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Quantum walk

Quantum analog of a random walk on a graph.

Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!
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Quantum walk algorithms

Quantum walk is a major tool for quantum algorithms (especially
query algorithms with polynomial speedup).

e Exponential speedup for black-box graph traversal [CCDFGS 02]
e Quantum walk search framework [Szegedy 05], [Magniez et al. 06]
- Spatial search [Shenvi-Kempe-Whaley 02], [CG 03, 04], [Ambainis-Kempe-Rivosh 04]
- Element distinctness [Ambainis 03]
- Subgraph finding [Magniez, Santha, Szegedy 031, [CK 10]
- Matrix/group problems [Buhrman, Spalek 04], [Magniez, Nayak 05]
e Evaluating formulas/span programs
- AND-OR formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRSZ 07]
- Span programs for general query problems [Reichardt 09]

- Learning graphs [Belovs 117 = new upper bounds (implicitly, quantum
walk algorithms), new kinds of quantum walk search



Continuous-time quantum walk

Quantum analog of a random walk on a graph G = (V, F).

Replace probabilities by quantum amplitudes.

$(t) = > a(t)|v)
veV \
amplitude for vertex v at time ¢

Define time-homogeneous, local dynamics on (.

e
(1) = Hlw()

Adjacency matrix: H = A(G) = Z lu) (v
(u,v)EE(QG)



Multi-particle quantum walk

With m distinguishable particles:

states: |vU1,...,Um,) v; € V(G)  Hilbert space dimension: n™

Hamiltonian: Hc(;m) = ZA(G)@' +U
i=1

Indistinguishable particles:

bosons: symmetric subspace  fermions: antisymmetric subspace

Many possible interactions:

m
on-site: U=.J E Ny (T — 1) My = E v) (v];
veV (G) i=1
(with bosons, this is the Bose-Hubbard model)

nearest-neighbor: U = J Z My Ty
(u,v)EE(G)



Dynamics are universal; ground states are hard

Any n-qubit, g-gate quantum circuit can be simulated by a
multi-particle quantum walk of n 4 1 particles interacting for time
poly(n, g) on an unweighted graph with poly(n, g) vertices.

Consequences:

e Architecture for a quantum computer with no time-dependent
control

e Simulating dynamics of interacting many-body systems is BOQP-hard
(e.g., Bose-Hubbard model on a sparse, unweighted, planar graph)

Approximating the ground energy of the n-particle Bose-
Hubbard model on a graph is QMA-complete.

Consequences:

e Computing the ground energy of the Bose-Hubbard model is
(probably) intractable

* New techniques for quantum Hamiltonian complexity
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Universal computation by
multi-particle quantum walk

arXiv:1205.3782, Science 339,791-794 (2013)
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Universality of quantum walk

Quantum walk can be efficiently simulated by a universal quantum
computer.

Conversely, quantum walk is a universal computational primitive: any
quantum circuit can be simulated by a quantum walk. [Childs 09]

Note: The graph is necessarily exponentially large in the number of
qubits! Vertices represent basis states.
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Momentum states

Consider an infinite path:

.—7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
Hilbert space: span{|x) : x € Z}

Eigenstates of the adjacency matrix: |k) with

<x|/;> .— etk kel|—mm

Eigenvalue: 2 cos k



Wave packets

A wave packet is a normalized state with momentum concentrated
near a particular value k.

L
1 .

Example: — E e R ) (large L)
VL —

k —

dE
Propagation speed: el 2|sin k|




Scattering on graphs

Now consider adding semi-infinite lines to two vertices of an arbitrary
finite graph.

Before:
k-
J @ .[ @ @ o @ o @ @ o
After:
—k k—
R(k)] L T(k)] L




The S-matrix

This generalizes to any number N of semi-infinite paths attached to
any finite graph.

Incoming wave packets of
momentum near k£ are mapped
to outgoing wave packets (of
the same momentum) with
amplitudes corresponding to
entries of an N X N unitary
matrix S(k), called the S-matrix.




