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Find more quantum algorithms!

Fourier sampling
• Factoring, discrete log

• Hidden subgroup problems

• Pell’s equation

• Hidden shift problems

Amplitude amplification
• Unstructured search

• Constant-depth AND-OR trees

• Various graph problems

Quantum walk
• Exponential speedup for a black box problem

• Spatial search

• Element distinctness (� triangle finding, verifying matrix 
product, etc.)



Unstructured search

N items {1,2,…,N}

Find one “marked item” w
Query: “is w=x?”

I.e., black box function 

Classical complexity: O(N)

Grover 1996: O(N1/2) quantum algorithm

BBBV 1996: This is optimal

Grover searching can be applied to a wide variety of other 
problems.  But can it be used to search a physical database, 
where the N items are distributed in space?



Spatial search

Geometry matters.

Example: If the items are arranged on a line, no speedup is 
possible.

Suppose the N items are the vertices of a graph, 
and the algorithm is restricted to access them by 
local moves along edges.

(Benioff 00: “Quantum robot”)

Two (essentially equivalent) models

1. Local Hamiltonian with a marking term –|wLKw|; 
measure complexity in terms of time.

2. Alternate between queries and local unitary 
transformations; measure complexity in terms of total 
number of steps.



Searching a d-dimensional space

Naive implementation of Grover: Each reflection about a 
uniform state (“inversion about average”) takes time N1/d

(radius of database), and there are N1/2 such steps.

Running time O(N1/2+1/d).

But do we really need such a complicated algorithm?  In 
particular:

• Does the quantum robot need a memory whose size 
grows with N?

• Does it need to take different actions at different (non-
marked) locations?  At different times?

Also, can we do better when d=2?

Aaronson, Ambainis 03: Carefully optimized recursive search 
of subcubes using amplitude amplification.

d>2: O(N1/2)
d=2: O(N1/2 log2N)



Quantum walk algorithms

Can we search a region of space using homogeneous, time-
independent dynamics?

Two possibilities:

• Continuous-time quantum walk

• Discrete-time quantum walk (needs a “coin”)

Results
Simple continuous-time walk: d>4 [CG03]

Discrete-time walk with appropriate “coin”: d>2 [AKR04]

Continuous-time walk with spin: d>2 [CG04]



Spatial search by quantum walk

Simplest algorithm: H = –a L – |wLKw|

Laplacian marked site

a

a � 0
H ~ –|wLKw|

ground state ~ |wL
first excited state ~ |sL

a � �
H ~ –aL

ground state ~ |sL

critical a

ground state ~ |sL + |wL
first excited state ~ |sL – |wL

time ~ 1/(E1 – E0)

Start in                        .

Choose some constant a
such that for as small a T
as possible, |Kw|e–iHT|sL|2 is 
large.



d=4, N=64=1296



Analysis

Use eigenstates of L to find eigenstates of H.

Periodic cubic lattice with N sites, size N1/d in each dimension.

Exact eigenstates and eigenvalues of –aL:



Results of analysis

O(N/log N)O((log N/N)1/2)Lattice, d=2

O(N2/3)O(N–1/6)Lattice, d=3

O((N log N)1/2)O(1/log1/2 N)Lattice, d=4

O(N1/2)O(1)Lattice, d>4

O(N1/2)1–o(1)Hypercube

O(N1/2)1–o(1)Complete

Run timeSuccess amplitudeGraph



dispersion relation

Results of analysis, d>4

Critical a:

Optimal run time:

Success probability:

where

Note

converges for d>p.



dispersion relation

The Dirac equation

(number of spin components in d dimensions: 2Gd/2H)

where

Hamiltonian:

Then , i.e. for m=0.

Lattice version:

where



Discrete-time quantum walk search

Ambainis, Kempe, Rivosh 04: Discrete-time quantum walk 
search algorithm in d dimensions using a 2d-dimensional 
“coin” space

Run times: O(N1/2) for d>2, O(N1/2 log N) for d=2

A discrete-time quantum walk cannot be defined on a state 
space consisting only of vertices (Meyer 96)



dispersion relation

Making Dirac work
(or, Fixing fermion doubling)

Better lattice approximation:

Algorithm: 

Let H=H0–`|wLKw|.

Start in |d,sL.

Choose some constants t,a
such that for as small a T as 
possible, |Kd,w|e-iHT|d,sL|2 is 
large.



d=2

d=3

d=4

d=5



Results of analysis (Dirac)

O((N log N)1/2)O(1/log1/2 N)Lattice, d=2

O(N1/2)O(1)Lattice, d>2

Run timeSuccess amplitudeGraph

O(N1/2 log N) using amplitude amplification

Run time O(N1/2 log3/2 N) using classical repetition



How many spin degrees of freedom?

Dirac particle in d dimensions: 2Gd/2H

uses matrices of dimension 2Gd/2H.)

(Smallest representation of Dirac algebra

Ambainis, Kempe, Rivosh discrete-time algorithm:
2d “coin states” (or 2 for d=2)

Simple continuous-time quantum walk: no spin!

But it is sufficient to reproduce the action of the Dirac algebra 
on a single spin state |dL:

d+1 states suffice:



Adiabatic algorithms for spatial search

Dirac algorithm:

Starting state |sL is in the middle of the spectrum, and states 
in middle of spectrum with t,a small have very little overlap 
on |wL.

Adiabatic algorithm (Farhi, Goldstone, Gutmann, Sipser 00): 
Start in the ground state of a simple Hamiltonian and slowly 
change the Hamiltonian so that the ground state encodes the 
solution to the problem.

Simple algorithm:
Slowly lower a from a large value to 0.
With an appropriate schedule, can search in time

O(N1/2) for d>4
O(N1/2 log3/2N) for d=4



Open questions

What is the actual complexity of spatial search in d=2?

How does the algorithm work when there are multiple marked 
items?  With non-periodic boundary conditions?  Starting 
from a localized state?

Can this algorithm be implemented in a feasible experiment 
(e.g. in optical lattices)?

Other algorithms using quantum walks?


