Quantum algorithms

Andrew Childs

Joint Center for Quantum Information and Computer Science
University of Maryland

EQualS 2020
3—-6 November 2020

Based on slides prepared with Pawel Wocjan

Outline

I. Quantum circuits

[l. Elementary quantum algorithms
[1l. The QFT and phase estimation
IV. Factoring

V. Quantum search
VI. Quantum walk

VII. Adversary lower bounds

Part |

Quantum circuits

Quantum circuits

Quantum circuits are generalizations of Boolean circuits

input transformation output (probabilistic)
o [1A o
o A
U
0 - 4 o
o 1
o - A

Quantum circuit model

To quantify complexity, a quantum algorithm must be implemented
by a quantum circuit, i.e., a sequence of elementary gates

Quantum mechanics
Quantum circuit model = +
Notion of complexity

A universal gate set

Every unitary can be implemented exactly by quantum circuits
using only

» CNOT gates (acting on adjacent qubits) and
» arbitrary single qubit gates

The gate complexity x(U) of a unitary U € U(H) is the minimal
number of elementary gates needed to implement U

Example: quantum Fourier transform has gate complexity O(n?)

(Approximately) universal gate sets

For every € € (0,1) and every unitary U, there is a unitary V such
that

U= V] <e where [[U-V]= wa(U— V)

where V is implemented by a quantum circuits using only
» CNOT gates (acting on adjacent qubits)

» the single-qubit gates H, R(}) where

=5 (4) o

There are other universal gate sets

1 0
Oei9

Gate complexity of unitaries

The gate complexity k.(U) of a unitary U is the minimal number
of gates (from a universal gate set) need to implement a unitary V
with [|[U = V|| <€

The Solovay-Kitaev theorem implies that

ke(U) = O(n(U) log® (k(U) /e)>

for some small constant ¢

Counting arguments show that most n-qubit unitaries have gate
complexity exponential in n

Structure of quantum algorithms

An efficient quantum algorithm consists of
> preparing the initial state |0)®",

» applying a quantum circuit of polynomially many in n gates
from some universal gate set, and

> measuring all qubits in the computational basis

These steps can be repeated polynomially many times to collect
statistics, followed by efficient classical post-processing

Reversible computing

The classical AND gate is irreversible because if the output is 0
then we cannot determine which of the three possible pairs was the

actual input

X1 Xo | X1 A Xo
0

0
0
1

= = O O
= O = O

But it is easy to simulate the AND gate with one Toffoli gate
Xl; —— |x1§

X2 X2

|0) 1; |x1 A x2)

Problem of garbage

To simulate irreversible circuits with Toffoli gates, we keep the
input and intermediate results to make everything reversible

Consider the function y = x1 A x2 A x3

X1) —¢— X1

X)) ——— |xo

X3 X3

|0) D |x1 A x2 A x3)

|0) —b |x1 A x2) <— garbage

It is important to not leave any garbage; otherwise, we could not
make use of quantum parallelism and constructive interference
effects

Reversible garbage removal

It is always possible to reversibly remove (uncompute) the garbage

In the case y = x3 A xo A x3, this can be done with the circuit

X1
X2

N
N\

WV
D

X1
X2
X3

’Xl A Xo N\ X3>

|0) +— garbage uncomputed

Simulating irreversible circuits

Let f:{0,1}" — {0,1} be any boolean function

Assume this function can be computed classically using only t
classical elementary gates such as AND, OR, NAND

We can implement a unitary Ur on (C2)®" @ C? @ (C2)®" such
that

Ur (|X)in @ ¥)ous @ [0)2%) = |x) @ |y @ f(x)) @ |0)®"

work

Ur is built from polynomially many in t Toffoli gates and the size
w of the workspace register is polynomial in t

During the computation the qubits of the workspace register are
changed, but at the end they reversibly reset to |0)®"

Part Il

Elementary quantum algorithms

Black box problems

Standard computational problem: determine a property of some
input data

» Example: Find the prime factors of N

Alternate model: Input is provided by a black box (or oracle)
» Query: On input x, black box returns f(x)
» Determine a property of f using as few queries as possible
» The minimum number of queries is the query complexity
» Example: Given a black box for f : {1,2,..., N} — {0,1}, is
there some x such that f(x) =17
» Why black boxes?

» Facilitates proving lower bounds
» Can lead to algorithms for standard problems

Black boxes for reversible/quantum computing

Black box X f(x) s not reversible

Reversible version: X X
z z® f(x)

Given a circuit that computes f non-reversibly, we can implement
the reversible version with little overhead

Quantum version: |x) |x)
|2) |z ® f(x))

A reversible circuit is a quantum circuit

Deutsch’s problem

Problem

» Given: a black-box function f : {0,1} — {0,1}

» Task: determine whether f is constant or balanced

X ‘ fi(x) X ‘ f(x) X ‘ f3(x) X ‘ fa(x)
0| O 0| 1 0| 0 0| 1
1 0 1 1 1 1 1 0

constant: f(0) = (1) balanced: f(0) # f(1)

How many queries are needed?

» Classically: 2 queries are necessary and sufficient
> Quantumly: 7

Toward a quantum algorithm for Deutsch’s problem

Quantum black box for f: |x) |x)
|2) [z & f(x))

Compute f in superposition: |0)

0)

o) 0> 2 w0

1
\ﬁ(l0> ® |F(0)) + 1) @ [f(1)))

—

Can't extract more than one bit of information about f

Phase kickback

Quantum black box for f: |x) I |x)
¢
|2) |z @ f(x))

Phase kickback:

NG

:|X

® L(IF()) — [F0)))
= (=)™ x) © J5(10) - |1))

not necessarily global

Quantum algorithm for Deutsch’s problem

0))@ f(1)
|0)—[1) |

2 vz Y
(=1)7 o) + (-1 D) o) — 1)
” V2 YT

o el0) (C1)S) o))
=0 V2 SN

V() 10) — 1)
— (—1) 0\f(0)@f(1)>®7\/§

1 quantum query vs. 2 classical queries!

The Deutsch-Jozsa problem

Problem
» Given: a black-box function f : {0,1}" — {0,1}

» Promise: f is either
constant (f(x) is independent of x)

or balanced (f(x) = 0 for exactly half the values of x)
» Task: determine whether f is constant or balanced

How many queries are needed?
» Classically: 2"/2 4+ 1 queries to answer with certainty
» Quantumly: ?

