Exponential algorithmic speedup by quantum walk

Andrew Childs MIT Center for Theoretical Physics

> joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman

quant-ph/0209131

Motivation

- Find new kinds of quantum algorithms
- Classical random walks \rightarrow quantum walks
- Construct an (oracular) problem that is naturally suited to quantum walks
- Show that the problem can be solved efficiently using quantum walks
 - Walk finds the solution fast
 - Walk can be implemented
- Show that the problem cannot be solved efficiently using a classical computer

Black box computation

- **Standard computation:** compute a function of some data
 - Example: Factoring. Input: An integer jOutput: Integers k, l such that j = kl
- Black box computation (oracular computation) Input: A black box for a function f(x) Output: Some property of f(x)

$$\begin{array}{c} x & - & - & x \\ y & - & - & y \oplus f(x) \end{array}$$

Running time: count queries to f(x). Easier to obtain bounds.

Black box computation

(Physical perspective)

Physics experiment

Input: Apparatus with Hamiltonian HOutput: Parameters $c_1, c_2, ...$

$$|\psi_{\rm in}\rangle$$
 — H — $|\psi_{\rm out}\rangle = e^{-i H t} |\psi_{\rm in}\rangle$

Determine c_1, c_2, \ldots as fast as possible.

History of quantum algorithms

Deutsch 85 Deutsch/Josza 92

Bernstein/Vazirani 93 Simon 94

Shor 94 Kitaev 95 van Dam/Hallgren 00 Watrous 01 Hallgren 02

Grover 96 CCDFGS 02 One quantum query vs. two classical queries Exact quantum solution exponentially faster than exact classical solution Superpolynomial quantum-classical separation Exponential quantum-classical separation

Factoring/discrete log Abelian hidden subgroup problem Quadratic character problems Algorithms for solvable groups Pell's equation

Quadratic speedup of search Quantum walks

— quantum Fourier transform

Quantum walk

Classical random walk

Differential equation

$$\frac{\mathrm{d}p_a(t)}{\mathrm{d}t} = \sum_{a'} K_{aa'} \, p_{a'}(t)$$

Generator

$$K_{aa'} = \begin{cases} \gamma & a \neq a', \ aa' \in G \\ 0 & a \neq a', \ aa' \notin G \\ -d(a)\gamma & a = a'. \end{cases}$$

Probability conservation

$$\frac{\mathrm{d}}{\mathrm{d}t}\sum_{a}p_{a}(t)=0$$

Differential equation (Schrödinger) $i\frac{\mathrm{d}}{\mathrm{d}t}\langle a|\psi(t)\rangle = \sum_{a'}\langle a|H|a'\rangle\langle a'|\psi(t)\rangle$

Probability conservation $\frac{\mathrm{d}}{\mathrm{d}t} \sum_{a} |\langle a | \psi(t) \rangle|^2 = 0$

Another choice: Quantum analogue of discrete random walk. Hilbert space cannot be just the vertices [Meyer, J. Stat. Phys. **85**, 511 (1996)] so one must introduce a "quantum coin."

Black box graph traversal problem

Names of vertices: random 2n-bit strings ($n = \lceil \log N \rceil$)

Name of ENTRANCE is known

Oracle outputs the names of adjacent vertices $v_c(a) = c$ th neighbor of a

Examples:

 $v_1(\text{ENTRANCE}) = 0110101$ $v_2(\text{ENTRANCE}) = 1110100$ $v_3(\text{ENTRANCE}) = 1111111$ $v_4(\text{ENTRANCE}) = 1111111$ $v_1(0110101) = 1001101$ $v_2(0110101) = ENTRANCE$ $v_3(0110101) = 1110100$ $v_4(0110101) = 1111111$

Example: G_n

Classical random walk

Time to reach EXIT is exponential in *n*.

Quantum walk

Time to reach EXIT is linear in *n*.

But there is a (non-random walk) classical algorithm that finds EXIT in polynomial time!

Childs, Farhi, Gutmann, QIP 1, 35 (2002).

A harder graph: G_n'

(Actually a distribution on graphs) Connection: a random cycle that alternates sides

Reduction of G_n to a line

Column subspace

$$|\operatorname{col} j\rangle = \frac{1}{\sqrt{N_j}} \sum_{a \in \operatorname{column} j} |a\rangle$$

where

$$N_j = \begin{cases} 2^j & 0 \le j \le n\\ 2^{2n+1-j} & n+1 \le j \le 2n+1 \end{cases}$$

Reduced Hamiltonian

$$\langle \operatorname{col} j | H | \operatorname{col}(j+1) \rangle \\ = \begin{cases} \sqrt{2}\gamma & 0 \le j \le n-1, \\ n+1 \le j \le 2n \\ 2\gamma & j=n \end{cases}$$

