
Constructing elliptic curve isogenies
 in quantum subexponential time

Andrew Childs David Jao Vladimir Soukharev

University of Waterloo

arXiv:1012.4019

http://arxiv.org/abs/1012.4019
http://arxiv.org/abs/1012.4019

Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently
• factor integers
• calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:
• RSA
• elliptic curve cryptography

How do quantum computers affect the security of PKC in general?

Practical question: we’d like to be able to send confidential information
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the
potential strengths/limitations of quantum computers

Isogeny-based elliptic curve cryptography

Our main result:

Lq(α, c) := exp
�
(c+ o(1))(ln q)α(ln ln q)1−α

�

Given two (isogenous, ordinary, with same endomorphism ring) elliptic
curves over , there is a quantum algorithm that constructs an
isogeny between them in time (assuming GRH), whereLq(

1
2 ,

√
3
2)

Fq

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key
cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves

Best known classical algorithm takes time about [Galbraith, Hess,
Smart 02]

q1/4

Outline

1. Elliptic curves
2. Isogenies
3. The abelian hidden shift problem
4. Computing the action of the ideal class group
5. Removing heuristic assumptions
6. Unknown endomorphism ring
7. Solving the abelian hidden shift problem with polynomial space
8. Open problems

Elliptic curves

�2 �1 1 2
x

�2

�1

1

2

y

y2 = x3 − x+ 1

Example ():F = R

An elliptic curve E is the set of points in satisfying an equation of
the form

PF2

y2 = x3 + ax+ b

Let be a field of characteristic different from 2 or 3F

Elliptic curve group

P

Q

R

P�Q

�2 �1 1 2
x

�2

�1

1

2

y

This defines an abelian group with additive identity ∞

Geometric definition of a binary
operation on points of E:

λ :=
yQ − yP
xQ − xP

xP+Q = λ2 − xP − xQ

yP+Q = λ(xP − xP+Q)− yP

for ,xP �= xQ

Algebraic definition:

for P = Q, λ :=
3x2

P + a

2yP

for ,(xP , yP) = (xQ,−yQ)

P +Q = ∞

Elliptic curves over finite fields

Cryptographic applications use a finite field

Example: y2 = x3 + 2x+ 2

Fq

�2 �1 1 2
x

�2

�1

1

2

y

F = R

25 50 75 100
x

25

50

75

100

y

F = F109

Elliptic curve isogenies

Let be elliptic curvesE0, E1

E1 : y2 = x3 + 34x+ 45

Example ():

E0 : y2 = x3 + 2x+ 2

φ(x, y) =

�
x3 + 20x2 + 50x+ 6

x2 + 20x+ 100
,
(x3 + 30x2 + 23x+ 52)y

x3 + 30x2 + 82x+ 19

�

φ−→

F = F109

φ(x, y) =

�
fx(x, y)

gx(x, y)
,
fy(x, y)

gy(x, y)

�
An isogeny is a rational mapφ : E0 → E1

(are polynomials) that is also a group homomorphism:fx, fy, gx, gy

φ((x, y) + (x�, y�)) = φ(x, y) + φ(x�, y�)

Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous
if and only if they have the same number of points.

Thus a classical computer can decide isogeny in polynomial time.

There is a polynomial-time classical algorithm that counts the points
on an elliptic curve [Schoof 85].

The endomorphism ring

We also assume that (again, as in proposed
cryptosystems)

End(E0) = End(E1)

The set of isogenies from E to itself (over) is denoted End(E)F̄

Let denote the set of elliptic curves over with n points
and endomorphism ring , up to isomorphism

Fq

O∆

Ellq,n(O∆)

Represent curves up to isomorphism by their j-invariants

E : y2 = x3 + ax+ b ⇒ j(E) = 123
4a3

4a3 + 27b2

We assume E is ordinary (i.e., not supersingular), which is the case
arising in proposed cryptosystems; then is
an imaginary quadratic order of discriminant ∆ < 0

End(E) ∼= O∆ = Z[∆+
√
∆

2]

Representing isogenies

Thus we cannot even write down the rational map explicitly in
polynomial time

The degree of an isogeny can be exponential (in)log q

Fact: Isogenies between elliptic curves with the same endomorphism
ring can be represented by elements of a finite abelian group, the ideal
class group of the endomorphism ring, denoted Cl(O∆)

Example: The multiplication by m map,

m2is an isogeny of degree

(x, y) �→ (x, y) + · · ·+ (x, y)� �� �
m

A group action

Thus we can view isogenies in terms of a group action

∗ : Cl(O∆)× Ellq,n(O∆) → Ellq,n(O∆)

[b] ∗ j(E) = j(Eb)

where is the elliptic curve reached from E by an isogeny
corresponding to the ideal class