Phase kickback for a Boolean function of n bits

Black box function: |x1) |x1)
’Xn> ’Xn>
|z) |z& f(x))

Phase kickback:

X)) @ @ |xn) ® -1, (-1) ™ |x) ®

Quantum algorithm for the Deutsch-Jozsa problem

0) H{HH]
: ; : :
0)
011
\/§ L |

Hadamard transform

What do the final Hadamard gates do?

H\X>=7(10> (=1)"1))

-5 %

ye{0,1}

HE () @ - 9) = ‘" (% > (1)X'y'y,->)

yi€{0,1}

\F > (1))

y€{0,1}"

Quantum D-J algorithm: Finishing up

1 x Hon 1 X X-
T 2 (OB S ()
xe{0,1}n x,y€{0,1}"

» If f is constant, the amplitude of |y) is

1 . 1 ify=0...0
+on > (1) y:i{

e {01} 0 otherwise

so we definitely measure 0...0
» If f is balanced, the amplitude of |0...0) is

> () =0

x€{0,1}"

SO we measure some nonzero string

The Deutsch-Jozsa problem: Quantum vs. classical

Above quantum algorithm uses only one query.
Need 2"/2 + 1 classical queries to answer with certainty.

What about randomized algorithms? Success probability arbitrarily
close to 1 with a constant number of queries.

Can we get a separation between randomized and quantum
computation?

Simon's problem

Problem
» Given: a black-box function f : {0,1}" — {0,1}™
» Promise: there is some s € {0,1}" such that f(x) = f(y) if
andonlyifx=yorx=y®s

» Task: determine s

One classical strategy:
P> query a random x
> repeat until we find x; # x; such that f(x;) = f(x;)
> output x; @ X;

By the birthday problem, this uses about v/2" queries.

It can be shown that this strategy is essentially optimal.

Quantum algorithm for Simon’s problem

Quantum black box: [x) ® |y) — |x) ® |y & f(x))
(x €{0,1}" y € {0,1}"7)

Repeat many times and post-process the measurement outcomes

Quantum algorithm for Simon’s problem: Analysis |

o) A
o) A
0)
0)

|0>®n ® ’0>®m

1
LS e
\/2>x€{0,1}"

1
) @ |f(x))
v2r xe{zo,:l}"

— e 3 P

XER

—

for some R C {0,1}"

Quantum algorithm for Simon's problem: Analysis Il

Reca” H®n|X> - Eye{o,l}"(_l)x.yb/)

n(tix@s)y 1 L1 4 (—1)@9)y
o (e)—Wye%}n[(1 4+ (-1)

=Y) (D)

2n+1
ye{0,1}"

?

Two cases:
» ifs.y=0mod2, 1+ (—-1)5Y =2
» ifs-y=1mod2, 14+ (—-1)*Y=0

Measuring gives a random y orthogonal to s (i.e., s-y = 0)

Quantum algorithm for Simon's problem: Post-processing

Measuring gives a random y orthogonal to s (s -y = 0)

Repeat k times, giving vectors yi,...,yx € {0,1}"; solve a system
of k linear equations for s € {0,1}":

y1'S:0, y2~S:0, ey yk-s:O
How big should k be to give a unique (nonzero) solution?

» Clearly Kk > n — 1 is necessary
» It can be shown that k = O(n) suffices

O(n) quantum queries, O(n®) quantum gates

Compare to Q(2"/2) classical queries (even for bounded error)

Recap

We have seen several examples of quantum algorithms that
outperform classical computation:

» Deutsch's problem: 1 quantum query vs. 2 classical queries

» Deutsch-Jozsa problem: 1 quantum query vs. 24" classical
queries (deterministic)

» Simon's problem: O(n) quantum queries vs. 2" classical
queries (randomized)

Quantum algorithms for more interesting problems build on the
tools used in these examples.

Part Il

The QFT and phase estimation

Quantum phase estimation

Problem

We are given a unitary U and an eigenvector |1)) of U with
unknown eigenvalue

We seek to estimate its eigenphase ¢ € [0,1) such that

Uly) = e*™%|y)

Phase kickback for U

0) +[1)
V2

0) -+ e

® [¢) = NG

® [¢)

The eigenstate |1¢)) in the target register emerges unchanged
= It suffices to focus on the control register

The state |0) +|1) of the control qubit is changed to |0) + e>?|1)

Hadamard test

N
((0) + 1)) + €2 (|0) — [1)))

(1 +€*)[0) + (1 - €™¥)|1)))

NI RN~

Hadamard test

—

> ((1+&79)[0) + (1 - e277%)|1)))

The probability of obtaining 0 is

Pr(0) = |{0l)?
1 .
= 5 (1+e)P
— %’ewicp_i_efrrigaﬁ
1 2
= cos(my)|

= cos’(myp)

Phase kickback due to higher powers of U

For arbitrary k, we obtain

0) —{HF——

) —F—

U

since

55(10) + e272'¢|1))

[¥)

R

Phase kickback part of phase estimation

0 —[A] -
‘0>+827ri2n7 LP|1>
0 —#] - E—

: | 7ri0
0) — —— oo

W — T — T W)

e e e ey e

Binary fractions

Assume that the eigenphase ¢ is an exact n-bit binary fraction, i.e.,

n

Xi
p=0x1x0...Xp = o>
i=1
For k € {0,...,n—1}, we have
2kg0 = X1X2...Xk-Xki1---Xn

e27ri2k4p 27 i (X1X2+ Xpe Xk 1 ++-Xn)

2mi(x1x2.. Xk +0.Xg 1.+ Xn)

2mi(xyx0...Xk) | e27ri(0.xk+1...xn)

Phase kickback part of phase estimation

|0>+e27ri0.xn|1>
0 A .
|O>+e27ri0.xn71xn‘1>
. R '|0>+627(i0.x1...xn_1>(n|1>
10) _E T V2
) —F—U% [U* —u [¥)

Quantum Fourier transform

The quantum Fourier transform F is defined by

F(1xn) ® |Xn—1) @ -+ @ |x1))

0 27i0.xp 1 0 27i0.xp 1 Xn 1 0 27i0.x1 X9 ... Xp 1
_ st o iy g f0hseroe oy

Use inverse quantum Fourier transform F1 to obtain the bits of the
eigenphase

Quantum circuit for phase estimation

/=)

