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Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently
• factor integers
• calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:
• RSA
• elliptic curve cryptography

How do quantum computers affect the security of PKC in general?

Practical question: we’d like to be able to send confidential information 
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the 
potential strengths/limitations of quantum computers



Isogeny-based elliptic curve cryptography

Our main result:

Lq(α, c) := exp
�
(c+ o(1))(ln q)α(ln ln q)1−α

�

Given two (isogenous, ordinary, with same endomorphism ring) elliptic 
curves over     , there is a quantum algorithm that constructs an 
isogeny between them in time                 (assuming GRH), whereLq(

1
2 ,

√
3
2 )

Fq

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key 
cryptosystems based on the assumption that it is hard to construct an 
isogeny between given elliptic curves

Best known classical algorithm takes time about        [Galbraith, Hess, 
Smart 02]

q1/4
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Elliptic curves
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y2 = x3 − x+ 1

Example (          ):F = R

An elliptic curve E is the set of points in        satisfying an equation of 
the form

PF2

y2 = x3 + ax+ b

Let    be a field of characteristic different from 2 or 3F



Elliptic curve group
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This defines an abelian group with additive identity ∞

Geometric definition of a binary 
operation on points of E:

λ :=
yQ − yP
xQ − xP

xP+Q = λ2 − xP − xQ

yP+Q = λ(xP − xP+Q)− yP

for               ,xP �= xQ

Algebraic definition:

for P = Q, λ :=
3x2

P + a

2yP

for                                   ,(xP , yP ) = (xQ,−yQ)

P +Q = ∞



Elliptic curves over finite fields

Cryptographic applications use a finite field

Example: y2 = x3 + 2x+ 2

Fq
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Elliptic curve isogenies

Let            be elliptic curvesE0, E1

E1 : y2 = x3 + 34x+ 45

Example (              ):

E0 : y2 = x3 + 2x+ 2

φ(x, y) =

�
x3 + 20x2 + 50x+ 6

x2 + 20x+ 100
,
(x3 + 30x2 + 23x+ 52)y

x3 + 30x2 + 82x+ 19

�

φ−→

F = F109

φ(x, y) =

�
fx(x, y)

gx(x, y)
,
fy(x, y)

gy(x, y)

�
An isogeny                     is a rational mapφ : E0 → E1

(                    are polynomials) that is also a group homomorphism:fx, fy, gx, gy

φ((x, y) + (x�, y�)) = φ(x, y) + φ(x�, y�)



Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous 
if and only if they have the same number of points.

Thus a classical computer can decide isogeny in polynomial time.

There is a polynomial-time classical algorithm that counts the points 
on an elliptic curve [Schoof 85].



The endomorphism ring

We also assume that                                  (again, as in proposed 
cryptosystems)

End(E0) = End(E1)

The set of isogenies from E to itself (over    ) is denoted End(E)F̄

Let                  denote the set of elliptic curves over     with n points 
and endomorphism ring      , up to isomorphism

Fq

O∆

Ellq,n(O∆)

Represent curves up to isomorphism by their j-invariants

E : y2 = x3 + ax+ b ⇒ j(E) = 123
4a3

4a3 + 27b2

We assume E is ordinary (i.e., not supersingular), which is the case 
arising in proposed cryptosystems; then                                           is 
an imaginary quadratic order of discriminant ∆ < 0

End(E) ∼= O∆ = Z[∆+
√
∆

2 ]



Representing isogenies

Thus we cannot even write down the rational map explicitly in 
polynomial time

The degree of an isogeny can be exponential (in        )log q

Fact:  Isogenies between elliptic curves with the same endomorphism 
ring can be represented by elements of a finite abelian group, the ideal 
class group of the endomorphism ring, denoted Cl(O∆)

Example:  The multiplication by m map,

m2is an isogeny of degree

(x, y) �→ (x, y) + · · ·+ (x, y)� �� �
m



A group action

Thus we can view isogenies in terms of a group action

∗ : Cl(O∆)× Ellq,n(O∆) → Ellq,n(O∆)

[b] ∗ j(E) = j(Eb)

where      is the elliptic curve reached from E by an isogeny 
corresponding to the ideal class  

Eb

[b]

and j(E) is the j-invariant of E

This action is regular [Waterhouse 69]:
for any           there is a unique     such that[b]E0, E1 [b] ∗ j(E0) = j(E1)



Isogeny-based cryptography

Example: Key exchange

Public parameters: field Fq

E ∈ Ellq,n(O∆)elliptic curve

Private key generation: choose an ideal b = pe11 · · · pekk
where                 have small normp1, . . . , pk
and                 are smalle1, . . . , ek