Eb

[b]

and j(E) is the j-invariant of E

This action is regular [Waterhouse 69]:
for any there is a unique such that[b]E0, E1 [b] ∗ j(E0) = j(E1)

Isogeny-based cryptography

Example: Key exchange

Public parameters: field Fq

E ∈ Ellq,n(O∆)elliptic curve

Private key generation: choose an ideal b = pe11 · · · pekk
where have small normp1, . . . , pk
and are smalle1, . . . , ek

To establish a shared private key,

Public key: [b] ∗ j(E)

Alice publishes [bA] ∗ j(E) Bob publishes [bB] ∗ j(E)

Alice computes [bA] ∗ [bB] ∗ j(E) Bob computes [bB] ∗ [bA] ∗ j(E)
= [bA] ∗ [bB] ∗ j(E)

The abelian hidden shift problem

For A cyclic, this is equivalent to the dihedral hidden subgroup
problem

More generally, this is equivalent to the HSP in the generalized dihedral
group A� Z2

Let A be a known finite abelian group

Let be an injective function (for some finite set R)f0 : A → R

Problem: find s

Let be defined by for some unknownf1 : A → R f1(x) = f0(xs) s ∈ A

f0

f1

Isogeny construction as a hidden shift problem

Define byf0, f1 : Cl(O∆) → Ellq,n(O∆)

f0([b]) = [b] ∗ j(E0)

f1([b]) = [b] ∗ j(E1)

E0, E1 [s] are isogenous, so there is some such that

[s] ∗ j(E0) = j(E1)

Since is a group action, ∗ f1([b]) = f0([b][s])

Since is regular, is injective∗ f0

So this is an instance of the hidden shift problem in with
hidden shift

Cl(O∆)
[s]

Kuperberg’s algorithm

Main idea: Clebsch-Gordan sieve on coset states

The same approach works for any group action (cf. “hard
homogeneous spaces” [Couveignes 97])

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order N with running
time .exp[O(

√
lnN)] = LN (12 , 0)

Thus there is a quantum algorithm to construct an isogeny with
running time

where c(N) is the cost of evaluating the action

LN (12 , 0)× c(N)

Computing the action

Problem: Given E, , , compute∆ b ∈ O∆ [b] ∗ j(E)

Direct computation (using modular polynomials) takes time
for an ideal of norm

O(�3)
�

Instead we use an indirect approach:

• Choose a factor base of small prime ideals
• Find a factorization where are small
• Compute one small prime at a time

p1, . . . , pf
[b] = [pe11 · · · peff] e1, . . . , ef

[b] ∗ j(E)

By optimizing the size of the factor base, this approach can be made to
work in time .L(12 ,

√
3
2)

Removing heuristic assumptions

All of these results require heuristic assumptions in addition to the
Generalized Riemann Hypothesis

We use a result on expansion properties of Cayley graphs of the ideal
class group [Jao, Miller, Venkatesan 09] to avoid extra heuristics: our
result assumes only GRH

Similar ideas appear in previous (classical) algorithms for isogenies:

• Galbraith, Hess, Smart 02: introduced idea of working in the ideal
class group to compute the isogeny for a given ideal in time

• Bisson, Sutherland 09: compute End(E) in subexponential time
• Jao, Soukharev 10: compute the isogeny for a given ideal in

subexponential time

q1/4

The same technique works to remove the heuristic assumptions
(except GRH) from the algorithm for isogeny computation [Jao,
Soukharev 10]

Unknown endomorphism ring

Computing in requires us to know ∆Cl(O∆)

All proposed isogeny-based cryptosystems take to be a maximal
order, so we can compute as follows:∆

O∆

• Compute t(E) := q + 1−#E

t(E)2 − 4q = v2D• Factor where D is squarefree

• Then ∆ = D

But what if is unknown?∆

Bisson, Sutherland 09: compute End(E) in time L(12 ,
√
3
2)

(under significant heuristic assumptions)

Bisson 11 (using our expander graph idea): compute End(E) in time
 under only GRH; also gives a new idea that improves the
exponent of the group action computation from to

√
3
2

1√
2

L(12 ,
1√
2
)

Polynomial space

Kuperberg’s algorithm uses space exp[Θ(
√
lnN)]

Regev 04 presented a modified algorithm using only polynomial space
for the case , with running time

exp[O(
√
n lnn)] = L2n(

1
2 , O(1))

A = Z2n

Combining Regev’s ideas with techniques used by Kuperberg for the
case of a general abelian group (of order N), and performing a careful
analysis, we find an algorithm with running time LN (12 ,

√
2)

Thus there is a quantum algorithm to construct elliptic curve isogenies
using only polynomial space in time Lq(

