From optimal measurement
to efficient quantum algorithms
for the hidden subgroup problem and beyond

Caltech Institute for Quantum Information

Wim van Dam

quant-ph/0501044, quant-ph/0504083, quant-ph/0507190



http://arxiv.org/abs/quant-ph/0501044
http://arxiv.org/abs/quant-ph/0501044
http://arxiv.org/abs/quant-ph/0504083
http://arxiv.org/abs/quant-ph/0504083
http://arxiv.org/abs/quant-ph/0507190
http://arxiv.org/abs/quant-ph/0507190

What are quantum computers good for?



What are quantum computers good for?

Practical question: Building a quantum computer will take a lot
of resources. If we build one, can we use it to do anything useful
other than factoring numbers!?



What are quantum computers good for?

Practical question: Building a quantum computer will take a lot

of resources. If we build one, can we use it to do anything useful
other than factoring numbers!?

Fundamental question:What is the computational power of
quantum mechanics?



What are quantum computers good for?

Practical question: Building a quantum computer will take a lot
of resources. If we build one, can we use it to do anything useful
other than factoring numbers!?

Fundamental question:What is the computational power of
quantum mechanics?

Problems

* Simulating quantum dynamics

* Factoring

* Discrete log

* Pell’s equation

e Abelian HSP

* Some nonabelian HSPs

e Estimating gauss sums

* Legendre symbol/polynomial reconstruction
* Graph traversal

* Approximating Jones polynomial

* Counting solutions of finite field equations



What are quantum computers good for?

Practical question: Building a quantum computer will take a lot
of resources. If we build one, can we use it to do anything useful
other than factoring numbers!?

Fundamental question:What is the computational power of
quantum mechanics?

Problems Techniques
* Simulating quantum dynamics * Fourier sampling
* Factoring e Quantum walk
* Discrete log * Adiabatic optimization
* Pell’s equation * Trace estimation
e Abelian HSP e Optimal measurement

* Some nonabelian HSPs

e Estimating gauss sums

* Legendre symbol/polynomial reconstruction
* Graph traversal

* Approximating Jones polynomial

* Counting solutions of finite field equations



Outline

* The hidden subgroup problem (HSP)

e Optimal measurements for distinguishing quantum states
* Dihedral HSP

* Heisenberg HSP

* Unlabeled hidden shift problem

* Summary and open problems



The hidden subgroup problem

Problem: Fix a group GG (known) and a subgroup H (unknown).
Given a black box that computes f: G— S that is

e Constant on any particular left coset of H in &
* Distinct on different left cosets of H in ¢

(We say that f hides H.)

Goal: Find (a generating set for) H.
An efficient algorithm runs in time poly(log|G]).



The hidden subgroup problem

Problem: Fix a group GG (known) and a subgroup H (unknown).
Given a black box that computes f: G—.S that is

e Constant on any particular left coset of H in &
* Distinct on different left cosets of H in ¢

(We say that f hides H.)

Goal: Find (a generating set for) H.
An efficient algorithm runs in time poly(log|G]).

Even for very simple groups (e.g., G = Z.), a classical algorithm
provably requires exponentially many queries of f to find H.



Most interesting cases of the HSP

* Abelian groups
Applications to factoring, discrete log, Pell’s equation, etc.
Can be solved efficiently

* Dihedral group
Applications to lattice problems
Subexponential-time algorithm

* Symmetric group
Application to graph isomorphism
No nontrivial algorithms



Efficient algorithms for the HSP

* Abelian groups [Shor [994; Boneh, Lipton 1995; Kitaev 1995]

* Normal subgroups [Hallgren, Russell, Ta-Shma 2000]

e “Almost abelian” groups [Grigni, Schulman,Vazirani? 2001 ]

* “Near-Hamiltonian” groups [ Gavinsky 2004]

o (75 X 75) » Zso [Puschel, Rotteler, Beth 1998]

Ly X Zz,smoothly solvable groups [Friedl, vanyos, Magniez,
Santha, Sen 2002]

e p-hedral: Zn X Zyp, p=¢(N) /poly(log N) prime, N prime
[Moore, Rockmore, Russell, Schulman 2004]

® Lk X Ly [Inui, Le Gall 2004]



