
Quantum algorithms
and the power of forgetting

Andrew Childs
University of Maryland

arXiv:2211.12447 / ITCS 2023

Matthew Coudron
NIST/University of Maryland

Amin Shiraz Gilani
University of Maryland

https://arxiv.org/abs/2211.12447

The power of quantum computers

Using carefully designed interference between different computational paths, quantum
computers can solve some problems dramatically faster than classical computers.

Some problems admit exponential quantum speedup.

Period finding, factoring, discrete log, quantum simulation, quantum linear algebra, Jones
polynomial approximation, counting points on curves, graph connectivity with cut queries, …

Other problems admit polynomial quantum speedup.

Unstructured search, formula evaluation, collision finding, network flows, finding subgraphs,
minor-closed graph properties, group commutativity, convex optimization, string problems, …

What problems can be solved significantly faster by quantum computers than classical ones?

Welded tree problem

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03]

Using polynomially many queries, a classical
algorithm cannot distinguish the graph from an
infinite binary tree rooted at ENTRANCE, and in
particular, cannot find the EXIT.

Problem: Given the name of ENTRANCE and
an adjacency-list black box for the graph, find
the name of EXIT.

Quantum walk from stays in the
column subspace (uniform superpositions over
vertices at fixed distance from ENTRANCE).

<latexit sha1_base64="xDe1DCfnh3UwL8bQrxT2b03f5Jc=">AAACAnicbVDLSgMxFM3UV62vUVfiZrAIrsqM+FoWBHFZwT6gHUomvW1DM5khuSOWsbjxV9y4UMStX+HOvzFtZ6GtB0IO59x7k3uCWHCNrvtt5RYWl5ZX8quFtfWNzS17e6emo0QxqLJIRKoRUA2CS6giRwGNWAENAwH1YHA59ut3oDSP5C0OY/BD2pO8yxlFI7XtvYcWwj1qloJERSWDUctcPQFtu+iW3AmceeJlpEgyVNr2V6sTsSQ0g5igWjc9N0Y/pQo5EzAqtBINMWUD2oOmoZKGoP10ssLIOTRKx+lGyhyJzkT93ZHSUOthGJjKkGJfz3pj8T+vmWD3wk+5jBMEyaYPdRPhYOSM83A6XAFDMTSEMsXNXx3Wp4oyNKkVTAje7MrzpHZc8s5KpzcnxfJVFkee7JMDckQ8ck7K5JpUSJUw8kieySt5s56sF+vd+piW5qysZ5f8gfX5A6lAmEM=</latexit>

|entrancei

This walk rapidly reaches a state with significant
overlap on .

<latexit sha1_base64="RdBEifNDUfrFjnLg4DarnFRcxJA=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AInkoifh0LgnisYD+gLWWznbRLN5uwO5GWWPCvePGgiFd/hzf/jds2B219MPB4b4aZeX4suEbX/bZyS8srq2v59cLG5tb2jr27V9NRohhUWSQi1fCpBsElVJGjgEasgIa+gLo/uJ749QdQmkfyHkcxtEPakzzgjKKROvbBYwthiJqlMOQ4bikqewI6dtEtuVM4i8TLSJFkqHTsr1Y3YkkIEpmgWjc9N8Z2ShVyJmBcaCUaYsoGtAdNQyUNQbfT6flj59goXSeIlCmJzlT9PZHSUOtR6JvOkGJfz3sT8T+vmWBw1U65jBMEyWaLgkQ4GDmTLJwuV8BQjAyhTHFzq8P6VFGGJrGCCcGbf3mR1E5L3kXp/O6sWL7J4siTQ3JETohHLkmZ3JIKqRJGUvJMXsmb9WS9WO/Wx6w1Z2Uz++QPrM8fh16WhQ==</latexit>

|exiti

ENTRANCE EXIT

Welded tree graph:

Vertices have names, which are much longer
than needed to name each vertex uniquely (so
most strings are not the name of any vertex).

Path finding

Problem: Find a path from ENTRANCE
to EXIT in a given welded tree graph.

Is this tradeoff between finding and remembering a fundamental property of all quantum
algorithms? Is there no quantum algorithm for efficiently finding a path?