Encoding a qubit
Encode quantum circuits into graphs.

Computational basis states correspond to paths (“‘quantum wires”).

For one qubit, use two wires (“dual-rail encoding”):

o o ¢ OG=0=0—0—0-0-0—0—0—0—0—0—0-0—0—0—0—0—0-0-0-0-0-0 ° °

¢ o ¢ OG=G=0—0—0—0-0-0—0—0—0—0—0-0-0-0—0—0—0-0-0-0-0-0-0 - ° e ¢ ¢ OGG=G—0—0—0—0-0-0—0—0—0—0—0-0-0-0—0—0—0-0-0-0-0-0 - °

encoded |0) encoded |1)

Fix some value of the momentum (e.g., k = w/4).

Quantum information propagates from left to right at constant speed.



Implementing a single-qubit gate

To perform a gate, design a graph whose S-matrix implements the
desired transformation U at the momentum used for the encoding.




Universal set of single-qubit gates

Oin° e OOout

(o v )

momentum for logical states: k = /4



Two-particle scattering

In general, multi-particle scattering is complicated.

But scattering of indistinguishable particles on an infinite path is simple.

Before:
k — —p
| i | i
After:
i P k—
e’ X |
| i | i

Phase ¢ depends on momenta and interaction details.



Momentum switch

To selectively induce the two-particle scattering phase, we route
particles depending on their momentum.

"

1@22 ] o o—o0 )
3 3

e

Particles with momentum 7 /4 follow the single line.

Particles with momentum 7 /2 follow the double line.



Controlled phase gate

Computational qubits have momentum 7 /4. Introduce a “mediator
qubit” with momentum 7 /2. We can perform an entangling gate with
the mediator qubit.

1 0 0 O
0 1 0 0
0 0 1 0
0 0 0 e




Hadamard on mediator qubit

Oip Oout

out

[Blumer-Underwood-Feder | 1]



Proving an error bound

Proof ideas:

* With long enough incoming square wave packets (length L), the
outgoing wave packets are well-approximated by the effect of the
S-matrix (error O(L~1/%)). We prove this for single-particle

scattering (for any graph) and for two-particle scattering on an
infinite path.

* Truncation Lemma: If the state is well-approximated by one that is

well-localized to some region, then changing how the Hamiltonian
acts outside that region has little effect.

The error can be made arbitrarily small with I = poly(n, g).

Example: For Bose-Hubbard model, L = O(n'?¢*) suffices.



Open questions

* I[mproved error bounds

e Simplified initial state

* Are generic interactions universal for distinguishable particles!?
* New quantum algorithms

e Experiments

e Fault tolerance



The Bose-Hubbard model
is QMA-compete

arXiv:1311.3297
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Quantum Merlin-Arthur

QMA: the quantum analog of NP
Merlin wants to prove to Arthur that some statement is true.

Merlin

"A"Y -
quantum proof ) efficient quantum
verification circuit

e |f the statement is true, there exists a |¢) that Arthur will accept
with probability at least 2/3.

o If the statement is false, any |¢)) will be rejected by Arthur with
probability at least 2/3.



Complexity of ground energy problems

* k-Local Hamiltonian problem: QMA-complete for k=2

e Quantum k-SAT (is there a frustration-free ground state?): in P for
k=2; QMA -complete for k=3

e Stoquastic k-local Hamiltonian problem:in AM
* Fermion/boson problems: QMA-complete

* 2-local Hamiltonian on a grid: QMA-complete
* 2-local Hamiltonian on a line of qudits: QMA-complete

 Hubbard model on a 2d grid with a site-dependent magnetic field:
QMA-complete

* Heisenberg and XY models with site-dependent couplings: QMA-
complete



Bose-Hubbard Hamiltonian is QMA-complete
Bose-Hubbard model on G-

HG — thop Z A(G)’LL’UG’L&’U + Jint Z ﬁfv (ﬁv — 1)
u,veEV (QG) veV(QG)

Determining whether the ground energy for n particles on
the graph G5 is less than ne; 4+ € or more than ne; 4 2¢ is QMA-
complete, where e is the |-particle ground energy.