Efficient algorithms for the HSP

* Abelian groups [Shor [994; Boneh, Lipton 1995; Kitaev 1995]

* Normal subgroups [Hallgren, Russell, Ta-Shma 20007

e “Almost abelian” groups [Grigni, Schulman,Vazirani* 2001 ]

* “Near-Hamiltonian™ groups [Gavinsky 2004 ]

= (Zs X Z&) X Zo [Puschel, Rotteler, Beth 1998]

. Z'g“k X Lo , smoothly solvable groups [Friedl, lvanyos, Magniez,
Santha, Sen 2002]

=p-hedral: Zn x Zp, p=¢(N) /poly(log N) prime, N prime
[Moore, Rockmore, Russell, Schulman 2004], N arbitrary

-Zpk X Zip [Inui, Le Gall 2004]

= 71, X Ly, 7 constant (including Heisenberg, r:2)
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Standard approach to the HSP

Compute uniform superposition of function values:

mg;\g% > mg;@\g,f(g»

Discard second register to get a coset state,

gH) - Z gh)

| herr
with geG (unknown) chosen unlformly at random.

Equivalently, we have the hidden subgroup state
P = |G| > |gH){(gH|

gel
Now we can (without loss of generality) perform a Fourier
transform over G, and measure which irreducible representation
the state is in (weak Fourier sampling).



Distinguishing quantum states

Problem: Given a quantum state p chosen from an ensemble of
states p; with a priori probabilities p;, determine z.

This can only be done perfectly if the states are orthogonal. In
general, we would just like a high probability of success:

maximize >; p; tr(piF;).
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HSP as state estimation

State distinguishability problem: given the state pg, determine H.

In general, we can use many copies of the coset states: make p%k

(equivalently, |g1 H, g2 H, . . ., g H)) for k=poly(log|G]).

Good news: In principle k=poly(log|G|) copies contain enough
information to identify H.

Bad news: For some groups, it is necessary to make joint
measurements on {2(log|G|) copies.
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HSP by optimal measurement

Question:What measurement maximizes the probability of
successfully identifying the hidden subgroup!?

: Shor’s algorithm implements the optimal
measurement for the abelian HSP

Can we use this as a principle to find quantum algorithms?



Optimal measurement

Theorem.

Given an ensemble of quantum states p; with a priori
probabilities p;, the measurement with POVM elements F;
maximizes the probability of successfully identifying the state if
and only if R=R' and R> p;p; for all ¢, where

R := sz'/)in -



Optimal measurement

Theorem.

Given an ensemble of quantum states p; with a priori
probabilities p;, the measurement with POVM elements F;
maximizes the probability of successfully identifying the state if

and only if R= R and R > p;p; for all 7, where

R := sz'/)in -

In general, it is nontrivial to find a POVM that satisfies these

conditions (although it is a semidefinite program!).

But for all the cases discussed in this talk, the optimal

measurement is a particularly simple POVM, the pre
measurement.

ity good
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Pretty good measurement

Given states p; with a priori probabilities p;, define POVM

elements
1 1

E; == pi—=pi—=  where = »y
P \/ip NGS 2 szpz

(invert X over its support)

This is a POVM:
1 1
Ei:—( z'z')—zl
2= ) s

The PGM often does a pretty good job of distinguishing the p;.
In fact, sometimes it is optimal! (Check Holevo/YKL conditions)
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Dihedral group (Zy X Z2) reflection

(0,1)
Symmetry group of an N-sided regular polygon <1~
(a,)(c,d) = (a+ (~1)"c,b+d)
To solve the HSP, it is
sufficient to distinguish the order two 4/(1,())
subgroups {(0,0), (a,1)} (hidden reflections) rotation
1
Coset states: |(a’,0)H) = —(|a’,0) + |a +a’,1))
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Dihedral group (Zx x Zs) re(ﬂoecik)m

<

Symmetry group of an /N-sided regular polygon

(a,b)(c,d) = (a + (—1)°¢c, b+ d)

To solve the HSP it is /
sufficient to distinguish the order two (1,0)
subgroups {(0,0), (a,1)} (hidden reflections) rotation