—{H]
—{H]
—{H] ?
[U20 U21 U2n71

Inverse quantum Fourier transform for 3 bits

0) 27053 1) E@T rm-——ar-—----- -
V2 L o I \

- | I |

|O>+e27ri04x2)<3 ‘1> ‘ _‘_ I |
\/§ | R2 H I ‘

L - - - _ | |

‘0>+e271'i0.x1x2><3‘1> | .|. || T |
V2 R

The phase shift Ry is defined by

1 0
Ric:= [0 e27ri/2" :|

|x3)

|x2)

|x1)

Summary of phase estimation circuit
We use phase kick back due to the controlled U2 gate to prepare

the state]
’0> 4 e27r10.xk+1xk+2...xn|1>
V2
Using the previously determined bits xx4o, ..., X, we change this
state to

|0> + e27ri0.xk+10...0|1> |0> + (_1)Xk|]_>

V2 V2

We apply the Hadamard gate to obtain

|Xk+1>

The controlled phase shifts enable us to reduce the problem of
determining each bit to distinguishing between |+) and |—)
(deterministic Hadamard test)

Special case: exact n-bit binary fraction

Assume that ¢ is an exact n-bit binary fraction, i.e.,
0 =10.X1 ... Xpn—1Xn

0) —{H] —
0) @ Ft—
0) —H] ’ -
) —F— v e
= The measurment of the qubits yields the bits x,, xp—1, ..., X1

deterministically

General case: arbitrary eigenphases

Let ¢ be arbitrary

Unless ¢ is an exact n-bit fraction, the application of the inverse
quantum Fourier transform

File)

produces a superposition of n-bit strings

Probability of obtaining a certain estimate

Lemma
Let x =%/ 1 x2"" and ¢ := 0.x1x2 ... X, = 35 be the
corresponding n-bit fraction

The probability of obtaining the estimate ¢, when the true
eigenphase is ¢ is

Pr(x) =

isin2 (2" 7 (o — ¢x))
22n 2 (7T (o — SOX))

sin

This distribution is peaked around the true value

Examples of probability distributions for different ¢

M=2% $=32/256

1F [i
nar 4
—. 0BF 4
Z
o
0.4F 4
02F 4
[o—0—0—0—"—0000-00000-00000000000000000
i A 10 15 20 25 30

Examples of probability distributions for different ¢

M=2% $=33/256

08

02r

D“—’—.—‘ P OB

0 s 1w 15 20 2% &

Examples of probability distributions for different ¢

M=2% $=34/256

nek L 3

02r

Du—‘—‘? T"*eeeeeeeeeeeeeeeeeeeeee
o 5 10 14 20 25 30

Examples of probability distributions for different ¢

M=2% $=35/256

1 L .
nsr E
ok [i

pal

o
04r E
02r E
Dn_l_LT_ 3

Examples of probability distributions for different ¢

M=2% $=36/256

08

06+

T’-.tt““““““““““

0 'S J T ____________________
a =} 1o 15 20 25 30

Examples of probability distributions for different ¢

M=2% $=37/256

08 :
oG+ +* i
=
o
0.4r :
02r :
[}, iL.—‘—‘—O—O—O—.—.—O—Q—.—O—O—O—.—.—O—Q—.—O—O—O—.—lI

] g 10 -] 20 25 30

Examples of probability distributions for different ¢

M=2% $=33/256

nek L J .

0.4r :

02r :

0 --’T Tesssosossssssnsssosssssss

Examples of probability distributions for different ¢

M=2% $=39/256

08 :

0.4r :

02r :

Examples of probability distributions for different ¢

M=2% $=40/256

1F $ i
nar 4
—. 0BF 4
Z
o
0.4F 4
02F 4
e o o o S S S S S e S o
i 2 10 15 20 25 30

Lower bound on success probability

Theorem
Let x be such that % < p < %t

The probability of returning one of the two closest n-bit fractions
px and px41 is at least %

Summary of phase estimation

We are given a unitary U and an eigenvector [¢) of U with
unknown eigenphase ¢

We obtain an estimate ¢ such that

1 8
Pr(|o—o|<—)>—=
r(\go @‘_2,7)_71_2
To do this, we need invoke each of the controlled U, U?,... ,UZ'H

gates once

We can boost the success probability to 1 — e by repeating the
above algorithm O(log(1/€)) times and outputting the median of
the outcomes

Phase estimation applied to superpositions of eigenstates

We are given a unitary U with eigenvectors |1;) and corresponding
eigenphases p;

Let

lv) = Z ailvi)

What happens if we apply phase estimation to [0)®" @ [¢)?

After the n phase kickbacks due to U20, U21, e U2"71, we obtain
> ailei) @ i)
After applying the inverse quantum Fourier transform, we obtain

Z @i|%) @ [1i)

where |X;) denotes a superpositions of n-bit estimates of ¢;

Part IV

Factoring

The fundamental theorem of arithmetic

Theorem

Every positive integer larger than 1 can be factored as a product of

prime numbers, and this factorization is unique (up to the order of
the factors).

N=2"x3Mx5Mmx7"x...

Examples

15 =
239815173914273 =

3107418240490043721350750
0358885679300373460228427
2754572016194882320644051
8081504556346829671723286
7824379162728380334154710
7310850191954852900733772
4822783525742386454014691
736602477652346609

3x5
15485863 x 15486071

16347336458092538484
43133883865090859841
78367003309231218111
08523893331001045081
51212118167511579
X

19008712816648221131
26851573935413975471
89678996851549366663
85390880271038021044
98957191261465571

Why care about factoring?

“The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic. It
has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to
discuss the problem at length... Further, the dignity of the science
itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.”

— Carl Friedrich Gauss, Disquisitiones Arithmeticae (1801)

More practically: The presumed hardness of factoring is the basis
of much of modern cryptography (RSA cryptosystem)

Order finding

Definition
Given a, N € Z with gcd(a, N) = 1, the order of a modulo N is the
smallest positive integer r such that a" =1 (mod N).

Problem
» Given: a, N € Z with ged(a, N) =1
» Task: find the order of a modulo N

Spectrum of a cyclic shift

Let P be a cyclic shift modulo r: P|x) =[x +1 mod r)

Claim. For any k € Z, the state |uy) : \[Z e 2mRx/r1 %) s an

eigenstate of P.

\[Z —2mikx/r % 41 mod r)

Proof. Uluk) =

1 . .
— W Z e27T|k/re—27r|k(x+1)/r|X +1 mod r>

27r|k/r ef2mkx/r’X mod r>
X

e27rik/r’uk>

The multiplication-by-a map

Define U by U|x) = |ax) for x € Z.

