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Motivation

* Find new kinds of quantum algorithms

« Classical random walks — quantum walks

« Construct an (oracular) problem that is naturally suited to
gquantum walks

* Show that the problem can be solved efficiently using
quantum walks

— Walk finds the solution fast
— Walk can be implemented

« Show that the problem cannot be solved efficiently using a
classical computer



Black box computation

« Standard computation: compute a function of some data
Example: Factoring.
Input: An integer ;
Output: Integers &, / such that j =kl
« Black box computation (oracular computation)

Input: A black box for a function f{(x)
Output: Some property of f(x)

X X

y @ f(x)

Running time: count queries to f(x).
Easier to obtain bounds.
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Black box computation

(Physical perspective)

* Physics experiment
Input: Apparatus with Hamiltonian H
Output: Parameters ¢y, c,, ...

‘win> |wout> = e_th |1Pin>

Determine ¢, ¢,, ... as fast as possible.



’7 quantum Fourier transform —‘

History of quantum algorithms
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One quantum query vs. two classical queries

Exact quantum solution exponentially faster than
exact classical solution

Superpolynomial quantum-classical separation
Exponential quantum-classical separation

A
Factoring/discrete log
Abelian hidden subgroup problem
Quadratic character problems
Algorithms for solvable groups
Pell’'s equation

Quadratic speedup of search
Quantum walks




Quantum walk

Classical random walk

Differential equation

dpgft) =Y Koo par (1)

Generator

Ky =40 a#d, ad &G

Y a#d, ad €G
—d(a)y a=d.

Probability conservation
d
a za:pa(t) =0

graph G
Quantum walk

Differential equation (Schrodinger)
d
i ale(6)) = 3 _{alH|a' W'l (1))

al

Generator
(CL| ~ o
n_ | v a#d,ad €G
lalH]a') = { 0 otherwise.

Probability conservation
d
= S lalv@)P =0

Another choice: Quantum analogue of discrete random walk.
Hilbert space cannot be just the vertices [Meyer, J. Stat. Phys. 85, 511
(1996)] so one must introduce a “quantum coin.”



Black box graph traversal problem

0110101

EXIT

ENTRANCE

1001101

1110100

Names of vertices: random 2x-bit strings (n = log N )
Name of ENTRANCE is known

Oracle outputs the names of adjacent vertices
v (a) = cth neighbor of a

Examples:
V(ENTRANCE) = 0110101 v,(0110101)=1001101
V,(ENTRANCE) = 1110100 v,(0110101) = ENTRANCE

V;3(ENTRANCE) = 1111111 v;(0110101)=1110100
V,(ENTRANCE) = 1111111 v,(0110101)=1111111



Example: G,

G
. 4
Classical random walk
Time to reach ExiT IS
exponential in n.
ENTRANCE EXIT

Quantum walk
Time to reach ExiT IS
linear in n.

But there is a (non-random walk)
classical algorithm that finds exit
In polynomial time!

A
Y

n

O(2") vertices

Childs, Farhi, Gutmann, QIP 1, 35 (2002).
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A harder graph
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(Actually a distribution on graphs)

Connection: a random cycle that alternates sides



Reduction of G, to a line
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Quantum walk on G,
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Implementing the quantum walk 1

General edge-colored graph

v (a) = neighbor of a connected by an edge of color ¢

v.(v(a))=aforv.(a)EG

Hilbert space: states |q, b, 7) Vertex states: |q, 0, 0)
AN aeG

2n bits  2n bits 1 bit

Using the oracle, can compute
‘/c|a/,b,7”> = |a,bEB ’UC(CL),T S5 fc(a,» fc(a) _ { 0 TJC((L) eG



Implementing the quantum walk 2

Tools for simulating Hamiltonians
* Linear combination e Rt — (e—iﬂlt/f" . -e—"Hkt/j)J + O(K||[H,, H,)||t*/7)

e Unitary conjugation e iHtyt = (~iUVHUT

A simple Hamiltonian  Ta,5,0) = 1b,a,0)
Tla,b,1) = 0

Graph Hamiltonian H=>3 VTV,

Proof: H|a,0,0) = 3 V.Tla,v.(a), f.(a))
= Y do.f(a)Velve(a), a,0)

=Y Jula)a® uuel@), folvela)))

c:ve(a)EG

= Y |v(a),0,0)

c:ve(a)eG



Simulating T

Simulate Tla.0:00 = [b,a,0) SWAP:
Tla,b,1) = 0
Diagonalize:

2n
lLe., T = (@ S(la2n+l)) ® |0)(0]

=1

—14t

=)
S~
D
V%
D
o
D
T
™
fan
T

D
N
[
>



Coloring G,/

« General oracle: v.(v.(a)) = a
« Construct an oracle that has this property
« G, is bipartite. Define a parity bit:

0 if vertex is in an even column

1 if vertex is in an odd column

 Parity of ENTRANCE is 0, and we can easily modify the oracle
to keep track of parity

» Color of an edge depends on parity:

— Parity O ¢ = (Cyyy Coyt)
— Parity 1 ¢ = (Cyyp Cip
- vcl(al)
=v.,(ay) ./.

parity 1
parity 0 c=(c2,cl)



Quantum algorithm

« Start in the state [ENTRANCE, 0, 0)

« Simulate the quantum walk for a time ¢ = poly(n)
 Measure in the computational basis

 If ExiT is found, stop; otherwise repeat

 Theorem: If ¢ is chosen uniformly in [0, #»*] then the
probability of finding exit is greater than 1/4n.

= Quantum walk algorithm finds the exit with high probability
using a polynomial number of gates and oracle queries.



Classical lower bound 1

Consider the set of vertices visited by the algorithm.

Restrict to a connected subgraph

* Number of vertices in G,": O(2")
* Number of possible names: 22"
* Probability of guessing a valid name at random: O(27)

Restrict to a subtree

* Allow the algorithm to win if it finds the exit orif it finds a
cycle



Classical lower bound 2

Restrict to random embeddings of rooted binary trees

« If the algorithm does not find a cycle, then it is simply
tracing out a rooted subtree of G,

N R RS

o ———0

*———0

» Consider an arbitrary rooted binary tree with ¢ vertices.
What is the probability that a random embedding into G
produces a cycle or finds the exiT?



Classical lower bound 3

« Answer: if t <276, then the probability is less than 3-2-/6,

» Putting it all together, we have

Theorem: Any classical algorithm that makes at most 2/¢
qgueries to the oracle finds the exiT with probability at most

4.2—n/6_



Remarks

* Provably exponential qguantum-classical separation using
gquantum walks

 Q: Why does the algorithm work?
A: Quantum interference!

* Find the exit without finding a path from ENTRANCE to EXIT

« Could put the coloring in the classical lower bound

« Easy to formulate as a decision problem



Open problems

 Is it possible to implement the walk for a general graph with
no restriction on the initial state?

* Are there interesting computational problems that can be
solved using quantum walks?



