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Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently

* factor integers
e calculate discrete logarithms (in any group)

o AR .+ This breaks two common public-key cryptosystems:
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{4 e elliptic curve cryptography
How do quantum computers affect the security of PKC in general?
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Practical question: we'd like to be able to send confidential information
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the
potential strengths/limitations of quantum computers



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key
cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves

Best known classical algorithm takes time about g'/* [Galbraith, Hess,
Smart 02]

Our main result:

Given two (isogenous, ordinary, with same endomorphism ring) elliptic
curves over [, there is a quantum algorlthm that constructs an
isogeny between them in time L ( ) (assuming GRH), where

Lq(a,c) == exp|(c+ 0(1))(111 q)*(Inlng)' ]
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Elliptic curves

Let IF be a field of characteristic different from 2 or 3

An elliptic curve E is the set of points in PFZ satisfying an equation of
the form y* = z° + ax + b
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Example (IF = R):




Elliptic curve group

Geometric definition of a binary

operation on points of [
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Algebraic definition:

for xp # x(,
\ = JQ TP
Lo — TP

Lp4+Q — )\2 —Xp — IQ
yp+Q = ANap —xpyqQ) — yp
31% + a

2yp

for P=Q, )\ :=

for (xp,yp) = (va _yQ)’
P+ Q=

This defines an abelian group with additive identity oo



Elliptic curves over finite fields

Cryptographic applications use a finite field I,

Example: 3* = x° + 22 + 2
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Elliptic curve isogenies

Let £, £ be elliptic curves

An isogeny ¢ : g — L/ is a rational map

B(z,y) = (fa:(w,y) fy(il},y))

92 (z,y) " gy(z,y)

(fz, fy, 9z» gy are polynomials) that is also a group homomorphism:

o((z,y) + (z',y")) = o(z,y) + (2", y')

Example (IF = [F1g9):

Eo: vy =a°+ 2z + 2 2, Ey: y* =a°+ 34z + 45

o(2.) 2° + 20x? + 50z + 6 (x° + 302° + 23z + 52)y
.CC p—
Y 22+ 207 + 100 23 + 3022 + 827 + 19



Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous
if and only if they have the same number of points.

There is a polynomial-time classical algorithm that counts the points
on an elliptic curve [Schoof 85].

Thus a classical computer can decide isogeny in polynomial time.



The endomorphism ring

The set of isogenies from E to itself (over IF) is denoted End(F)

We assume FE is ordinary (i.e., not supersingular), which is the case
arising in proposed cryptosystems; then End(F) = Op = Z[A+2\/Z] is
an imaginary quadratic order of discriminant A < 0

We also assume that End(FEy) = End(FE7) (again, as in proposed
cryptosystems)

Let Ell, ,,(OAa)denote the set of elliptic curves over [F, with n points
and endomorphism ring Oa, up to isomorphism

Represent curves up to isomorphism by their j-invariants
4a’
4a3 + 2702

E:y=4+ar+b = j(E) =12°



Representing isogenies

The degree of an isogeny can be exponential (in log g)

Example: The multiplication by m map,

(z,y) = (z,y) + -+ (2,9)
N———
is an isogeny of degree m? "

Thus we cannot even write down the rational map explicitly in
polynomial time

Fact: Isogenies between elliptic curves with the same endomorphism
ring can be represented by elements of a finite abelian group, the ideal
class group of the endomorphism ring, denoted C1(Ox )



A group action

Thus we can view isogenies in terms of a group action

* Cl((’)A) X ] :.lq,n(OA) — Ellq,n((’)A)
b] * j(£) = j(Es)

where E, is the elliptic curve reached from E by an isogeny
corresponding to the ideal class |b]

&

and j(F) is the j-invariant of &

This action is regular [VWaterhouse 69]:
for any Ey, E; there is a unique [b] such that [b] x j(Ey) = j(E1)



Isogeny-based cryptography

Example: Key exchange

Public parameters: field I,
elliptic curve E € Ell, ,,(Oa)