Computing U:
|x,0) — |x, ax) (reversible multiplication by a)
— |ax, x) (swap)
— |ax, 0) (uncompute reversible division by a)

High powers of U can be implemented efficiently using repeated
squaring

Spectrum of the multiplication-by-a map

Define U by U|x) = |ax) for x € Zp.

Claim. Let r be the order of a modulo N. For any k € Z, the state

luk) Z e~ 27/ 2 mod)
Ve

is an eigenstate of U with eigenvalue e2m/".

Proof.

Same as for the cyclic shift, due to the isomorphism

xmodr <+ a“modN O

Order finding and phase estimation
U\uk> — e27rik/r|uk>
Phase estimation of U on |uk) can be used to approximate k/r.

Problems:
1. We don't know r, so we can't prepare |uy).
2. We only get an approximation of k/r.

3. Even if we knew k/r exactly, k and r could have common
factors.

Solutions:
1. Estimate k/r for a superposition of the |uy).
2. Use the continued fraction expansion.
3. Show that gecd(k, r) =1 with reasonable probability.

Estimating k/r in superposition
A useful identity:

rz_ieZWikx/r _ {r if x = O

0 otherwise

k=0
Consider
1 r—1 1 r—1 .
72 |Uk> — Z e—27r|kx/r|ax mod N>
\ﬁ k=0 r k,x=0
= 1a° mod N) = [1)

Phase estimation:

0) ® 1) = \[Z|O ® |uk) — Z!k/r) @ |uk)

Measurement gives an approximation of k/r for a random k

Continued fractions

Problem
Given samples x of the form |k2"|, [k%] (k € {0,1,...,r —1}),
determine r.

Continued fraction expansion:

x 1

1
2" a + 1
ag+---

ax+

Gives an efficiently computable sequence of rational approximations

Theorem
If 2" > N2, then k/r is the closest convergent of the CFE to x /2"

among those with denominator smaller than N.

Since r < N, it suffices to take n = 2log, N

Common factors
If gcd(k, r) =1, then the denominator of k/r is r

Fact o
The probability that ged(k,r) =1
for a random k € {0,1,...,r =1} is

¢(rr) =4 <Iog ;logr>

Thus Q(log log V) repetitions suffice to give r with constant
probability

n
200 400 600 800 1000

Alternatively, find two (or more) denominators and take their least
common multiple; then O(1) repetitions suffice

Factoring — finding a nontrivial factor

Suppose we want to factor the positive integer N.

Since primality can be tested efficiently, it suffices to give a
procedure for finding a nontrivial factor of N with constant
probability.

function factor(N)

if N is prime
output N
else
repeat
x=find_nontrivial_factor (N)
until success
factor (x)
factor (N/x)
end if

We can assume N is odd, since it is easy to find the factor 2.

We can also assume that N contains at least two distinct prime
powers, since it is easy to check if it is a power of some integer.

Reduction of factoring to order finding
Factoring N reduces to order finding in Zj, [Miller 1976].
Choose a € {2,3,..., N — 1} uniformly at random.
If gcd(a, N) # 1, then it is a nontrivial factor of N.
If gcd(a, N) =1, let r denote the order of a modulo N.

Suppose r is even. Then

a"=1mod N
T
(/%> =1 =0mod N

T
(a/? —1)(a’? +1) =0mod N

so we might hope that gcd(a”/2 — 1, N) is a nontrivial factor of M.

Miller's reduction

Question
Given (a'/2 —1)(a"/? + 1) = 0 mod N, when does gcd(a'/? — 1, N)
give a nontrivial factor of N?

Note that a”/2 — 1 # 0 mod N (otherwise the order of a would be
r/2, or smaller).

So it suffices to ensure that a’/2 +1 # 0 mod N.

Lemma

Suppose a € Z,f, is chosen uniformly at random, where N is an odd
integer with at least two distinct prime factors. Then with
probability at least 1/2, the order r of a is even and

a"/2 2 —1 mod N.

Shor’s algorithm

Input: Integer N
Output: A nontrivial factor of N

1.
2.

Choose a random a € {2,3,...,N — 1}

Compute ged(a, N); if it is not 1 then it is a nontrivial factor,
and otherwise we continue

Perform phase estimation with the multiplication-by-a
operator U on the state |1) using n = 2log, N bits of precision

. Compute the continued fraction expansion of the estimated

phase, and find the best approximation with denominator less
than N; call the result r

Compute ged(a’/2 — 1, N). If it is a nontrivial factor of N, we
are done; if not, go back to step 1

Quantum vs. classical factoring algorithms

Best known classical algorithm for factoring N
» Proven running time: 20((log N)/*(log log N)'/2)

> With plausible heuristic assumptions: 20((log V)*/3(loglog N)!/%)

Shor’s quantum algorithm
» QFT modulo 2" with n = O(log N): takes O(n?) steps

> Modular exponentiation: compute a* for x < 2". With
repeated squaring, takes O(n3) steps

» Running time of Shor's algorithm: O(log® N)

Part V

Unstructured search

Unstructured search

Quantum computers can quadratically outperform classical
computers at a very basic computational task, unstructured search

There is a set X containing N items, some of which are marked

We are given a Boolean black box f: X — {0, 1} that indicates
whether a given item is marked

The problem is to decide if any item is marked, or alternatively, to
find a marked item given that one exists

Unstructured search as a model for NP

Unstructured search can be thought of as a model for solving
problems in NP by brute force search

If a problem is in NP, then we can efficiently recognize a solution,
so one way to find a solution is to solve unstructured search

Of course, this may not be the best way to find a solution in
general, even if the problem is NP-hard: we don’t know if NP-hard
problems are really “unstructured”

Classical vs. quantum query complexity

It is obvious that even a randomized classical algorithm needs
Q(N) queries to decide if any item is marked

But a quantum algorithm can do much better!

