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Quantum walk

Quantum analog of a random walk on a graph.

Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!

OAO
classical
Mi \\\\\\ W
—-60 -40 -20 0 20 40 60
AR IE PP TR quantum
t‘. |. % . ...‘.o..: il o.. 0®% :o It ..':‘..o . o .I .‘3.



Quantum walk algorithms

Quantum walk is a major tool for quantum algorithms (especially
query algorithms with polynomial speedup).

* Exponential speedup for black-box graph traversal [Childs, Cleve, Deotto,
Farhi, Gutmann, Spielman 02]

e Quantum walk search framework [Szegedy 05], [Magniez et al. 06]

- Spatial search [Shenvi, Kempe,Whaley 02], [Childs, Goldstone 03, 04], [Ambainis,
Kempe, Rivosh 04]

- Element distinctness [Ambainis 03]
- Subgraph finding [Magniez, Santha, Szegedy 03], [Childs, Kothari 10]
- Matrix/group problems [Buhrman, Spalek 04], [Magniez, Nayak 05]
e Evaluating formulas/span programs
- AND-OR formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRSZ 07]
- Span programs for general query problems [Reichardt 09]

- Learning graphs [Belovs 117 = new upper bounds (implicitly, quantum
walk algorithms), new kinds of quantum walk search



Universality of quantum walk

A quantum walk can be efficiently simulated by a universal quantum
computer.

Conversely, quantum walk is a universal computational primitive: any
quantum circuit can be simulated by a quantum walk. [Childs 09]

Note: The graph is necessarily exponentially large in the number of
qubits! Vertices represent basis states.



Quantum walk experiments
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Multi-particle quantum walk

With many walkers, the Hilbert space can be much bigger.
m distinguishable particles on an n-vertex graph: n'"* dimensions

(similar scaling for indistinguishable bosons/fermions)

Any n-qubit, g-gate quantum circuit can be simulated by a
multi-particle quantum walk of n 4 1 particles interacting for time
poly(n, g) on a graph with poly(n, g) vertices.

Consequences:

e Architecture for a quantum computer with no time-dependent
control

e Simulating interacting many-body systems is BQP-hard (e.g., Bose-
Hubbard model on a sparse, unweighted, planar graph)



Scattering theory on graphs

dsd scattering
detector

incident beam Target transmitted beam

[Liboff, Introductory Quantum Mechanics]



Quantum walk

Quantum analog of a random walk on a graph G = (V, F).

Replace probabilities by quantum amplitudes.

$(t) = > a(t)|v)
veV \
amplitude for vertex v at time ¢

Define time-homogeneous, local dynamics on (.

e
(1) = Hlw()

Adjacency matrix: H = Z u) (v
(u,v)EE(G)



Momentum states

Consider an infinite path:

.—7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
Hilbert space: span{|x) : x € Z}

Eigenstates of the adjacency matrix: |k) with

<x|/;> .— etk kel|—mm

Eigenvalue: 2 cos k



Wave packets

A wave packet is a normalized state with momentum concentrated
near a particular value k.

L
1 .

Example: — E e R ) (large L)
VL —

k —

dE
Propagation speed: el 2|sin k|




Scattering on graphs

Now consider adding semi-infinite lines to two vertices of an arbitrary
finite graph.

Before:
k-
J @ .[ @ @ o @ o @ @ o
After:
—k k—
R(k)] L T(k)] L




The S-matrix

This generalizes to any number N of semi-infinite paths attached to
any finite graph.

Incoming wave packets of
momentum near k£ are mapped
to outgoing wave packets (of
the same momentum) with
amplitudes corresponding to
entries of an N X N unitary
matrix S(k), called the S-matrix.




Universal computation



Encoding a qubit
Encode quantum circuits into graphs.

Computational basis states correspond to paths (“‘quantum wires”).

For one qubit, use two wires (“dual-rail encoding”):

o o ¢ OG=0=0—0—0-0-0—0—0—0—0—0—0-0—0—0—0—0—0-0-0-0-0-0 ° °

¢ o ¢ OG=G=0—0—0—0-0-0—0—0—0—0—0-0-0-0—0—0—0-0-0-0-0-0-0 - ° e ¢ ¢ OGG=G—0—0—0—0-0-0—0—0—0—0—0-0-0-0—0—0—0-0-0-0-0-0 - °

encoded |0) encoded |1)

Fix some value of the momentum (e.g., k = w/4).

Quantum information propagates from left to right at constant speed.



Implementing a gate

To perform a gate, design a graph whose S-matrix implements the
desired transformation U at the momentum used for the encoding.




Universal set of single-qubit gates

Oin° e c’Oout

Oin° —° OOout

1in° —+——o lsut

1in © © 1out

Gn s

momentum for logical states: k = 7/4

[Childs, Phys. Rev. Lett. 102, 180501 (2009)]



Multi-particle quantum walk

With m distinguishable particles:
states: |U1,...,Um) v; € V(G)

Hamiltonian: Hém) = Z Z uy(v|; +U
1=1 (u,v)eE(G)

Indistinguishable particles:

bosons: symmetric subspace
fermions: antisymmetric subspace

Many possible interactions:
on-site: U=J Z Ny (Ny — 1)
veV(G)

nearest-neighbor: U = J Z Moy Ty,
(u,v)EE(G)

m
fo =) [0)(vl;
i=1



Two-particle scattering

In general, multi-particle scattering is complicated.

But scattering of indistinguishable particles on an infinite path is simple.

Before:
k — —p
| 1 1
After:
i P k—
e’ X |
| i | i

Phase ¢ depends on momenta and interaction details.



Momentum switch

To selectively induce the two-particle scattering phase, we route
particles depending on their momentum.

"

1@22 ] o o—o0 )
3 3

e

Particles with momentum 7 /4 follow the single line.

Particles with momentum 7 /2 follow the double line.



Controlled phase gate

Computational qubits have momentum 7 /4. Introduce a “mediator
qubit” with momentum 7 /2. We can perform an entangling gate with
the mediator qubit.

1 0 0 O
0 1 0 0
0 0 1 0
0 0 0 e




Hadamard on mediator qubit

Oip Oout

out

[Blumer, Underwood, Feder | |]



Error bound

Initial state: each particle is a square wave packet of length L

Consider a g-gate, n-qubit circuit:

Oinc °O,0u
L PP T o

11,out
o 02 out
° 12,0ut
o Om out
e fD o

1m,out

2(n + 1) paths, O(gL) vertices on each path
Evolution time O(gL)

Total # of vertices O(nglL)

The error can be made arbitrarily small with L. = poly(n, g).

Example: For Bose-Hubbard model, L = O(n'?g*) suffices.



Open questions

* I[mproved error bounds

e Simplified initial state

* Are generic interactions universal for distinguishable particles!?
* New quantum algorithms

e Experiments

e Fault tolerance



