem. E(Un) = nEy
[Bennett, Harrow, Leung, Smolin 02]

Proof:

The entanglement can only increase by application of U.
For each use of U, the maximum increase is given by ;.

Thus B\ < nEp.

By using the optimal input n times, E(Un) > nkby. [l
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Entanglement production cycle

Create initial
entanglement
(inefficiently)

Y

Dilute
nE(|y)) ebits

Y

Excess
entanglement:
nEy ebits

Concentrate

(Ulp))en

l
nE(U|y)) ebits
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Entanglement capacity
of a Hamiltonian

EH — %E}%(Ee—zﬂt/t)
d

_ d o _iHt
= sup | GRG0

Using perturbation theory, we find

Er g = ij VPP log(p;/pr) Tm(jj|H|kk)

where

) = Z VDili)anld) Be

This is...
e /ero for product states
e /ero for maximally entangled states

e Hard to optimize over [1))!
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Two-qubit Hamiltonians:
Canonical form

A general two-qubit Hamiltonian has 16 real parameters.
But only two of them are nonlocal!

Fact: Any two-qubit Hamiltonian H is locally equivalent
to a Hamiltonian of the form

~

H=p, X@X+p,YRY +1. Z® 2.

In other words, there are local Hamiltonians H 4, Hp and
local unitary operators U, V' so that

H=UeV)HU'®@ V) + Hy+ Hg.

[Dur et al. 01]
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Ising interaction

I 0

Consider H =7 ® 7 /= 0 1

Note that H is locally equivalent to 2/00)(00].

No ancillas:
E,, = 4m@><\/ p(l—p log Im ({(10]00)(00[2p))
p
= 2max+/p(l — p) log1
» _
~ 1.9123

[Dur et al. 01]

Theorem. E;; = 1.9123
[Childs, Leung, Vidal, Verstraete 02]

Proof idea: No pair of terms in the Schmidt
decomposition with Schmidt coefficients p;, po can
contribute more than £7,,/(p1 + pa). ]
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pe XX +puy YY

Upper bound: Simulation.

The Hamiltonian p, X ® X + 1, ¥ ® Y can be
simulated using (11, + 1,) Z @ Z.

e T here exist unitaries H{, K so that
HZH =X KZK'=Y

e Use the Lie product formula

e—z(Hl—l—HQ)t —zHlt/ne—zHQt/n>n

= lim (e
n—oo

Therefore I, xx 1y vy < (e + py) B2z,

Lower bound: By the explicit protocol (with no
anciIIas), EuwXX—i—uyYY > (,LL:,j -+ ,LLy>Ezz. [Diir et al. 01]
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Summary of known capacities

Gates:

Ecnor = 1
Egwap = 2

Hamiltonians:

Eua;XXJruyYY = 1.9123(p, + Ny)

In general, there may be no closed form expression for the
capacity of a given interaction.

For the Hamiltonian
H=p,(XX+YQY)+Z 7
we conjecture

B (X X1YY)+ 22 = 2max {\/P1p2log(p1/p2) [sin 6 + pigy sin(p — &)
++v/P2p110g(p2/pa) [Sin @ + iy sin (6 — )]
+/P1P110g(p1/pa) playsin € }

where p1, p2, ps > 0, p1 + 2po + py = 1, and
0,0, €|0,2m).
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Open problems

e Calculate capacities for two-qubit gates

e Find an upper bound on the optimal ancilla dimension
for a d4 X dp dimensional gate or Hamiltonian

e Study entanglement generation by nonunitary
quantum operations

e Inverse problem: How much entanglement is needed
to simulate a gate (or Hamiltonian)?

Er < ebits needed to simulate U

When is this achievable?
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