Spatial search and the Dirac equation

Andrew Childs Jeffrey Goldstone MIT Center for Theoretical Physics Caltech Institute for Quantum Information

quant-ph/0306054; PRA 70, 022314 (2004) quant-ph/0405120; to appear in PRA

Find more quantum algorithms!

Fourier sampling

- Factoring, discrete log
- Hidden subgroup problems
- Pell's equation
- Hidden shift problems

Amplitude amplification

- Unstructured search
- Constant-depth AND-OR trees
- Various graph problems

Quantum walk

- Exponential speedup for a black box problem
- Spatial search
- Element distinctness (→ triangle finding, verifying matrix product, etc.)

Unstructured search

N items {1,2,...,*N*} Find one "marked item" *w* Query: "is w=x?" I.e., black box function $f(x) = \begin{cases} 0 & x \neq w \\ 1 & x = w \end{cases}$

```
Classical complexity: \Theta(N)
Grover 1996: O(N^{1/2}) quantum algorithm
BBBV 1996: This is optimal
```

Grover searching can be applied to a wide variety of other problems. But can it be used to search a physical database, where the *N* items are distributed in space?

Spatial search

Suppose the *N* items are the vertices of a graph, and the algorithm is restricted to access them by local moves along edges.

(Benioff 00: "Quantum robot")

Geometry matters.

Example: If the items are arranged on a line, no speedup is possible.

Two (essentially equivalent) models

- 1. Local Hamiltonian with a marking term $-|w\rangle\langle w|$; measure complexity in terms of time.
- Alternate between queries and local unitary transformations; measure complexity in terms of total number of steps.

Searching a *d***-dimensional space**

Naive implementation of Grover: Each reflection about a uniform state ("inversion about average") takes time $N^{1/d}$ (radius of database), and there are $N^{1/2}$ such steps. Running time $O(N^{1/2+1/d})$.

Aaronson, Ambainis 03: Carefully optimized recursive search of subcubes using amplitude amplification.

 $d>2: O(N^{1/2})$ $d=2: O(N^{1/2} \log^2 N)$

But do we really need such a complicated algorithm? In particular:

- Does the quantum robot need a memory whose size grows with *N*?
- Does it need to take different actions at different (nonmarked) locations? At different times?

Also, can we do better when d=2?

Quantum walk algorithms

Can we search a region of space using homogeneous, timeindependent dynamics?

Two possibilities:

- Continuous-time quantum walk
- Discrete-time quantum walk (needs a "coin")

Results

Simple continuous-time walk: d>4[CG03]Discrete-time walk with appropriate "coin": d>2[AKR04]Continuous-time walk with spin: d>2[CG04]

Spatial search by quantum walk

d=4, *N*=6⁴=1296

Analysis

Use eigenstates of *L* to find eigenstates of *H*.

Periodic cubic lattice with N sites, size $N^{1/d}$ in each dimension. Exact eigenstates and eigenvalues of $-\gamma L$:

$$|\vec{k}
angle = \frac{1}{\sqrt{N}} \sum_{\vec{x}} e^{i\vec{k}\cdot\vec{x}} |\vec{x}
angle \qquad \qquad \mathcal{E}(\vec{k}) = 2\gamma \left(d - \sum_{j=1}^{d} \cos k_j\right)$$

$$k_{j} = \frac{2\pi m_{j}}{N^{1/d}}$$

$$m_{j} = \begin{cases} 0, \pm 1, \dots, \pm \frac{1}{2}(N^{1/d} - 1) & N^{1/d} \text{ odd} \\ 0, \pm 1, \dots, \pm \frac{1}{2}(N^{1/d} - 2), + \frac{1}{2}N^{1/d} & N^{1/d} \text{ even} \end{cases}$$

Results of analysis

Graph	Success amplitude	Run time
Complete	1-0(1)	O(N ^{1/2})
Hypercube	1-0(1)	O(N ^{1/2})
Lattice, <i>d</i> >4	<i>O</i> (1)	O(N ^{1/2})
Lattice, <i>d</i> =4	O(1/log ^{1/2} N)	O((N log N) ^{1/2})
Lattice, <i>d</i> =3	O(N ^{-1/6})	O(N ^{2/3})
Lattice, <i>d</i> =2	O((log N/N) ^{1/2})	O(N/log N)

Results of analysis, *d*>4

Critical
$$\gamma$$
: $\gamma_* = I_{1,d}$ Optimal run time: $T = \frac{\pi \sqrt{I_{2,d}N}}{2I_{1,d}}$ Success probability: $|\langle w|e^{-iHT}|s\rangle|^2 = \frac{I_{1,d}^2}{I_{2,d}}$

where

$$I_{j,d} = \frac{1}{(2\pi)^d} \int_{-\pi}^{\pi} \frac{\mathrm{d}^d \vec{k}}{[\mathcal{E}(\vec{k})]^j}$$

Note
$$\int_0 \frac{\mathrm{d}^d \vec{k}}{|\vec{k}|^p} \sim \int_0 \frac{|\vec{k}|^{d-1} \mathrm{d}k}{|\vec{k}|^p}$$

converges for *d>p*.