* Fixed movement and interaction terms (A(G) is a 0-1 matrix)
» Applies for any fixed tyop, Jint > 0

e |t is QMA-hard even to determine whether the instance is
approximately frustration free

* Analysis does not use perturbation theory



Dependence on signs of coefficients

thop

o

. complete i

c QMA

stoquastic (no sign problem)



XY model

We encode computations in the subspace with at most one boson
per site ("hard-core bosons”)

Thus we can translate our results to spin systems, giving a
generalization of the XY model on a graph:

ool + Uéag | 1 — ai
Z 2 | Z %
A(G);;=1 A(G)ii=1
17 ]

Approximating the ground energy in the sector with
magnetization ) . ——= = n is QMA-complete.

o
2



Containment in QMA

Ground energy problems are usually in QMA

Strategy:
e Merlin provides the ground state

e Arthur measures the energy using phase estimation and Hamiltonian
simulation

Only one small twist for boson problems: project onto the symmetric
subspace



The quantum Cook-Levin Theorem

Local Hamiltonian is QMA-complete

Consider a QMA verification circuit U, . .. UsU; with witness |¢)

The Feynman Hamiltonian

* Implement the “clock” using local terms
* Add a term penalizing states with low acceptance probability



Single-qubit gates

Construct a graph encoding a e
universal set of single-qubit gates in )
the single-particle sector: T v {%j?
* Start from Feynman-Kitaev Hamiltonian  » RS "IN i
o O AN
for a particular sequence of gates ”“,m ; i ,g@«‘\\
. . s NN
* Obtain matrix elements {-1,0,+1} by vy G 5 W
. i RS Ssae SN T 7
careful choice .of gate .set ar!d scaling | “ﬁiﬂe 3',?5‘5‘5!??”
* Remove negative entries using an ancilla \“W Sodiiiie 4‘%“"’/ /
A1) NEE ¥ '7,‘,1’,#'%\ § X N i
V| W=
AN NN\ v i\
Ground state subspace is spanned by ;%i,
1 N W) )
HT __ 4 /(HT)T
V20) = —Z=(12)(11) + 3) + [5) +17))

V8

+ H|z)(|2) +[8)) + HT|2)(|4) + [6))) |w)
Yz1) = |¥20)" AN
for z € {0,1}

some ancilla state



Two-qubit gates

Two-qubit gate gadgets: 4096-vertex
graphs built from 32 copies of the
single-qubit graph, joined by edges
and with some added self-loops

Single-particle ground states are associated with one of two input
regions or one of two output regions:

(States also carry labels associated with the logical state & complex conjugation.)

Two-particle ground states encode two-qubit computations:

1
2 ® |¢) + @ U i)




Constructing a verification circuit

Connect two-qubit gate gadgets to implement the whole verification

circuit, e.g.: 5 5 |

Some multi-particle ground states encode computations:

_|_

:>U1¢>+ >U1w>+ >U2U1\¢>

But there are also ground states that do not encode computations
(two particles for the same qubit; particles not synchronized).

To avoid this, we introduce a way of enforcing occupancy constraints,
forbidding certain kinds of configurations. VWe establish a promise gap

using nonperturbative spectral analysis (no large coefficients).



Open questions

* Remove self-loops!?
e Complexity of other models of multi-particle quantum walk
- Attractive interactions
- Negative hopping strength (stoquastic; is it AM-hard?)
- Bosons or fermions with nearest-neighbor interactions
- Unrestricted particle number
e Complexity of other quantum spin models defined on graphs

- XY model
- Antiferromagnetic Heisenberg model