Quantum walk on G[']₂₅₀

Implementing the quantum walk 1

General edge-colored graph

 $v_c(a)$ = neighbor of *a* connected by an edge of color *c*

$$v_c(v_c(a)) = a$$
 for $v_c(a) \in G$

Hilbert space: states $|a, b, r\rangle$ 2n bits 2n bits 1 bit Vertex states: $|a, 0, 0\rangle$ $a \in G$

Using the oracle, can compute

$$V_c|a,b,r\rangle = |a,b \oplus v_c(a), r \oplus f_c(a)\rangle \qquad f_c(a) = \begin{cases} 0 & v_c(a) \in G\\ 1 & v_c(a) \notin G \end{cases}$$

Implementing the quantum walk 2

Tools for simulating Hamiltonians

- Linear combination $e^{-i(H_1 + \dots + H_k)t} = (e^{-iH_1t/j} \cdots e^{-iH_kt/j})^j + O(k||[H_p, H_q]||t^2/j)$
- Unitary conjugation $Ue^{-iHt}U^{\dagger} = e^{-iUHU^{\dagger}t}$

A simple Hamiltonian

$$T|a, b, 0\rangle = |b, a, 0\rangle$$
$$T|a, b, 1\rangle = 0$$

Graph Hamiltonian

$$H = \sum_{c} V_{c}^{\dagger} T V_{c}$$

Proof:
$$H|a, 0, 0\rangle = \sum_{c} V_{c}T|a, v_{c}(a), f_{c}(a)\rangle$$
$$= \sum_{c} \delta_{0, f_{c}(a)} V_{c}|v_{c}(a), a, 0\rangle$$

$$= \sum_{c} o_{0,f_c(a)} v_c | v_c(a), a, 0 \rangle$$

$$= \sum_{c: v_c(a) \in G} |v_c(a), a \oplus v_c(v_c(a)), f_c(v_c(a))\rangle$$

$$= \sum_{c: v_c(a) \in G} |v_c(a), 0, 0\rangle$$

Simulating **T**

Simulate $T|a, b, 0\rangle = |b, a, 0\rangle$ $T|a, b, 1\rangle = 0$ i.e., $T = \left(\bigotimes_{l=1}^{2n} S^{(l,2n+l)}\right) \otimes |0\rangle\langle 0|$

SWAP: $S|z_1z_2\rangle = |z_2z_1\rangle$ Diagonalize: $W|00\rangle = |00\rangle$ $W\frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) = |01\rangle$ $W\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) = |10\rangle$ $W|11\rangle = |11\rangle$

Coloring G[']

- General oracle: $v_c(v_c(a)) \neq a$
- Construct an oracle that has this property
- G_n' is bipartite. Define a parity bit:
 0 if vertex is in an even column
 1 if vertex is in an odd column
- Parity of ENTRANCE is 0, and we can easily modify the oracle to keep track of parity
- Color of an edge depends on parity:
 - Parity 0 $c = (c_{in}, c_{out})$ Parity 1 $c = (c_{out}, c_{in})$

$$a_1 = v_{c2}(a_2) \xrightarrow[c_2]{c_2} a_2 = v_{c1}(a_1)$$

parity 0 c = (c2, c1)

Quantum algorithm

- Start in the state |ENTRANCE, $0, 0 \rangle$
- Simulate the quantum walk for a time t = poly(n)
- Measure in the computational basis
- If EXIT is found, stop; otherwise repeat
- **Theorem:** If *t* is chosen uniformly in $[0, n^4]$ then the probability of finding EXIT is greater than 1/4n.
- \Rightarrow Quantum walk algorithm finds the EXIT with high probability using a polynomial number of gates and oracle queries.

Classical lower bound 1

Consider the set of vertices visited by the algorithm.

Restrict to a connected subgraph

- Number of vertices in G_n' : $O(2^n)$
- Number of possible names: 2^{2n}
- Probability of guessing a valid name at random: $O(2^{-n})$

Restrict to a subtree

• Allow the algorithm to win if it finds the EXIT or if it finds a cycle

Classical lower bound 2

Restrict to random embeddings of rooted binary trees

• If the algorithm does not find a cycle, then it is simply tracing out a rooted subtree of G_n '

Consider an arbitrary rooted binary tree with *t* vertices.
 What is the probability that a random embedding into G_n' produces a cycle or finds the EXIT?

Classical lower bound 3

- Answer: if $t < 2^{n/6}$, then the probability is less than $3 \cdot 2^{-n/6}$.
- Putting it all together, we have

Theorem: Any classical algorithm that makes at most $2^{n/6}$ queries to the oracle finds the EXIT with probability at most $4 \cdot 2^{-n/6}$.

Remarks

- Provably exponential quantum-classical separation using quantum walks
- Q: Why does the algorithm work?
 - A: Quantum interference!
- Find the EXIT without finding a path from ENTRANCE to EXIT
- Could put the coloring in the classical lower bound
- Easy to formulate as a decision problem

Open problems

- Is it possible to implement the walk for a general graph with no restriction on the initial state?
- Are there *interesting* computational problems that can be solved using quantum walks?