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Mutually unbaised bases

Definition. Two orthonormal bases B and B′ of the Hilbert
space C

d are called mutually unbiased iff

|〈ψ′|ψ〉|2 =
1

d

for all |ψ〉 ∈ B and |ψ′〉 ∈ B′.

Example. In C
2, the two bases

B = {|0〉, |1〉}

B′ = { 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}

are mutually unbiased.

We can add a third basis, B′′ = { 1√
2
(|0〉 + i|1〉), 1√

2
(|0〉 − i|1〉)}.

Can we add a fourth one? No!
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Why should we care?

Mutually unbiased bases appear in
• Quantum cryptography (e.g., signal states for quantum

key distribution)
• Quantum state determination

They are objects of fundamental interest (“quantum designs”).



NMUB

Definition. Let NMUB(d) denote the maximum number of
pairwise mutually unbiased bases of C

d.

Main open question: What is NMUB(d) for arbitrary d?
(For example, even NMUB(6) is unknown.)

What is known?

• NMUB(d) ≤ d+ 1 [Delsarte, Goethals, and Seidel 75]
• NMUB(p) = p+ 1 [Ivanovic 81]
• NMUB(pe) = pe + 1 [Wootters and Fields 89]
• NMUB(d1d2) ≥ min{NMUB(d1), NMUB(d2)} [Zauner 99]
• In particular, NMUB(d) ≥ NRPP(d) := minp∈π(d) dp + 1

where π(d) denotes the set of prime factors of d
and dp denotes the largest power of p that divides d.
(reduce to prime power construction)
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Constructions of MUBs for d = pe

Two classes of constructions that obtain NMUB(pe) = pe + 1:

• Exponential sums [Klappenecker and Rötteler 03]

A natural generalization to arbitrary dimensions cannot do
better than the reduce to prime power construction.
[Archer 03]

• Partitioning a unitary error basis [Bandyopadhyay, Boykin,
Roychowdhury, and Vatan 02]

This talk: For unitary error bases with an underlying
group structure, this construction cannot do better than
the reduce to prime power construction.
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Unitary error bases

Definition. A unitary error basis is a set of d× d unitary
matrices E := {U1 =

�

, U2, . . . , Ud2} that is orthogonal with
respect to the trace inner product, i.e.,

tr(U †
kUl) = d δk,l , k, l ∈ {1, . . . , d2} .

Lemma [Bandyopadhyay et al. 02]. For any unitary error
basis E , let E1 ∪ · · · ∪ En ⊂ E with Ek ∩ El = { } for k 6= l.
Furthermore, for each k, let Ek consist of d pairwise
commuting matrices Uk,0 = , Uk,1, . . . Uk,d−1. For fixed k, let
Bk consist of the common eigenvectors of the d matries Uk,j .
Then the n bases Bk are mutually unbiased.
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Nice error bases
A particularly nice kind of unitary error basis can be
constructed using an underlying group structure.

Definition. Let G be a group of order d2 with identity element
1 (called the index group). We say N = {Ug ∈ C

d×d : g ∈ G} is
a nice error basis if

• U1 =

�

,
• trUg = d δg,1 for all g ∈ G, and
• UgUh = ω(g, h)Ugh for all g, h ∈ G, where ω(g, h) ∈ C.

(equivalently, N is a projective unitary representation of G of
central type).

A set of mutually unbiased bases constructed by partitioning
a subset of a nice error basis is called a set of nice mutually
unbiased bases.



Main result

Theorem. Let N be a nice error basis of C
d×d. Then the

number NNMUB(d) of mutually unbiased bases that can be
obtained by partitioning a subset of N is at most

NRPP(d) := min
p∈π(d)

dp + 1 .

Idea of the proof:
• Relate commuting subsets of nice error bases to abelian

subgroups of the index group.
• Bound the number of abelian subgroups.



Connection to abelian subgroups
Lemma. Let G be the index group of a nice error basis
N = {Ug1

, . . . , Ug
d2
}, and let M = {Ua1

, . . . , Uad
} ⊂ N be a set

of d mutually commuting matrices. Then A = {a1, . . . , ad} is
an abelian subgroup of G.

Proof. Since the matrices in M are mutually commuting, they
can be simultaneously diagonalized. The trace orthogonality
of a unitary error basis implies that the diagonals of M
(written in their common eigenbasis) are pairwise orthogonal
as vectors in C

d. Since there can be at most d such vectors,
M is a maximal commuting subset of N . Hence it is closed
under multiplication, and therefore corresponds to an abelian
subgroup. �

⇒ A set of nice mutually unbiased bases corresponds to a
set A of trivially intersecting abelian subgroups of the index
group, each of order d.
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How many abelian subgroups?

Lemma. Let G be a group of order d2, and let A be a set of
trivially intersecting abelian subgroups, each of order d. Then
|A| ≤ NRPP(d).

Proof (for G nilpotent). A nilpotent group is the product of its
Sylow p-subgroups, one for each prime factor of |G|. Write
G = Gp1

× · · · ×Gpk
, where Gp is the Sylow p-subgroup of G,

for p ∈ π(d). Again since G is nilpotent, any subgroup H ≤ G

can be written as Hp1
× · · · ×Hpk

where Hp := H ∩Gp ≤ Gp.
For A ∈ A, |A| = d, so |Ap| = dp. Furthermore, for distinct
subgroups A,B ∈ A, |A ∩B| = 1 implies |Ap ∩Bp| = 1. By
counting non-identity elements of distinct subgroups of Gp,
we have |A|(dp − 1) ≤ d2

p − 1, which implies |A| ≤ dp + 1.
Minimizing over p ∈ π(d) completes the proof. �

The proof for the general case is similar but more technical.
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Achieving the bound

The bound NNMUB(d) ≤ NRPP(d) can be achieved, so it is best
possible.

• For d = p prime, G = Zp × Zp.
• For d = pe, G = Z2e

p .
(Note this is the unique group the achieves NNMUB(pe).)

• In general, for d = pe1

1 · · · pek

k , G = Z2e1

p1
× · · · × Z2ek

pk
.



Stronger result for abelian index groups

Theorem. Let G = H ×H with H = Zd1
× · · · × Zdk

, where
d1, . . . , dk are prime powers WLOG. Define

µp(H) := max{dj : p|dj} ,

νp(H) := |{j : dj = µp(H)}| .

Then |A| ≤ min
p∈π(d)

pνp(H) + 1.



Could it be that NMUB(d) = NRPP(d)?

No!

[Wocjan and Beth 04]: NMUB(s2) ≥ NMOLS(s) + 2 where
NMOLS(s) is the number of mutually orthogonal Latin squares
of size s.

1 2 3

3 1 2

2 3 1

1 2 3

2 3 1

3 1 2

NMOLS(3) = 2

Example: For s = 26, NMUB(262) ≥ 6, but NRPP(262) = 5.
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Open questions

Find constructions of more MUBs than are currently known.
• Partitioning wicked error bases
• Combinatorial constructions (or other constructions

unrelated to unitary error bases)

Upper bounds on NMUB(d).

Computational methods for determining NMUB(d) for small d,
e.g., for d = 6.
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