To establish a shared private key,

Public key: [b] ∗ j(E)

Alice publishes [bA] ∗ j(E) Bob publishes [bB ] ∗ j(E)

Alice computes [bA] ∗ [bB ] ∗ j(E) Bob computes [bB ] ∗ [bA] ∗ j(E)
= [bA] ∗ [bB ] ∗ j(E)



The abelian hidden shift problem

For A cyclic, this is equivalent to the dihedral hidden subgroup 
problem

More generally, this is equivalent to the HSP in the generalized dihedral 
group A� Z2

Let A be a known finite abelian group

Let                    be an injective function (for some finite set R)f0 : A → R

Problem:  find s

Let                    be defined by                        for some unknownf1 : A → R f1(x) = f0(xs) s ∈ A

f0

f1



Isogeny construction as a hidden shift problem

Define                                               byf0, f1 : Cl(O∆) → Ellq,n(O∆)

f0([b]) = [b] ∗ j(E0)

f1([b]) = [b] ∗ j(E1)

E0, E1 [s]           are isogenous, so there is some     such that

[s] ∗ j(E0) = j(E1)

Since    is a group action, ∗ f1([b]) = f0([b][s])

Since    is regular,     is injective∗ f0

So this is an instance of the hidden shift problem in             with 
hidden shift

Cl(O∆)
[s]



Kuperberg’s algorithm

Main idea: Clebsch-Gordan sieve on coset states

The same approach works for any group action (cf.  “hard 
homogeneous spaces” [Couveignes 97])

Theorem [Kuperberg 03]:  There is a quantum algorithm that solves 
the abelian hidden shift problem in a group of order N with running 
time                                          .exp[O(

√
lnN)] = LN ( 12 , 0)

Thus there is a quantum algorithm to construct an isogeny with 
running time

where c(N) is the cost of evaluating the action

LN ( 12 , 0)× c(N)



Computing the action

Problem: Given E,     ,             , compute∆ b ∈ O∆ [b] ∗ j(E)

Direct computation (using modular polynomials) takes time
for an ideal of norm  

O(�3)
�

Instead we use an indirect approach:

• Choose a factor base of small prime ideals
• Find a factorization                           where                 are small
• Compute                one small prime at a time

p1, . . . , pf
[b] = [pe11 · · · peff ] e1, . . . , ef

[b] ∗ j(E)

By optimizing the size of the factor base, this approach can be made to 
work in time               .L( 12 ,

√
3
2 )



Removing heuristic assumptions

All of these results require heuristic assumptions in addition to the 
Generalized Riemann Hypothesis

We use a result on expansion properties of Cayley graphs of the ideal 
class group [Jao, Miller, Venkatesan 09] to avoid extra heuristics: our 
result assumes only GRH

Similar ideas appear in previous (classical) algorithms for isogenies:

• Galbraith, Hess, Smart 02: introduced idea of working in the ideal 
class group to compute the isogeny for a given ideal in time

• Bisson, Sutherland 09: compute End(E) in subexponential time
• Jao, Soukharev 10: compute the isogeny for a given ideal in 

subexponential time

q1/4

The same technique works to remove the heuristic assumptions 
(except GRH) from the algorithm for isogeny computation [Jao, 
Soukharev 10]



Unknown endomorphism ring

Computing in              requires us to know ∆Cl(O∆)

All proposed isogeny-based cryptosystems take       to be a maximal 
order, so we can compute     as follows:∆

O∆

• Compute t(E) := q + 1−#E

t(E)2 − 4q = v2D• Factor                               where D is squarefree

• Then ∆ = D

But what if     is unknown?∆

Bisson, Sutherland 09: compute End(E) in time L( 12 ,
√
3
2 )

(under significant heuristic assumptions)

Bisson 11 (using our expander graph idea): compute End(E) in time
               under only GRH; also gives a new idea that improves the 
exponent of the group action computation from      to

√
3
2

1√
2

L( 12 ,
1√
2
)



Polynomial space

Kuperberg’s algorithm uses space exp[Θ(
√
lnN)]

Regev 04 presented a modified algorithm using only polynomial space 
for the case              , with running time                           

exp[O(
√
n lnn)] = L2n(

1
2 , O(1))

A = Z2n

Combining Regev’s ideas with techniques used by Kuperberg for the 
case of a general abelian group (of order N), and performing a careful 
analysis, we find an algorithm with running time LN ( 12 ,

√
2)

Thus there is a quantum algorithm to construct elliptic curve isogenies 
using only polynomial space in time Lq(

1
2 ,

√
3
2 +

√
2)