Modifying the quantum walk to remember a complete history of its past locations would make
it effectively classical, so it would not reach the EXIT in polynomial time.

The EXIT-finding quantum walk traverses exponentially many paths in superposition and does
not output any particular path.

A classical process can remember its
history without loss of generality, so any
classical algorithm for finding the EXIT
implies an algorithm for finding a path.

ENTRANCE EXIT

Certifying a quantum computation

Is there a problem for which
• quantum computers provide exponential speedup, and
• there is a proof that a classical computer can use to efficiently check the solution, yet
• a quantum computer cannot efficiently produce such a proof?

Some problems with exponential quantum speedup have certificates that a quantum computer
can find efficiently (e.g., Simon’s problem).

Some problems with exponential quantum speedup do not have efficiently checkable classical
certificates at all (e.g., Forrelation).

Many quantum algorithms uncompute intermediate results to enable interference, but this
notion of forgetting a path is potentially more fundamental.

Certifying the EXIT

An ENTRANCE-EXIT path is a classically checkable proof. Can one be found efficiently?

The EXIT can easily be recognized since it and the ENTRANCE are the only degree-2 vertices.

Consider the following natural decision version of the welded tree problem: given the names of
ENTRANCE1, ENTRANCE2, EXIT1, and EXIT2 for two disjoint welded tree graphs, is ENTRANCE1
connected to EXIT1 or EXIT2?

ENTRANCE1 EXIT2 ENTRANCE2 EXIT1

Snake walk

Watrous proposed a quantum walk algorithm in which the configurations are paths of a
specified length in the graph (“snakes”).

A suitable definition of the walk dynamics allows snakes to be explored in superposition, and
still allows for the possibility of interference (though the longer snakes are, the harder it is for
them to interfere).

A polynomially long snake could store a path from ENTRANCE to EXIT. Can the walk of such
snakes produce a state with significant overlap on such a path in polynomial time?

Analysis by [Rosmanis 11] was inconclusive, but consistent with the possibility that the snake
walk does not efficiently find a path.

Main result

We show that a quantum algorithm cannot find a path from ENTRANCE to EXIT using
polynomially many queries if it is genuine and rooted.

This does not definitively rule out the possibility of an efficient path-finding algorithm, but it
applies to many natural algorithms, so it significantly constrains the form such an algorithm
could take.

Genuine algorithms

Informally, an algorithm is genuine if it only provides meaningful vertex names as inputs to the
black box for the welded tree graph.

Classically, an efficient algorithm is genuine without loss of generality.

Quantumly, it is harder to define what we mean by genuine.

Main idea of the definition:
• The algorithm has vertex registers (storing names of vertices) and workspace registers
• Access to vertex registers is restricted: they can be the inputs or outputs to oracle queries;

can be used to check basic properties of names (e.g., are two names equal?); or can be
(partially) swapped, controlled on a workspace qubit

• Workspace qubits can be manipulated arbitrarily

The ordinary quantum walk on the graph and the snake walk are both genuine algorithms.

How could non-genuine behavior be advantageous?

Rooted algorithms

An algorithm is rooted if it maintains a path from the ENTRANCE to any vertex whose name it
stores.

For quantum algorithms, we demand this for every computational basis state appearing in the
superposition at any step of the algorithm.

But how could non-rooted behavior be useful for finding a path? A non-rooted path-finding
algorithm would have to “forget” a path back to the ENTRANCE and later find it again.

Non-rooted behavior may be useful: in particular, the EXIT-finding quantum walk algorithm is
not rooted.

The most natural way for a snake walk to find a path would be to evolve for a short enough
time (relative to the length of the snake) so that it remains rooted.

Proof overview

Main idea: An efficient, genuine, rooted quantum algorithm can be efficiently classically
simulated, up to a small error term. Since a classical algorithm cannot efficiently find the EXIT,
the original quantum algorithm must not succeed.

The classical algorithm efficiently samples a “transcript” of a possible path the quantum
algorithm could have taken.

This algorithm faithfully simulates the part of the quantum state that doesn’t encounter the
EXIT or a cycle.

We show that the remaining error term is small, essentially because an efficient classical
algorithm cannot find the EXIT or a cycle (but showing this is technically involved).