Phase oracle

We assume that we have a unitary operator U satisfying

|x) x is not marked
—|x) x is marked

Ul = (~1)"@)]x) = {

This can be created using one query to a standard reversible oracle
via phase kickback

Target state

We consider the case where there is exactly one x € X element
that is marked; call this element m

Our goal is to prepare the state |m)

Initial state

We have no information about which item might be marked

Thus we take

LN
) = m; [x)

as the initial state

Rough idea behind Grover search

Start with the initial state |¢)
Implement a rotation that moves |¢) toward |m)

Realize the rotation with the help of two reflections

Visualization of a reflection in R?

v

Visualization of a reflection in R?

v

Visualization of a reflection in R?

v

Reflections

U =1—2|m)(m| is the reflection about the target state |m)

V =1 —2[¢)(¢)| is the reflection about the initial state [):

VIg) = =)
Vigr) = [oh)

for any state [1)) orthogonal to |¢)

Structure of Grover's algorithm

The algorithm is as follows:
> start in),
» apply the Grover iteration G := V U some number of times,

> make a measurement and hope that the outcome is m

Invariant subspace
Observe that span{|m), [1)} is a U- and V-invariant subspace, and
both the inital and target states belong to this subspace
= It suffices to understand the restriction of VU to this subspace
Let {|m),|®)} be an orthonormal basis for span{|m),|¢)}
The Gram-Schmidt process yields

|¢0) —sin0|m)

cosf

¢) =

where sinf == (m|¢)) = 1/vV/N

Invariant subspace

Now in the basis {|m), |¢)}, we have

) = sinf|m) + cosB|¢) where sinf = (m[)) = 1/VN

-1 0
v = (5 3)
Vo= - 2)

- < > <5|n99> (sinf cosb)

1—2sin20 —2sinfcosf
2sinfcosf 1—2cos?h

. [—cos20 sin20
o sin20 cos 20

Grover iteration within the invariant subspace

= We find

—cos260 sin26 -1 0
vy _<sin26’ cos29) (o 1)

_ cos20 sin26
o —sin20 cos?20

This is a rotation up to a minus sign

Visualization of first Grover iteration

4)

-t

v
3
~

Visualization of first Grover iteration

[4)

-

Visualization of first Grover iteration

)

7r—2(9/ T—20

J

~_
El

VU)™

Ul

Visualization of first Grover iteration

)

L VUly)

7r—26?/

J

v
3
~

VU)™

Ul

Visualization of first Grover iteration

)

L VUly)

<
v
3

~~

VU)™

Ul

Visualization of first Grover iteration

|4)
B)
L VUly)
736
:\ 1 > |m)
VU |l//>\ \ 30
T Uly)

Visualization of first Grover iteration

)

S
20)

VU)™

v
3
~

Ul

Visualization of first Grover iteration

)

S
w0)

VU)™

v
3
~

Ul

The Grover iteration is a rotation

Geometrically, U is a reflection around the |m) axis and V is a
reflection around the |¢) axis, which is almost but not quite
orthogonal to the |m) axis

The product of these two reflections is a clockwise rotation by an
angle 26, up to an overall minus sign

From this geometric picture, or by explicit calculation using trig
identities, it is easy to verify that

k _ (11k [€os2k6 sin2k0
(V)" = (1) <—sin2k9 cos 2kf

Complexity of Grover search
Recall that our initial state is [¢)) = sin#|m) + cos 0|¢)
How large should k be before (VU)¥|1)) is close to |m)?

We start an angle 6 from the |¢) axis and rotate toward |m) by an
angle 20 per iteration

[(mI(VU)*[0)[? = sin((2k + 1)6)

= To rotate by 7/2, we need

042k = m/2

Grover search

Grover's algorithm solves a completely unstructured search
problem with N possible solutions, yet finds a unique solution in

only O(v/N) queries!

While this is only a polynomial separation, it is very generic, and it
is surprising that we can obtain a speedup for a search in which we
have so little information to go on

Optimality of Grover's algorithm

It can also be shown that this quantum algorithm is optimal

Any quantum algorithm needs at least Q(\/N) queries to find a
marked item (or even to decide if some item is marked)

We will prove this in the last quantum algorithms lecture

Multiple solutions

Suppose there are M marked items

Then there is a two-dimensional invariant subspace span{|u), [1)}
where

x marked

is the uniform superposition over all marked items

The Gram-Schmidt process yields the ONB {|u), |¢)} where

1
’¢>:ﬁ Z |x)

x unmarked

is the uniform superposition of all non-solutions

Invariant subspace

Now in the basis {|u), |¢)}, we have

|) = sinB|u) + cosf|p) where sinf = (u|y) =

cos20 sin260
W = _<—sin20 cos29>

=g

Overshooting

The success probability is

sin((2k + 1)0) where sinf =

==

= We need to apply VU

7T [N
T4V M
times
Due to the oscillatory behavior of the success probability, it is

important not to overshoot: if the number of iterations is too
large, the success probability will decrease

Quantum counting (1/2)

The eigenvalues of

cos20 sin20
-W= (— sin20 cos 20)

2

are €29 and e—21?

The initial state |¢) is a superposition of the two eigenvectors
corresponding to the above two eigenvalues

= Using phase estimation, we can obtain an estimate 6 such that

|0 — 0] <e

by invoking the controlled version of —VU

O(1/e) times

Quantum counting (2/2)

The estimate § of 0 gives an estimate M of M

Error:

= |sin? 0 — sin? 4|

= |sin @ + sin] |sin — sin §|

/M
~ 2 N
Equivalently, we get an approximation M = M(1 + O(¢)) using

O(2/N/M) queries

Amplitude amplification

Suppose we have a classical (randomized) algorithm that produces
a solution to some problem with probability p

Assume we can recognize correct solutions
Classical strategy: repeat O(1/p) times

Quantum amplitude amplification uses only O(1/,/p) repetitions

Exercise: Quantum search and state generation

Let |¢) be an unknown quantum state. Consider quantum
algorithms for preparing |v) given two different black boxes.

1. Suppose you are given the unitary U = | — 2|1)) (1| as a black
box. Consider a quantum algorithm that starts in some known
state |¢) and alternates between performing U and
V =1 —2|¢)(¢|. How many queries to U are required to
prepare a state close to |¢))? Express your answer as a
function of [(¢|¢)].

2. Now suppose you are given a reversible black box that, on
input x € {1,..., N}, returns the amplitude o, = (x|¢) of
the state |¢) in the computational basis state |x). (You may
assume that the black box specifies the complex number o,
to arbitrary precision.) Describe an algorithm that prepares a
state close to [t)) using O(v/N) queries. (Hint: Two queries
to the black box can be used to perform the isometry

%) = [x)(ax]0) + /1 —fax[?[1)).)