The Dirac equation

Hamiltonian: $H_{\text{Dirac}} = \sum_{j=1}^{d} \alpha_j p_j + \beta m$ $\vec{p} = -i \frac{d}{d\vec{x}}$ where $\{\alpha_j, \alpha_k\} = 2\delta_{jk}, \quad \{\alpha_j, \beta\} = 0, \quad \beta^2 = 1$ (number of spin components in *d* dimensions: $2^{\lceil d/2 \rceil}$) Then $H_{\text{Dirac}}^2 = |\vec{p}|^2 + m^2$, i.e. $E_{\text{Dirac}} = \pm |\vec{p}|$ for m = 0. dispersion relation Lattice version: $H_0 = \omega \sum_{j=1}^d \alpha_j P_j$ where $P_j |\vec{x}\rangle = \frac{i}{2} (|\vec{x} + \hat{e}_j\rangle - |\vec{x} - \hat{e}_j\rangle)$ $\mathcal{E}(k)$ $\mathcal{E}(\vec{k}) = \pm \omega_{\sqrt{\sum_{j=1}^{d} \sin^2 k_j}}$ -0.5

 π

 0_{l}

Discrete-time quantum walk search

Ambainis, Kempe, Rivosh 04: Discrete-time quantum walk search algorithm in *d* dimensions using a 2*d*-dimensional "coin" space

Run times: $O(N^{1/2})$ for d > 2, $O(N^{1/2} \log N)$ for d=2

A discrete-time quantum walk cannot be defined on a state space consisting only of vertices (Meyer 96)

Making Dirac work (or, Fixing fermion doubling)

Better lattice approximation: $H_0 = \omega$

$$H_0 = \omega \sum_{j=1}^d \alpha_j P_j + \gamma \beta L$$

$$\mathcal{E}(\vec{k}) = \pm \sqrt{\omega^2 \sum_{j=1}^d \sin^2 k_j + \gamma^2 \left[2 \sum_{j=1}^d (1 - \cos k_j)\right]^2}$$

Algorithm:

Let $H = H_0 - \beta |w\rangle \langle w|$.

Start in $|\eta, s\rangle$.

Choose some constants ω, γ such that for as small a *T* as possible, $|\langle \eta, w | e^{-iHT} | \eta, s \rangle|^2$ is large.

Results of analysis (Dirac)

Graph	Success amplitude	Run time
Lattice, d>2	<i>O</i> (1)	O(N ^{1/2})
Lattice, $d=2$	O(1/log ^{1/2} N)	O((N log N) ^{1/2})
	$O(1/10g^{1/2}/N)$	

Run time $O(N^{1/2} \log^{3/2} N)$ using classical repetition $O(N^{1/2} \log N)$ using amplitude amplification

How many spin degrees of freedom?

Dirac particle in *d* dimensions: $2^{\lceil d/2 \rceil}$

(Smallest representation of Dirac algebra

 $\{\alpha_j, \alpha_k\} = 2\delta_{jk}, \quad \{\alpha_j, \beta\} = 0, \quad \beta^2 = 1$

uses matrices of dimension $2^{\lceil d/2 \rceil}$.)

Simple continuous-time quantum walk: no spin!

Ambainis, Kempe, Rivosh discrete-time algorithm: 2d "coin states" (or 2 for d=2)

But it is sufficient to reproduce the action of the Dirac algebra on a single spin state $|\eta\rangle$:

$$\{\alpha_j, \alpha_k\} |\eta\rangle = 2\delta_{jk} |\eta\rangle, \quad \{\alpha_j, \beta\} |\eta\rangle = 0, \quad \beta |\eta\rangle = |\eta\rangle$$

d+1 states suffice: $\alpha_j = |0\rangle\langle j| + |j\rangle\langle 0|, \ \beta = 2|0\rangle\langle 0| - I, \ |\eta\rangle = |0\rangle$

Adiabatic algorithms for spatial search

Adiabatic algorithm (Farhi, Goldstone, Gutmann, Sipser 00): Start in the ground state of a simple Hamiltonian and slowly change the Hamiltonian so that the ground state encodes the solution to the problem.

Simple algorithm: $H = \gamma L - |w\rangle \langle w|$ Slowly lower γ from a large value to 0. With an appropriate schedule, can search in time $O(N^{1/2})$ for d > 4 $O(N^{1/2} \log^{3/2} N)$ for d = 4

Dirac algorithm:
$$H = \omega \sum_{j=1}^{d} \alpha_j P_j + \gamma \beta L - \beta |w\rangle \langle w |$$

Starting state $|s\rangle$ is in the middle of the spectrum, and states in middle of spectrum with ω,γ small have very little overlap on $|w\rangle$.

Open questions

What is the actual complexity of spatial search in d=2?

- How does the algorithm work when there are multiple marked items? With non-periodic boundary conditions? Starting from a localized state?
- Can this algorithm be implemented in a feasible experiment (e.g. in optical lattices)?

Other algorithms using quantum walks?