1
Coset states: |(a’,0)H) = —(|la’,0) + |a +d/, 1
(a’,0)H) \/§(| )+ | )
1

Fourier transform: z)(|0) + w™|1))
JaN 2

By symmetry, we can measure x wlog (Fourier sampling: measure
which irreducible representation)
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Multiple dihedral coset states

0) + w*°|1 0) + w*|1
V2 V2

\ﬁ Z w(b x)a‘b

beZk

f 3wy [nz|sz)

WEL N

solutions of subset sum problem: S .= {I; c 75 - = w }

0y = |5f|

. Z ‘b
W e

S5)



Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by
doing the inverse of the quantum sampling transformation:

w) = |S5)



Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by
doing the inverse of the quantum sampling transformation:

w) = |S5)

Applying this to the coset state gives

Z W /0T ST | \/7 Z WML |w)

’UJEZN WEL N




Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by
doing the inverse of the quantum sampling transformation:

w) = |S5)

Applying this to the coset state gives

Z W /0T ST | \/7 Z WML |w)

’UJEZN WEL N

This is close to the FT of |a) if the nZ are nearly uniform in w



Subset sum and DHSP

The PGM (which is optimal) can be implemented unitarily by
doing the inverse of the quantum sampling transformation:

w) = |S5)
Applying this to the coset state gives

Z o \/E\Sm \ﬁ > W/ nklw)

wEZN WEL N

This is close to the FT of |a) if the nZ are nearly uniform in w

Questions:
* How big must £ be so that the solutions of the subset sum

problem are nearly uniformly distributed!?
*For such values of k, can we quantum sample from the subset
sum solutions?



Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).



Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).

In general, this problem is NP-hard. But the average-case
problem at a fixed density v:=k/log2 N may be much easier.



Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).

In general, this problem is NP-hard. But the average-case
problem at a fixed density v:=k/log2 N may be much easier.

low density } high density

> 1/

most subsets have a distinct sum most sums achieved by some subset



Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).

In general, this problem is NP-hard. But the average-case
problem at a fixed density v:=k/log2 N may be much easier.

low density } high density

> 1/

most subsets have a distinct sum most sums achieved by some subset

k < Cy\/ logN k> 26\/10gN
efficient classical algorithm hard!? poly (k) classical algorithm




Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).

In general, this problem is NP-hard. But the average-case
problem at a fixed density v:=k/log2 N may be much easier.

low density } high density

> 1/

most subsets have a distinct sum most sums achieved by some subset

subset sum = DHSP
PGM succeeds

k < Cy\/ logN k> 26\/10gN
efficient classical algorithm hard!? poly (k) classical algorithm




Subset sum problem

Problem: Given £ integers x1,...,xr from Zy and a target w from
Z:n, find a subset of the £ integers that sum to the target
(i.e., find b1,...,01 from Zs so that b-z=w).

In general, this problem is NP-hard. But the average-case
problem at a fixed density v:=k/log2 N may be much easier.

1 . .
low density | high density >
most subsets have a distinct sum | most sums achieved by some subset
subset sum = DHSP
PGM succeeds
k < Cy\/ logN k> 26\/10gN
efficient classical algorithm hard!? poly (k) classical algorithm

poly(k) quantum DHSP algorithm



General approach

e Cast problem as a state distinguishability problem
(e.g., coset states for HSP)

* Express the states in terms of an average-case algebraic
problem (e.g., subset sum for dihedral HSP)

* Perform the pretty good measurement on £ copies of the
states:

- Choose £ large enough that the measurement succeeds with
reasonably high probability (this happens if the average-case
problem typically has many solutions)

- Implement the measurement by solving the problem on
average (quantum sampling from the set of solutions)



The Heisenberg group

Subgroup of GL3(IF,)

1
b :a,b,ceclf,
a

o = O
—_ O O

Semidirect product Zi X L

p : Ly — Aut(ZZ%) with  ©(c)(a,b) = (a + bc, b)

(a,b,¢)(a’",b',c)=(a+ad +bc,b+ b, c+ )

Group of pXp unitary matrices
(X,Z) = {w*X"Z : a,b,c € Z,} where

Z x4+ 1) Z WOlz) (x|, w = e2"V/P

T ELp T E Ly



Heisenberg subgroups

Fact: To solve the HSP in the Heisenberg group, it is sufficient to
distinguish the order p subgroups ((a,b,1))={(a,b,1)’ : 5€Z,}