Part VI

Quantum walk

Randomized algorithms

Randomness is an important tool in computer science

Black-box problems
» Huge speedups are possible (Deutsch-Jozsa: 22" vs. O(1))

» Polynomial speedup for some total functions (game trees:
Q(n) vs. O(n75%))

Natural problems
> Majority view is that derandomization should be possible
(P=BPP)
» Randomness may give polynomial speedups (Schoning
algorithm for k-SAT)

» Can be useful for algorithm design

Random walk

Graph G = (V,E)

Two kinds of walks:
» Discrete time

» Continuous time

Random walk algorithms

Undirected s—t connectivity in log space

» Problem: given an undirected graph G = (V,E) and s,t € V,
is there a path from s to t7

> A random walk from s eventually reaches t iff there is a path
» Taking a random walk only requires log space
» Can be derandomized (Reingold 2004), but this is nontrivial

Markov chain Monte Carlo
» Problem: sample from some probability distribution (uniform
distribution over some set of combinatorial objects, thermal
equilibrium state of a physical system, etc.)
» Create a Markov chain whose stationary distribution is the
desired one

» Run the chain until it converges

Continuous-time quantum walk

Graph G 01100 21 1 0 0

1 2 10011 1 30 1 1

A=|10010 L=]1 0 21 o0

o 01101 01 1 -3 1

3 4 01010 01 0 1 -2
adjacency matrix Laplacian

Random walk on G
» State: probability p,(t) of being at vertex v at time ¢t
» Dynamics: %ﬁ(t) = —Lp(t)

Quantum walk on G
» State: amplitude g, (t) to be at vertex v at time t
(e, [9(t)) = 2vev av(B)[v)

> Dynamics: i$:q(t) = —Lg(t)

Random vs. quantum walk on the line

A

-4 -3 -2 -1 1 2 3
.h.
Classical:
-60 -40 -20 0 20 60
Quantum: "
.o ?lle o'.. & I o CURIRN b -.
—-60 -40 -20 20 40 60

Random vs. quantum walk on the hypercube

n— 3 011 111
E={(x,y)eVxV:
x and y differ in 010 110
exactly one bit}
000 100

Classical random walk: reaching 11...1 from 00...0 is
exponentially unlikely

Quantum walk: with A = Z}’Zl X,

n n .
—iAt —iXit cost —iIsint
e " = e Nt = .

1_[1 ® <—|sm t cost

J:

j=1

Glued trees problem

Black-box description of a graph
P Vertices have arbitrary labels
> Label of ‘in’ vertex is known
» Given a vertex label, black box returns labels of its neighbors

P Restricts algorithms to explore the graph locally

Glued trees problem: Classical query complexity

Let n denote the height of one of the binary trees

Classical random walk from ‘in’: probability of reaching ‘out’ is
29" at all times

In fact, the classical query complexity is 2"

Glued trees problem: Exponential speedup

V2 V2 V2 V2 2 V2 V2 V2 V2

col0 coll col2 col3 col4 col5 col6 col7 col8 col9

Column subspace

) 1
’C0|J>3:W Z v)

vEcolumn j
N 2 if j €0, n]
I) p2nt1j

if je[n+1,2n+1]

Reduced adjacency matrix

(col j|A|col j + 1)
V2 ifje[0,n—1]
=< V2 ifje[n+1,2n]
2 ifj=n

Discrete-time quantum walk: Need for a coin

Quantum analog of discrete-time random walk?
Unitary matrix U € CIVIXIVI with U,,, # 0 iff (v,w) € E

Consider the line:

Y

<
<

-4 -3 -2 -1 0 1 2 3 4
Define walk by |x) %qx — 1)+ [x+1))?
But then |x + 2) — \%(’X + 1) + |x + 3)), so this is not unitary!

In general, we must enlarge the state space.

Discrete-time quantum walk on a line

-4 -3 -2 -1 0 1 2 3 4
Add a ‘“coin”: state space span{|x) ® |[<), |x) ® |=>): x € Z}
Coin flip: C:=1® H

Shx) @) =[x = 1) @ [+)

S Sy &0 |—4) = x + 1) ® =)

Walk step: SC

The Szegedy walk

State space: span{|v) ® |w),|w) ® |v): (v,w) € E}

Let W be a stochastic matrix (a discrete-time random walk)

Define ‘Tbv = ® Z V WV‘W nOte wvh/}W) - 5V W)

weV

R = ZZ ’¢v><wv| —1

veVv

S(Iv) @ w)) = |w) @|v)

Then a step of the walk is the unitary operator U := SR

Spectrum of the walk

Let T:=> oy |tv)(v], so R=2TTT —1.

Theorem (Szegedy)

Let W be a stochastic matrix. Suppose the matrix

>V Wy Wi [w) (v

v,w
has an eigenvector |\) with eigenvalue A. Then

| — eii arccos)\S

— =T\
2(1— \2)

are eigenvectors of U = SR with eigenvalues

e:ti arccos >\.

Proof of Szegedy's spectral theorem

Proof sketch.
Straightforward calculations give

TTH =") (W] T'T =1

veVv
TIST = 3 VW Warlw)(v] = 3 NN
v,wevV A

which can be used to show
U(TIN) = ST\ U(ST|A)) =2AST|A) — T|A).

Diagonalizing within the subspace span{T|\),ST|\)} gives the
desired result.

Exercise. Fill in the details

Random walk search algorithm

Given G = (V,E), let M C V be a set of marked vertices
Start at a random unmarked vertex

Walk until we reach a marked vertex:

1 weMandv=w
W), =<0 weMandv#w
Wy w¢ M.

= <M\//M ?) (Wp: delete marked rows and columns of W)

Question. How long does it take to reach a marked vertex?

Classical hitting time

Take t steps of the walk:
Wi 0
Wt = M
(W) <V(/+Wm+---+WA’~‘,,—1) /)

= I—Wt
V,iwz /

Convergence time depends on how close ||W)y|| is to 1, which
depends on the spectrum of W

Lemma

Let W = WT be a symmetric Markov chain. Let the second
largest eigenvalue of W be 1 — 6, and let e = |[M|/|V/| (the fraction
of marked items). Then the probability of reaching a marked
vertex is (1) after t = O(1/d¢) steps of the walk.

