
Exponential algorithmic
speedup by quantum walk

Andrew Childs
MIT Center for Theoretical Physics

joint work with
Richard Cleve
Enrico Deotto

Eddie Farhi
Sam Gutmann
Dan Spielman

quant-ph/0209131

Motivation

• Find new kinds of quantum algorithms

• Classical random walks A quantum walks
• Construct an (oracular) problem that is naturally suited to

quantum walks
• Show that the problem can be solved efficiently using

quantum walks
– Walk finds the solution fast
– Walk can be implemented

• Show that the problem cannot be solved efficiently using a
classical computer

Black box computation

• Standard computation: compute a function of some data
Example: Factoring.

Input: An integer j
Output: Integers k, l such that j = kl

• Black box computation (oracular computation)
Input: A black box for a function f(x)
Output: Some property of f(x)

f(x)
x x

y y � f(x)

Running time: count queries to f(x).
Easier to obtain bounds.

Black box computation

• Standard computation: compute a function of some data
Example: Factoring.

Input: An integer j
Output: Integers k,l such that j=kl

• Physics experiment
Input: Apparatus with Hamiltonian H
Output: Parameters c1, c2, …

H|sin² |sout² = e–i H t |sin²

Determine c1, c2, … as fast as possible.

(Physical perspective)

History of quantum algorithms

Deutsch 85 One quantum query vs. two classical queries
Deutsch/Josza 92 Exact quantum solution exponentially faster than

exact classical solution
Bernstein/Vazirani 93 Superpolynomial quantum-classical separation
Simon 94 Exponential quantum-classical separation

Shor 94 Factoring/discrete log
Kitaev 95 Abelian hidden subgroup problem
van Dam/Hallgren 00 Quadratic character problems
Watrous 01 Algorithms for solvable groups
Hallgren 02 Pell’s equation

Grover 96 Quadratic speedup of search
CCDFGS 02 Quantum walks

qu
an

tu
m

 F
ou

rie
r t

ra
ns

fo
rm

Quantum walk

Classical random walk Quantum walk
Differential equation

Generator

Probability conservation

Differential equation (Schrödinger)

Generator

Probability conservation

Another choice: Quantum analogue of discrete random walk.
Hilbert space cannot be just the vertices [Meyer, J. Stat. Phys. 85, 511
(1996)] so one must introduce a “quantum coin.”

graph G

Black box graph traversal problem

ENTRANCE
EXIT

Examples:

0110101

1110100

v1(ENTRANCE) = 0110101
v2(ENTRANCE) = 1110100
v3(ENTRANCE) = 1111111
v4(ENTRANCE) = 1111111

1001101

v1(0110101) = 1001101
v2(0110101) = ENTRANCE
v3(0110101) = 1110100
v4(0110101) = 1111111

Names of vertices: random 2n-bit strings (n = ªlog Nº)
Name of ENTRANCE is known
Oracle outputs the names of adjacent vertices

vc(a) = cth neighbor of a

Example: Gn

Childs, Farhi, Gutmann, QIP 1, 35 (2002).

Classical random walk
Time to reach EXIT is
exponential in n.

n

O(2n) vertices

Quantum walk
Time to reach EXIT is
linear in n.

But there is a (non-random walk)
classical algorithm that finds EXIT
in polynomial time!

G4

A harder graph: Gnv

(Actually a distribution on graphs)
Connection: a random cycle that alternates sides

G4v

Reduction of Gnv to a line

Column subspace

where

Reduced Hamiltonian

Quantum walk on G250
’

Implementing the quantum walk 1

General edge-colored graph

vc(a) = neighbor of a connected by an edge of color c

Hilbert space: states |a, b, r²

2n bits 2n bits 1 bit

vc(vc(a)) = a for vc(a) D G

Using the oracle, can compute

Vertex states: |a, 0, 0²
a D G

Implementing the quantum walk 2

Tools for simulating Hamiltonians
• Linear combination
• Unitary conjugation

Graph Hamiltonian

A simple Hamiltonian

Proof:

Simulating T

Simulate

i.e.,

SWAP:

Diagonalize:

Coloring Gnv

• General oracle: vc(vc(a)) & a
• Construct an oracle that has this property
• Gn’ is bipartite. Define a parity bit:

0 if vertex is in an even column
1 if vertex is in an odd column

• Parity of ENTRANCE is 0, and we can easily modify the oracle
to keep track of parity

• Color of an edge depends on parity:
– Parity 0 c = (cin, cout)
– Parity 1 c = (cout, cin)

parity 0
parity 1

a2 = vc1(a1)a1 = vc2(a2)
c1

c2 c = (c2, c1)

• Start in the state |ENTRANCE, 0, 0²
• Simulate the quantum walk for a time t = poly(n)
• Measure in the computational basis
• If EXIT is found, stop; otherwise repeat

• Theorem: If t is chosen uniformly in [0, n4] then the
probability of finding EXIT is greater than 1/4n.

�Quantum walk algorithm finds the EXIT with high probability
using a polynomial number of gates and oracle queries.

Quantum algorithm

Classical lower bound 1

• Number of vertices in Gnv: O(2n)
• Number of possible names: 22n

• Probability of guessing a valid name at random: O(2–n)

Restrict to a connected subgraph

• Allow the algorithm to win if it finds the EXIT or if it finds a
cycle

Restrict to a subtree

Consider the set of vertices visited by the algorithm.

Classical lower bound 2

• Consider an arbitrary rooted binary tree with t vertices.
What is the probability that a random embedding into Gnv
produces a cycle or finds the EXIT?

ENTRANCE

Restrict to random embeddings of rooted binary trees
• If the algorithm does not find a cycle, then it is simply

tracing out a rooted subtree of Gnv

Classical lower bound 3

• Answer: if t < 2n/6, then the probability is less than 3·2–n/6.

• Putting it all together, we have

Theorem: Any classical algorithm that makes at most 2n/6

queries to the oracle finds the EXIT with probability at most
4·2–n/6.

Remarks

• Provably exponential quantum-classical separation using
quantum walks

• Q: Why does the algorithm work?
A: Quantum interference!

• Find the EXIT without finding a path from ENTRANCE to EXIT

• Could put the coloring in the classical lower bound

• Easy to formulate as a decision problem

Open problems

• Is it possible to implement the walk for a general graph with
no restriction on the initial state?

• Are there interesting computational problems that can be
solved using quantum walks?