1
2 ,

√
3
2 +

√
2)

→

Kuperberg’s approach

Consider the hidden shift problem in ZN

Idea: Combine states to make ones with more desirable labels

Standard approach to the hidden shift problem makes states

ω := e2πi/N|ψx� := 1√
2
(|0�+ ωsx|1�)

with uniformly randomx ∈ ZN

Suppose we can make ; then a
QFT reveals s

|ψ1� ⊗ |ψ2� ⊗ |ψ4� ⊗ · · · ⊗ |ψ2�log2 N��

This gives an algorithm with running time , but we have to
store many states at once

2O(
√
logN)

Measure parity:

|ψx� ⊗ |ψx��
∼= |ψx+x��

∼= |ψx−x��

1√
2
(|00�+ ωs(x+x�)|11�)even

1√
2
ωsx�

(|01�+ ωs(x−x�)|10�)odd

Regev’s approach: Combining more states

1√
2k

�

y∈{0,1}k

ωs(x·y)|y�

�→ 1�
|Yr|

�

y∈Yr

ωs(x·y)|y�

Yr = {y ∈ {0, 1}k : x · y mod 2� = r}

To cancel ` bits of the label:

|x · y mod 2��

Success probability is reasonable provided k � �

measurement gives r

2kCompute the set (takes time)Yr

New idea: combine states at a timek � 1

Note: it is not necessary to have |Yr| = O(1)

Project onto and relabel:span{|y1�, |y2�}

�→ 1√
2

�
|0�+ ωs(x·y2−x·y1)|1�

�

Regev’s approach: The pipeline of routines

We never store more than O(mk) states at a time

If combinations work perfectly, we need to eventually make
1 + k + k2 + · · ·+ km ≈ km states

By Chernoff bounds, even if the combinations only succeed with
constant probability, we only need statesk(1+o(1))m

For , let include the states with last bits canceledj = 0, 1, . . . ,m Sj j�

Repeat
While for all j there are fewer than k states from

Make a state from
End while
Combine k states from some to make a state from

Until there is a state from

Sj

Sj

S0

Sj+1

Sm

Optimizing the tradeoff

Cancel k bits in each of m stages: mk ≈ log2 N

Total number of combinations: ≈ km

Running time of combination procedure: ≈ 2k

Overall running time: ≈ 2kkm = 2k+m log k

k = c
�

logN log logNLet

2k+m log k = L(12 , c+
1
2c)Then

Optimized with , giving running timec = 1√
2

L(12 ,
√
2)

Making smaller labels

Yq = {y ∈ {0, 1}k : �(x · y)/2B�� = q}Compute the set

Lemma: This succeeds with constant probability if 4k ≤ B

B� ≤
2k

k

Given: states with labels in (uniformly random){0, 1, . . . , B − 1}
Produce: states with labels in (uniformly random){0, 1, . . . , B� − 1}

1√
2k

�

y∈{0,1}k

ωs(x·y)|y�|�(x · y)/2B���

�→ 1�
|Yq|

�

y∈Yq

ωs(x·y)|y�
measurement gives q

Project onto or or ...span{|y1�, |y2�} span{|y3�, |y4�}

Use rejection sampling to ensure that the distribution over the
resulting label is uniform over {0, 1, . . . , B� − 1}

Reducing to the cyclic case

If we can produce states with all components of x but one (say, the
tth) equal to zero, we reduce to the cyclic case

Procedure and its analysis are simplified since we don’t need to
maintain a uniform distribution

For a general abelian group , hidden shift states have
the form

|ψx� :=
1√
2

�
|0�+ exp

�
2πi

�
s1x1

N1
+ · · ·+ stxt

Nt

��
|1�

�
ZN1 × · · · × ZNt

Combination procedure: similar to the one for making smaller labels,
using the quantity

µ(x) :=
t−1�

j=1

xj

j−1�

j�=1

Nj�

Overall algorithm

Theorem: With carefully chosen parameters, this algorithm has
running time .L(12 ,

√
2)

Write where each is either odd or a power
of 2

A = ZN1 × · · · × ZNt Ni

Sieve away components other than the ith

To determine :si
For each j, make the state as follows:|ψ2j �

If is oddNi

If is a power of 2Ni

Under the automorphism , sieve toward smaller
labels, making a state with label 1

x �→ 2−jx

Sieve away the lowest-order bits, then sieve toward
smaller labels

j − 1

Open problems

• Breaking isogeny-based cryptography in polynomial time?

• Quantum algorithms for properties of a single curve:

- computing the ideal class group

- computing the endomorphism ring

• Generalizations:

- evaluating/constructing isogenies between curves of different
endomorphism ring

- constructing isogenies between supersingular curves