Quantum walk search algorithm

Start from the state

\/N%IM\ > vgm [¥v)

Consider the walk U corresponding to W':

> W W= (Y9])

v,wevV
Eigenvalues of U are 125X where the A are eigenvalues of Wy,

Perform phase estimation on U with precision O(v/d¢)
» no marked items — estimated phase is 0

» ¢ fraction of marked items = nonzero phase with
probability (1)

Further refinements give algorithms for finding a marked item

Grover's algorithm revisited

Problem
Given a black box f: X — {0, 1}, is there an x with f(x) =17

Markov chain on N = |X| vertices:

1 .- 1
1.) 1
we=S o =l |¢>-—TNZ|x>

1 -+ 1 xeX
Eigenvalues of W are 0,1 — § =1
Hard case: one marked vertex, e = 1/N

Hitting times
» Classical: O(1/d¢) = O(N)
» Quantum: O(1/Vd¢) = O(V/'N)

Element distinctness

Problem
Given a black box f: X — Y, are there distinct x, x' with
f(x)=rf(x")?

Let N = |X]|; classical query complexity is Q(N)

Consider a quantum walk on the Hamming graph H(N, M)
> Vertices: {(x1,...,xm): xi € X}
» Store the values (f(x1),...,f(xm)) at vertex (xi,...,xpn)
» Edges between vertices that differ in exactly one coordinate

Element distinctness: Analysis

Spectral gap: § = O(1/M)
Fraction of marked vertices: ¢ > 2(¥)NM-2/NM = (M2 /N?)
Quantum hitting time: O(1/v/d¢) = O(N/v/M)

Quantum query complexity:
> M queries to prepare the initial state
» 2 queries for each step of the walk (compute f, uncompute f)

> Overall: M+ O(N/vVM)

Choose M = N?/3: query complexity is O(N%/3) (optimal!)

Quantum walk algorithms

Quantum walk search algorithms
» Spatial search
» Subgraph finding
» Checking matrix multiplication

» Testing if a black-box group is abelian

Evaluating Boolean formulas

Exponential speedup for a natural problem?

Exercise: Triangle finding (1/2)

The goal of the triangle problem is to decide whether an n-vertex
graph G contains a triangle (a complete subgraph on 3 vertices).
The graph is specified by a black box that, for any pair of vertices
of G, returns a bit indicating whether those vertices are connected
by an edge in G.

1. What is the classical query complexity of the triangle problem?

2. Say that an edge of G is a triangle edge if it is part of a
triangle in G. What is the quantum query complexity of
deciding whether a particular edge of G is a triangle edge?

3. Now suppose you know the vertices and edges of some
m-vertex subgraph of G. Explain how you can decide whether
this subgraph contains a triangle edge using O(m2/3ﬁ)
quantum queries.

Exercise: Triangle finding (2/2)

4. Consider a quantum walk algorithm for the triangle problem.
The walk takes place on a graph G whose vertices correspond
to subgraphs of G on m vertices, and whose edges correspond
to subgraphs that differ by changing one vertex. A vertex of G
is marked if it contains a triangle edge. How many queries
does this algorithm use to decide whether G contains a
triangle? (Hint: Be sure to account for the S queries used to
initialize the walk, the U queries used to move between
neighboring vertices of G, and the C queries used to check
whether a given vertex of G is marked. If the walk has
spectral gap ¢ and an e-fraction of the vertices are marked, it
can be shown that there is a quantum walk search algorithm

with query complexity S + %(%U +C).)

5. Choose a value of m that minimizes the number of queries
used by the algorithm. What is the resulting upper bound on
the quantum query complexity of the triangle problem?

Part VII

Adversary lower bounds

Query complexity

Task: Compute a function f: S — T

S5 C X" is the set of possible inputs, where X is the input alphabet
» if S =1X" then f is total
» if S C X" then f is partial

Input x € S is specified by a black box: |/} i)

2) |2 x)
where i € {1,...,n}

Query algorithms

Structure of a quantum query algorithm:
» Initial state |1)) does not depend on the oracle string x

> Alternate between queries to the black box O, and non-query
operations Ui, Us, ..., U;

|ihy) = . U O UL Ok |9)

» End with a measurement in the computational basis

Goal: Compute f(x) using as few queries as possible

Query models

Three natural models for the query complexity of f:
» D(f): deterministic query complexity
(algorithm is classical and must always work correctly)
» R.(f): randomized query complexity with (two-sided) error
probability at most ¢
» Qc(f): quantum query complexity with (two-sided) error
probability at most ¢

For any constant e,
Re(f) = ©(Ry/3(f)) and Qc(f) = ©(Qu3(f))

(repeat several times and take a majority vote)

Clearly Qc(f) < R(f) < D(f)

Quantum queries: Boolean case
Consider ¥ = {0,1}

Bit flip oracle:
Ofi,b)y=|i,b®x;) forie{l,...,n}, be{0,1}
Phase flip oracle:
Oyli, by = (—=1)P9]i,b) forie {1,...,n}, be {0,1}
Phase kickback: O, = (I ® H)O,(I ® H)

Note: O|i,0) = |i,0) for all i is wasteful; alternatively, use

(—1)%)i) ie{1,....n}
i) = N

OI
i=0 (e, x:=1)

X

But the ability to not query the phase oracle is essential!

Quantum queries: General case

Similar considerations hold when || =d > 2
Let ¥ = Z4 without loss of generality
Addition oracle:
Oli,b) =|i,b+ximodd) forie{l,...,n}, beZg
Phase oracle:
Oyli, by = &>™™i/9|i b) forie{1,...,n}, beZy

Phase kickback:
Ox= (12 FNO(I ® F)

where F is the Fourier transform over Z4

A quantum adversary

Lower bound strategy: Oracle is operated by a malicious adversary

Adversary creates a superposition over possible inputs: Y _c ax|x)

xeS

Each query is performed by the “super-oracle”

0= |x){x|® O

xES

After t steps, algorithm produces the state

W) = (1 ® U)O...(1 ® Us)O(l @ Us)O (Zax\x ® [v))
xeS
= Z 3X|X> ® |7v[)>l:>

x€ES

Getting entangled with the adversary

Intuition: To learn x, the state |¢*) must be very entangled

Reduced density matrix of the oracle:

o= 3 ala Wkl [O

x,y€5
Initial state p° is pure
Final state p* must be mixed

Quantify how much more mixed the state can become with a
single query

We could consider the von Neumann entropy of pt, but this is
cumbersome

Distinguishing quantum states

Fact
Given one of two pure states |1)), |¢), we can make a measurement
that determines which state we have with error probability at most

e if and only if |(¢|¢)] < 24/€(1 —€).
Exercise. Prove this

So it's convenient to consider measures that are linear in the inner
products (t/¢]t)