(a,b,1)* = (a,b,1)(a,b,1) = (2a + b, 2b, 2)
(a,b,1)° = (a,b,1)(2a + b,2b,2) = (3a + 3b, 3b, 3)
(a,b,1)* = (a,b,1)(3a + 2b,3b,3) = (4a + 6b,4b, 4)

(a,b,1) = (ja+ (3)b, jb, j)

Average-case problem:Two quadratic equations in £ variables.
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Heisenberg HSP algorithm

Two copies of the coset states are sufficient to distinguish these
subgroups. The optimal measurement can be implemented by
solving a pair of quadratic equations in two variables.

More generally, for Z,, X Z, , the optimal measurement on 7
copies solves the HSP, and can be implemented by solving rth
order equations (use Buchberger’s algorithm to compute a
Grobner basis; efficient for r constant).

This algorithm implements an entangled measurement across r
coset states. This is encouraging, since entangled measurements
are information-theoretically necessary for some groups!*

*But not for the Heisenberg group [ ], although no efficient
single-register algorithm is known for this case.



Generalized abelian hidden shift problem

Problem: Given a function f : {0,1,... . M — 1} X Zy — S
satisfying f(b,z) = f(b+ 1,z +s) forb=0,1,..., M — 2,
find the value of the hidden shift s € Z.




Generalized abelian hidden shift problem

Problem: Given a function f : {0,1,... . M — 1} X Zy — S
satisfying f(b,z) = f(b+ 1,z +s) forb=0,1,..., M — 2,
find the value of the hidden shift s € Z.

M=2: equivalent to dihedral HSP
M=N:an instance of abelian HSP (efficiently solvable)



Generalized abelian hidden shift problem

Problem: Given a function f : {0,1,... . M — 1} X Zy — S
satisfying f(b,z) = f(b+ 1,z +s) forb=0,1,..., M — 2,
find the value of the hidden shift s € Z.

M=2: equivalent to dihedral HSP
M=N:an instance of abelian HSP (efficiently solvable)

Average-case problem: Given x € Z% and w € Zy chosen
uniformly at random, find b € {0,1,..., M — 1}k such
that b - £ = w mod V.



Generalized abelian hidden shift problem

Problem: Given a function f : {0,1,... . M — 1} X Zy — S
satisfying f(b,z) = f(b+ 1,z +s) forb=0,1,..., M — 2,
find the value of the hidden shift s € Z.

M=2: equivalent to dihedral HSP
M=N:an instance of abelian HSP (efficiently solvable)

Average-case problem: Given x € Z% and w € Zy chosen
uniformly at random, find b € {0,1,..., M — 1}k such
that b - £ = w mod V.

This is an instance of integer programming in k dimensions.
Lenstra’s algorithm (based on LLL lattice basis reduction) solves
this efficiently for k constant. k=log N/log M = efficient

algorithm for any M= N¢ for fixed ¢>0.



Original problem
Abelian HSP

Metacyclic HSP

Zn X Ly, p= $(N)/ poly(log N)

Ly X Ly,
(r=2 is Heisenberg)

Generalized abelian

hidden shift problem,
M=Nc

Dihedral HSP

Symmetric group
HSP

Average-case problem
1 Linear equations
1 Discrete log
r Polynomial equations
1/ Integer programming

log N Subset sum

nlogn !

Solution
Easy

Shor’s algorithm

Buchburger’s
algorithm,
elimination

Lenstra’s algorithm
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Open questions

* Can we find better solutions of average-case problems that
arise from this approach?

- Metacyclic group with k=1: au™ = b, discrete log
with k=2: au® + buY = ¢, how to solve!

- Faster solution of random subset sum problems/random
integer programs (quantum algorithms?)

* |s there a problem that is not even information theoretically
reconstructible from single-register measurements, but for
which there is an efficient, multi-register algorithm?

* Find new algorithms for the hidden subgroup problem.
(Beyond the standard approach?)

* Are there other hidden subgroup problems (besides dihedral
& symmetric groups) with practical applications!?