Addresses

We focus on instances in which the edges of the graph are 3-colored, and the black box
respects this coloring.

An address is a sequence of colors that specify a vertex (together with some special addresses
corresponding to special vertex names).

A vertex can have many addresses due to cycles in the welded tree graph and non-simple paths.

The address tree is a
binary tree (plus some
additional special vertices
and edges) that encodes
the structure of the graph
that can be inferred from
the addresses.

EMPTY

r b NOEDGE ZERO

r,g r,b b,g b,r INVALID

r,g,b r,g,r r,b,g r,b,r b,g,r b,g,b b,r,g b,r,b

Figure 4: Address tree T of depth 3 corresponding to the graph in Figure 2. For the sake of brevity, we have
removed the suffix ADDRESS for all the addresses in SpecialAddresses and the tuple brackets for all the ad-
dresses not in SpecialAddresses. Notice that, for each vertex, there is an edge (either directed or undirected)
of each color outgoing from each vertex in T.

running A on G, as in Definition 6. In Section 4, we show that this is indeed the case for any
genuine, rooted quantum algorithm A.

Now we define a mapping B that turns addresses into strings, and another mapping Binv that
turns strings into addresses, such that Binv is the inverse of B on the range of B. In our analysis,
the registers we consider can never contain any string that is not in the range of the B mapping.
Therefore, it is sufficient to define Binv over the range of B. Nevertheless, we define Binv over
{0, 1}2p(n) for the sake of completeness.

Definition 12 (B mapping). Let VT denote the set of labels of vertices of the address tree T. Let S
be a subset of {0, 1}2p(n) of size |VT | containing 02p(n). Let EMPTYSTRING, NOEDGESTRING , and
INVALIDSTRING be any distinct fixed strings in S \ {02p(n)}. Then B : VT → S is a bijection mapping
ZEROADDRESS to 02p(n), EMPTYADDRESS to EMPTYSTRING, NOEDGEADDRESS to NOEDGESTRING ,
and INVALIDADDRESS to INVALIDSTRING. We define the function Binv : {0, 1}2p(n) → VT as

Binv(s) :=

{

B−1(s) s ∈ S

INVALIDADDRESS otherwise.
(9)

We now define analogs of the spaces introduced in Definitions 3 and 4 that our transcript state
(Definition 15) lies in and that our classical simulation algorithm (Algorithm 2) acts on.

Definition 13 (Address register and address space). An address register is a 2p(n)-qubit register
storing bit strings that are the image, under the map B, of the address of some vertex label in the address
tree T. We consider quantum states that have exactly p(n) address registers, and refer to the 2p(n)2-qubit
space of all the address registers as the address space.

Definition 14 (Address workspace and address workspace register). An address workspace reg-
ister is a single-qubit register that stores arbitrary ancillary states. We allow arbitrarily many address
workspace registers, and refer to the space consisting of all address workspace registers as the address
workspace.

Notice the similarity between the definitions of workspace and address workspace. Indeed,
we will later observe that the projection of |ψA〉 on the workspace is the same as the projection of

11

Transcript states

Define a mapping from each address to a distinct binary string (that could be the name of a
vertex with that address). The transcript state is defined by considering how the algorithm
would behave using these fictitious names for the vertices of the address tree.

Given a genuine quantum algorithm, we can define a transcript state that captures how the
algorthm would behave if run on the address tree instead of the actual welded tree graph.

A genuine algorithm operates with vertex names, not addresses, so we must specify this state by
considering the algorithm’s action on a given set of vertex names.

Transcript states cannot capture how the algorithm would behave if it found the EXIT or a cycle.
However, we show that they suffice for a good simulation.

Classical simulation

We simulate a genuine quantum algorithm operating with a 3-colored oracle as follows:

• Using two queries at the ENTRANCE, learn which color is not present there. This determines
the address tree.

• Compute the transcript state of the algorithm. In general, this takes exponential time, but it
does not require any queries.

• Sample a computational basis state according to the Born rule.

• Infer the addresses corresponding to the fictitious vertex names in the measured state.

• Query the actual oracle to determine the true vertex names corresponding to the measured
state. If the original quantum algorithm is efficient, this requires only polynomially many
queries to the oracle.