Adversary matrices

The adversary bound uses a matrix I € RISI*ISI

I'x,y measures how hard it is to distinguish between x and y

We say I is an adversary matrix if
1 Ty =Ty
2. Ty >0, and
3. if f(x) =f(y) thenT,, =0

Weight function

Given an adversary matrix [, we define a weight function

Wi = Z rxyaiay<@bf-<’%>

x,y€S

We show:
1. Wy is large
2. To compute f in t queries, W; must be small

3. Wj41 cannot be too much smaller than W;

Weight function: Initial value

The initial value of the weight function is

Wo = Z rxyaiay<¢2‘wg>

x,y€S

*
= g a Iy ay,

x,yES

since [¢9) cannot depend on x

To make this as large as possible, take a to be a principal
eigenvector of [

= Wo = |||

Weight function: Final value

If £(x) # f(y) then the states |¢5), |¢/;) must be distinguishable

To succeed with error probability at most €, we need

[(WLlp)] < 2¢/e(1 =€)

Thus

Wt — Z rxyaiay<1/}>t<|7/)}t/>

x,y€S
<) Tyaia,2y/e(1—¢)
x,y€S

=2y e(1 =]

Weight function: Making a query (1/5)
Change in weight function:

Wisg — W= > Tyaka, (W) — (wlfeh)

X, yE€S
Change in state: |w{<+1> = UJ-HOXW)’;)
Gram matrix elements:

(W) = (4O UL U1 Oy)
— (100, 1)

Therefore

Wi — W= Z rxya§3y<¢{<|(oxoy - I)|1/)§/>

x,y€S

Weight function: Making a query (2/5)

Wig1 — W, = Z rxyaiay<w{<’(oxoy - I)Ww

x,y€S
We have O,0,|i, by = (—1)2®¥)|j b)
Let Po =1 ® |0)(0| and P; = |i,1)(i, 1]

Then

00y — I =Py+ Y (—1)5p; — |

i=1

i1 XiZYi

Weight function: Making a query (3/5)

00y —1=-2 Y P

it XiZYyi

SO

‘VVj+1 - VVJ| = Z rxyaiay<7vb{<|(oxoy - /)WQ

x,y€S

Y. D Twaa WP

X,YES it Xi#Yi

<23 3 Tylaiay i) (&)

X,YES it XiF#Yi

<23 3 yladPilell - la Pl (C-S)

X,YES it XiF#Yi

=2

Weight function: Making a query (4/5)

For each i € {1,..., n}, define I'; € RISIXISI by

My ifx; #yi
(ri)xy = 4 . .
0 if Xi = Yi,

and define vectors v; with components (v;)y = [|axPi|¢L)||

‘MG+1 ’<:2 EE: 2{: W xy W

x,y€S i=1

n
= 2Zv;rr,'v,-
i=1
n
< 22 I3l fvil?
i=1

Weight function: Making a query (5/5)

n
Wix - W <25 1] - w2
i=1
Since

Do Ivill2 =)0 llaxPilwl)I?
i=1

i=1 xe$

< D@l

XxES

=3
xeS
= 17
we have

Wi =Wl <2, _max_ |||

gooey

Weight function: Putting everything together

Since Wy = ||T||, we have

W: > ||T|| — 2t a I
2) -2t max |

So Wi <24/¢(1 — ¢€)||T|| implies

- 1-2e(l—¢)

t> : Adv(f)

where

r
Adv(f) := max T
I maXjef1,..n} HF,H

with the maximum taken over all adversary matrices I

Example: Unstructured search (1/3)

Problem: Distinguish no marked item from unique marked item
$=1{000...00,100...00,010...00,...,000...01}

Adversary matrix:

0 m -+ 7n
v 0 -+ 0

r=|. . . Moo >0
Y 0 -+ 0

Symmetry: 1 = -+ =, =1

Example: Unstructured search (2/3)

Consider
n 0 - 0
2 o1 - 1
01 1
IF2]| = n, so [IT]| =+/n
010
1 00

ITill = [IF1f =0 0 O

o

Example: Unstructured search (3/3)

Our adversary matrix has ||| = v/n, ||Ii|| =1

So Adv(or) > qith = \/n

Therefore Q.(OR) > 122vellze) ”;(ke)\/ﬁ

Thus Grover's algorithm is optimal up to a constant factor (recall
that Grover's algorithm finds a unique marked item with
probability 1 — o(1) in (% + o(1))y/n queries)

Other adversaries

The adversary method described above is a generalization of the
method originally formulated by Ambainis, which considered only a
relation between yes and no inputs and did not allow arbitrary
positive weights.

Later, it was realized that one can use negative weights and still
obtain a lower bound, and that sometimes this bound can be
dramatically better.

In fact, it was shown by Reichardt that the adversary bound
allowing negative weights is essentially tight: up to constant
factors, it characterizes quantum query complexity.

Exercise: Original formulation of the adversary method

Choose X, Y C {0,1}" such that f(x) # f(y) for all
x € X,y € Y. For any relation R C X x Y, define

m =)r(ry)lg\{y €Y:(x,y) €R]|

m' == min |{x € X: (x,y) € R|
yey
(= max Hy € Y:(x,y) € R and x; # yi}|
ie{1,...,n}
0= max {x € X: (x,y) € R and x; # y;}|.

S
ie{1,...,n}

Then define Amb(f) := maxx vy r \/%-

Prove that Adv(f) > Amb(f), and hence that
Qu(f) > 20D Amb(f).

Exercise: Applying the adversary method

1. Define pARITY: {0,1}" — {0,1} by

PARITY(X) = x1 @ - - - @ xp. Show that Q(PARITY) = Q(n).
2. Define NAND2: {0,1}" — {0,1} by

NAND?(x) = NAND(NAND(X1, . . ., Xn), NAND(Xp41, - - - , X2n),
o NAND(X2 i1y - - o5 Xp2))-

Show that Q(NAND?) = Q(n).
3. Let x € {0, 1}(5) specify the edges of a simple, undirected

n-vertex graph, and define con: {0, 1}(5) —{0,1} by

1 if the graph described by x is connected

CON(x) = {

0 otherwise.

Show that Q(coN) = Q(n%/?).

	Quantum circuits
	Elementary quantum algorithms
	The QFT and phase estimation
	Factoring
	Unstructured search
	Quantum walk
	Adversary lower bounds