Private key generation: choose an ideal b = p7' ---p*

where p1,...,Px have small norm
and eq, ..., e are small
Public key: b] x j(E)

To establish a shared private key,
Alice publishes [ba]| *x j(F) Bob publishes [bg] * j(F)

Alice computes [b 4] * [bg] * j(E) Bob computes [bp] * [b4
= [ba] * [bp,




The abelian hidden shift problem

Let A be a known finite abelian group

Let fo : A — R be an injective function (for some finite set R)

Let f1 : A — R be defined by f1(x) = fy(xs) for some unknown s € A

Problem: find s

fo
fi

For A cyclic, this is equivalent to the dihedral hidden subgroup
problem

More generally, this is equivalent to the HSP in the generalized dihedral
group A X Zs



Isogeny construction as a hidden shift problem

Define fy, f1 : C1l(Oa) — Ell; ,(OAa) by
fo([b]) = [b] * j(Eo)
f1([b]) = [b] * j(E1)

Ey, E; are isogenous, so there is some |s] such that
5] j(Eo) = j(£1)

Since * is a group action, f;([b]) = fo([b][s])
Since * is regular, f is injective

So this is an instance of the hidden shift problem in C1(O A ) with
hidden shift [s]



Kuperberg’s algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order /N with running

time exp[O(VIn N)] = L (2, 0).
Main idea: Clebsch-Gordan sieve on coset states

Thus there is a quantum algorithm to construct an isogeny with
running time 1
& Ln(3,0) X ¢(N)

where c¢(N) is the cost of evaluating the action

The same approach works for any group action (cf. “hard
homogeneous spaces” [Couveignes 97])



Computing the action
Problem: Given E, A, b € O, compute [b] * j(F)

Direct computation (using modular polynomials) takes time O(¢?)
for an ideal of norm ¢

Instead we use an indirect approach:

* Choose a factor base of small prime ideals py,...,p¢
e Find a factorization [b] = [p7’ - -pjcf] where e, ..., ey are small
e Compute [b] x j(F) one small prime at a time

By optimizing the size of the factor base, this approach can be made to

work in time L(z, @)



Removing heuristic assumptions

Similar ideas appear in previous (classical) algorithms for isogenies:

e Galbraith, Hess, Smart 02: introduced idea of working in the ideal
class group to compute the isogeny for a given ideal in time q1/4

e Bisson, Sutherland 09: compute End(F) in subexponential time

* Jao, Soukharev |0: compute the isogeny for a given ideal in
subexponential time

All of these results require heuristic assumptions in addition to the
Generalized Riemann Hypothesis

We use a result on expansion properties of Cayley graphs of the ideal
class group [Jao, Miller,Venkatesan 09] to avoid extra heuristics: our
result assumes only GRH

The same technique works to remove the heuristic assumptions
(except GRH) from the algorithm for isogeny computation [Jao,
Soukharev 10]



Unknown endomorphism ring

Computing in C1(OA ) requires us to know A

All proposed isogeny-based cryptosystems take (D to be a maximal
order, so we can compute A as follows:

e Compute t(F) =q+1—#FE
e Factor t(F)? — 4q¢ = v°D where D is squarefree
e Then A =D

But what if A is unknown?

Bisson, Sutherland 09: compute End(E) in time L(%, @)
(under significant heuristic assumptions)

Bisson | | (using our expander graph idea): compute End(FE) in time

L(%,—=) under only GRH;also gives a new idea that improves the

27 /2 . . V3 1
exponent of the group action computation from 5= to 73



Polynomial space

Kuperberg’s algorithm uses space exp|O(vIn N)|

Regev 04 presented a modified algorithm using only polynomial space
for the case A = Zn, with running time

exp[O(Vnlnn)] = Lan(3,0(1))

Combining Regev’s ideas with techniques used by Kuperberg for the
case of a general abelian group (of order N), and performing a careful
analysis, we find an algorithm with running time Ly (3, V2)

Thus there is a quantum algorithm to construct e\/lg;tlc curve isogenies
using only polynomial space in time L (%,