→



Kuperberg’s approach

Consider the hidden shift problem in ZN

Idea: Combine states to make ones with more desirable labels

Standard approach to the hidden shift problem makes states

ω := e2πi/N|ψx� := 1√
2
(|0�+ ωsx|1�)

with             uniformly randomx ∈ ZN

Suppose we can make                                                          ; then a 
QFT reveals s

|ψ1� ⊗ |ψ2� ⊗ |ψ4� ⊗ · · · ⊗ |ψ2�log2 N��

This gives an algorithm with running time                 , but we have to 
store many states at once

2O(
√
logN)

Measure parity:

|ψx� ⊗ |ψx��
∼= |ψx+x��

∼= |ψx−x��

1√
2
(|00�+ ωs(x+x�)|11�)even

1√
2
ωsx�

(|01�+ ωs(x−x�)|10�)odd



Regev’s approach: Combining more states

1√
2k

�

y∈{0,1}k

ωs(x·y)|y�

�→ 1�
|Yr|

�

y∈Yr

ωs(x·y)|y�

Yr = {y ∈ {0, 1}k : x · y mod 2� = r}

To cancel ` bits of the label:

|x · y mod 2��

Success probability is reasonable provided k � �

measurement gives r

2kCompute the set      (takes time     )Yr

New idea: combine           states at a timek � 1

Note: it is not necessary to have |Yr| = O(1)

Project onto                          and relabel:span{|y1�, |y2�}

�→ 1√
2

�
|0�+ ωs(x·y2−x·y1)|1�

�



Regev’s approach: The pipeline of routines

We never store more than O(mk) states at a time

If combinations work perfectly, we need to eventually make
1 + k + k2 + · · ·+ km ≈ km states

By Chernoff bounds, even if the combinations only succeed with 
constant probability, we only need                  statesk(1+o(1))m

For                        , let     include the states with last     bits canceledj = 0, 1, . . . ,m Sj j�

Repeat
While for all j there are fewer than k states from

Make a state from
End while
Combine k states from some     to make a state from

Until there is a state from

Sj

Sj

S0

Sj+1

Sm



Optimizing the tradeoff

Cancel k bits in each of m stages: mk ≈ log2 N

Total number of combinations: ≈ km

Running time of combination procedure: ≈ 2k

Overall running time: ≈ 2kkm = 2k+m log k

k = c
�

logN log logNLet

2k+m log k = L( 12 , c+
1
2c )Then

Optimized with            , giving running timec = 1√
2

L( 12 ,
√
2)



Making smaller labels

Yq = {y ∈ {0, 1}k : �(x · y)/2B�� = q}Compute the set

Lemma:  This succeeds with constant probability if 4k ≤ B

B� ≤
2k

k

Given: states with labels in                            (uniformly random){0, 1, . . . , B − 1}
Produce: states with labels in                             (uniformly random){0, 1, . . . , B� − 1}

1√
2k

�

y∈{0,1}k

ωs(x·y)|y�|�(x · y)/2B���

�→ 1�
|Yq|

�

y∈Yq

ωs(x·y)|y�
measurement gives q

Project onto                          or                          or ...span{|y1�, |y2�} span{|y3�, |y4�}

Use rejection sampling to ensure that the distribution over the 
resulting label is uniform over {0, 1, . . . , B� − 1}



Reducing to the cyclic case

If we can produce states with all components of x but one (say, the 
tth) equal to zero, we reduce to the cyclic case

Procedure and its analysis are simplified since we don’t need to 
maintain a uniform distribution

For a general abelian group                          , hidden shift states have 
the form

|ψx� :=
1√
2

�
|0�+ exp

�
2πi

�
s1x1

N1
+ · · ·+ stxt

Nt

��
|1�

�
ZN1 × · · · × ZNt

Combination procedure: similar to the one for making smaller labels, 
using the quantity

µ(x) :=
t−1�

j=1

xj

j−1�

j�=1

Nj�



Overall algorithm

Theorem:  With carefully chosen parameters, this algorithm has 
running time               .L( 12 ,

√
2)

Write                                   where each      is either odd or a power 
of 2

A = ZN1 × · · · × ZNt Ni

Sieve away components other than the ith

To determine    :si
For each j, make the state         as follows:|ψ2j �

If      is oddNi

If      is a power of 2Ni

Under the automorphism                , sieve toward smaller 
labels, making a state with label 1

x �→ 2−jx

Sieve away the          lowest-order bits, then sieve toward 
smaller labels

j − 1



Open problems

• Breaking isogeny-based cryptography in polynomial time?

• Quantum algorithms for properties of a single curve:

- computing the ideal class group

- computing the endomorphism ring

• Generalizations:

- evaluating/constructing isogenies between curves of different 
endomorphism ring

- constructing isogenies between supersingular curves