Informally, this process captures the part of the quantum algorithm that can be described by
exploring an infinite binary tree. How can show that this provides a good simulation?

The good, the bad, and the ugly

For each step of the algorithm, we inductively define
• the “good” part of the state, which has never encountered the EXIT or a cycle
• the “bad” part of the state, which just encountered the EXIT or a cycle at that step
• the “ugly” part of the state, which combines all portions of the state that have encountered

the EXIT or a cycle at some point in the algorithm’s history
(the sum of all bad parts, propagated forward to the current step)

We want to characterize the “good” part of the state, the part that has never encountered the
EXIT or a cycle at any point in its history.

This is not straightforward to define since the state of a quantum algorithm need not have a
well-defined history.

So the state is mostly good, which means the classical simulation algorithm approximates the
behavior of the quantum algorithm.

If the state at a given step has a significant bad component, then the classical simulation up to
that step can be used to find the EXIT or a cycle, but we show this is not possible.

Classical hardness with a 3-color oracle

The proof of [CCDFGS 03] shows that finding the EXIT or a cycle is classically hard. But we
need to show this specifically for a classical algorithm that is provided with a 3-coloring of the
edges of the welded tree graph.

This randomization is sufficient to ensure that a polynomial-size subtree embedded into the
welded tree graph is exponentially unlikely to encounter the EXIT or a cycle.

We can randomize a 3-colored welded
tree graph using a color preserving
perrmutation, generated by swapping
two left weld vertices with the same
color for the edge to the left, or two
right weld vertices with the same color
for the edge to the right.

ENTRANCE EXIT

(a) G

ENTRANCE EXIT

(b) Gσ

Figure 7: Example of a color-preserving permutation σ for the graph G in Figure 2. The permutation σ is
the identity permutation except that it maps the vertex colored lavender to the vertex colored plum. Note
that the resulting graph Gσ is a valid 3-colored welded tree graph.

classical oracle function ησ
c for each c ∈ C associated with Gσ for any color-preserving permutation

σ.

Definition 62. Let VG, Ic, and Nc for each c ∈ C, NOEDGE, and INVALID be defined as in Definitions 1
and 2. For any color-preserving permutation σ, let

ησ
c (v) :=

{

σ(ηc(σ−1(v)) v, ηc(v) ∈ VWELD

ηc(v) otherwise
(140)

where VWELD refers to the set of vertices of WELD.
Let ησ := {ησ

c : c ∈ C} be the oracle corresponding to the color-preserving permutation σ.

We now define the notion of path-embedding in Gσ for a sequence of colors t, which informally
refers to the path resulting from beginning at the ENTRANCE and following the edge colors given
by t in order.

Definition 63 (Path-embedding). Let σ be any color-preserving permutation. Let ! ∈ [p(n)] and t ∈ C!.
That is, t = (c1, . . . , c!) for some c1, . . . , c! ∈ C. Then, define the path-embedding of t under the oracle
ησ, denoted by ησ(t), to be a length-! tuple of vertex labels as follows. The jth element of ησ(t) is

ησ(t)j :=

{

ησ
c1
(ENTRANCE) j = 1

ησ
cj
(ησ(t)j−1) otherwise.

(141)

We say that the path-embedding ησ(t) encounters a vertex v if ησ(t)j = v for some j ∈ [!], and that
ησ(t) encounters an edge joining vertices v and u if ησ(t)j = v and ησ(t)j+1 = u (or the other way

42

Conclusion

We showed that genuine, rooted quantum algorithms cannot find a path from ENTRANCE to
EXIT in the welded tree graph using polynomially many queries.

Many natural approaches to the problem are genuine and rooted, so this suggests it might not
be possible to efficiently find a path.

If an efficient algorithm exists, it must either use the vertex names in a non-genuine way, or
forget the ENTRANCE and find it again.

Open problems

• Remove (or weaken) the assumptions of genuineness and rootedness, or (ideally) both

• Other examples of separations between the quantum complexity of detecting and finding

• Prove hardness of EXIT finding for general classical algorithms with a 3-colored oracle

• Instantiate the welded tree problem in a non-oracular setting

ENTRANCE EXIT