Kuperberg’s approach

Consider the hidden shift problem in Zy

Standard approach to the hidden shift problem makes states
1hs) = %(\@ + w?*|1)) w = e2™/N

with z € Zn uniformly random

Suppose we can make |1)1) ® |12) ® |14) ® -+ @ |W51108, ~] ); then a
QFT reveals s

ldea: Combine states to make ones with more desirable labels

Measure parity:

Va) @ ¢ >&v%<\00>+ws<x+w’>m>> Yt
T X x’
o> L (j01) + w0 (10)) 2 1)

This gives an algorithm with running time 2°(V1°8N) byt we have to
store many states at once



Regev’s approach: Combining more states

New idea: combine &£ > 1 states at a time

To cancel /¢ bits of the label:
1 .
NG Y WYz -y mod 2°)
ye{0,1}5 \

s(z-) measurement gives r
D Wiy

1
V |Y7“‘ yeyY,

YT:{yE{O,l}k:x-ymod%:r}

Compute the set Y, (takes time 27)

Project onto span{|y1), |y2)} and relabel:

1
— — (O _|_w3(33'y2_33'y1) 1 )
(o) B

Success probability is reasonable provided £ > ¢
Note: it is not necessary to have |Y,.| = O(1)



Regev’s approach: The pipeline of routines

For j =0,1,...,m,let Sjinclude the states with last j/ bits canceled

Repeat
While for all j there are fewer than k states from 5

Make a state from So

End while
Combine k states from some S; to make a state from S;1

Until there is a state from S,
We never store more than O(mk) states at a time

If combinations work perfectly, we need to eventually make
1+ k+k*+---+E™~ k™ states

By Chernoff bounds, even if the combinations only succeed with
constant probability, we only need (o)™ sates



Optimizing the tradeoff

Cancel £ bits in each of m stages: mk ~ log, N
Running time of combination procedure: ~ 2"
Total number of combinations: ~ k™

Overall running time: ~ ok m _ ok+mlogk

Let k = c\/logNlog log N
Then 2Ftmlogk L(%,c—l— i)

Optimized with ¢ = %,giving running time L(%, V2)



Making smaller labels

Given: states with labels in {0,1,..., B — 1} (uniformly random)
Produce: states with labels in {0,1,..., B’ — 1} (uniformly random)
1 S\
NGT Z TN (- y)/2B'])
y€{0,1}* \

1 measurement gives
— Z w9 g s d
V ‘YCJ| yeyY,

Compute the set Y, = {y € {0, 1} |(x-y)/2B'| = ¢}

Project onto span{|y1), |y2) } or span{|ys), |y4)} or ...

Use rejection sampling to ensure that the distribution over the
resulting label is uniform over {0,1,..., B’ — 1}

B 2F
Lemma: This succeeds with constant probability if 4k < o < s



Reducing to the cyclic case

For a general abelian group Zp, X -+ X Zn,, hidden shift states have
the form

._L < . [ 5171 L _
2) = (100 +exp [2mi (2 o4 20 ) )

If we can produce states with all components of x but one (say, the
tth) equal to zero, we reduce to the cyclic case

Combination procedure: similar to the one for making smaller labels,
using the quantity i1 1
u(x) = ij H N
j=1  j'=1

Procedure and its analysis are simplified since we don’t need to
maintain a uniform distribution



Overall algorithm

Write A = Zpn, X -+ X Zn, where each N; is either odd or a power
of 2

To determine s;:
For each j, make the state |%)2i) as follows:

Sieve away components other than the ith

If IV, is odd
Under the automorphism x — 277z, sieve toward smaller
labels, making a state with label 1

If N; is a power of 2

Sieve away the 7 — 1 lowest-order bits, then sieve toward
smaller labels

Theorem: With carefully chosen parameters, this algorithm has
. . 1
running time L(3, V2).



Open problems

* Breaking isogeny-based cryptography in polynomial time?

e Quantum algorithms for properties of a single curve:
- computing the ideal class group

- computing the endomorphism ring

e Generalizations:

- evaluating/constructing isogenies between curves of different
endomorphism ring

- constructing isogenies between supersingular curves



