From optimal measurement to efficient quantum algorithms for the hidden subgroup problem and beyond

Andrew Childs

Caltech Institute for Quantum Information

And and a second and a second and a second and a second a

Dave Bacon University of Washington Wim van Dam UC Santa Barbara

quant-ph/0501044, quant-ph/0504083, quant-ph/0507190

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question: What is the computational power of quantum mechanics?

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question: What is the computational power of quantum mechanics?

Problems

- Simulating quantum dynamics
- Factoring
- Discrete log
- Pell's equation
- Abelian HSP
- Some nonabelian HSPs
- Estimating gauss sums
- Legendre symbol/polynomial reconstruction
- Graph traversal
- Approximating Jones polynomial
- Counting solutions of finite field equations

Practical question: Building a quantum computer will take a lot of resources. If we build one, can we use it to do anything useful other than factoring numbers?

Fundamental question: What is the computational power of quantum mechanics?

Problems

- Simulating quantum dynamics
- Factoring
- Discrete log
- Pell's equation
- Abelian HSP
- Some nonabelian HSPs
- Estimating gauss sums
- Legendre symbol/polynomial reconstruction
- Graph traversal
- Approximating Jones polynomial
- Counting solutions of finite field equations

Techniques

- Fourier sampling
- Quantum walk
- Adiabatic optimization
- Trace estimation
- Optimal measurement

Outline

- The hidden subgroup problem (HSP)
- Optimal measurements for distinguishing quantum states
- Dihedral HSP
- Heisenberg HSP
- Unlabeled hidden shift problem
- Summary and open problems

The hidden subgroup problem

Problem: Fix a group G (known) and a subgroup H (unknown). Given a black box that computes $f: G \rightarrow S$ that is

- \bullet Constant on any particular left coset of H in G
- \bullet Distinct on different left cosets of H in G

(We say that f hides H.)

Goal: Find (a generating set for) H. An efficient algorithm runs in time poly(log|G|).

The hidden subgroup problem

Problem: Fix a group G (known) and a subgroup H (unknown). Given a black box that computes $f: G \rightarrow S$ that is

- \bullet Constant on any particular left coset of H in G
- \bullet Distinct on different left cosets of H in G

(We say that f hides H.)

Goal: Find (a generating set for) H. An efficient algorithm runs in time poly(log|G|).

Even for very simple groups (e.g., $G = \mathbb{Z}_2^n$), a classical algorithm provably requires exponentially many queries of f to find H.

Most interesting cases of the HSP

• Abelian groups

Applications to factoring, discrete log, Pell's equation, etc. Can be solved efficiently

• Dihedral group

Applications to lattice problems [Regev 2002] Subexponential-time algorithm [Kuperberg 2003]

 Symmetric group Application to graph isomorphism No nontrivial algorithms

Efficient algorithms for the HSP

- Abelian groups [Shor 1994; Boneh, Lipton 1995; Kitaev 1995]
- Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
- "Almost abelian" groups [Grigni, Schulman, Vazirani² 2001]
- "Near-Hamiltonian" groups [Gavinsky 2004]
- $(\mathbb{Z}_2^n imes \mathbb{Z}_2^n)
 times \mathbb{Z}_2$ [Püschel, Rötteler, Beth 1998]
- $\mathbb{Z}_{p^k}^n \rtimes \mathbb{Z}_2$, smoothly solvable groups [Friedl, Ivanyos, Magniez, Santha, Sen 2002]
- p-hedral: $\mathbb{Z}_N \rtimes \mathbb{Z}_p$, $p = \phi(N)/\text{poly}(\log N)$ prime, N prime [Moore, Rockmore, Russell, Schulman 2004]
- $\mathbb{Z}_{p^k} \rtimes \mathbb{Z}_p$ [Inui, Le Gall 2004]

Efficient algorithms for the HSP

- Abelian groups [Shor 1994; Boneh, Lipton 1995; Kitaev 1995]
- Normal subgroups [Hallgren, Russell, Ta-Shma 2000]
- "Almost abelian" groups [Grigni, Schulman, Vazirani² 2001]
- "Near-Hamiltonian" groups [Gavinsky 2004]
- $ightarrow (\mathbb{Z}_2^n imes \mathbb{Z}_2^n)
 times \mathbb{Z}_2$ [Püschel, Rötteler, Beth 1998]
- $\mathbb{Z}_{p^k}^n \rtimes \mathbb{Z}_2$, smoothly solvable groups [Friedl, Ivanyos, Magniez, Santha, Sen 2002]
- → p-hedral: $\mathbb{Z}_N \rtimes \mathbb{Z}_p$, $p = \phi(N)/\text{poly}(\log N)$ prime, N prime [Moore, Rockmore, Russell, Schulman 2004], N arbitrary $\mathbb{Z}_{p^k} \rtimes \mathbb{Z}_p$ [Inui, Le Gall 2004]
- $ightarrow \mathbb{Z}_p^r \rtimes \mathbb{Z}_p$, r constant (including Heisenberg, r=2)

Compute uniform superposition of function values:

 $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g, f(g)\rangle$

Compute uniform superposition of function values:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g, f(g)\rangle$$

Discard second register to get a coset state,

$$|gH\rangle := \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

with $g \in G$ (unknown) chosen uniformly at random.

Compute uniform superposition of function values:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g, f(g)\rangle$$

Discard second register to get a coset state,

$$|gH\rangle := \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

with $g \in G$ (unknown) chosen uniformly at random.

Equivalently, we have the hidden subgroup state

$$\rho_H := \frac{1}{|G|} \sum_{g \in G} |gH\rangle \langle gH|$$

Compute uniform superposition of function values:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g, f(g)\rangle$$

Discard second register to get a coset state,

$$|gH\rangle := \frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

with $g \in G$ (unknown) chosen uniformly at random.

Equivalently, we have the hidden subgroup state

$$\rho_H := \frac{1}{|G|} \sum_{g \in G} |gH\rangle \langle gH|$$

Now we can (without loss of generality) perform a Fourier transform over G, and measure which irreducible representation the state is in (weak Fourier sampling).

Distinguishing quantum states

Problem: Given a quantum state ρ chosen from an ensemble of states ρ_i with a priori probabilities p_i , determine i.

This can only be done perfectly if the states are orthogonal. In general, we would just like a high probability of success: maximize $\sum_i p_i \operatorname{tr}(\rho_i E_i)$.

State distinguishability problem: given the state ρ_H , determine H.

State distinguishability problem: given the state ρ_H , determine H.

In general, we can use many copies of the coset states: make $\rho_H^{\otimes k}$ (equivalently, $|g_1H, g_2H, \ldots, g_kH\rangle$) for $k=\text{poly}(\log|G|)$.

State distinguishability problem: given the state ρ_H , determine H.

In general, we can use many copies of the coset states: make $\rho_H^{\otimes k}$ (equivalently, $|g_1H, g_2H, \ldots, g_kH\rangle$) for $k=\text{poly}(\log|G|)$.

Good news: In principle k=poly(log|G|) copies contain enough information to identify H. [Ettinger, Høyer, Knill 1999]

State distinguishability problem: given the state ρ_H , determine H.

In general, we can use many copies of the coset states: make $\rho_H^{\otimes k}$ (equivalently, $|g_1H, g_2H, \ldots, g_kH\rangle$) for $k=\text{poly}(\log|G|)$.

Good news: In principle k=poly(log|G|) copies contain enough information to identify H. [Ettinger, Høyer, Knill 1999]

Bad news: For some groups, it is necessary to make joint measurements on $\Omega(\log|G|)$ copies. [Moore, Russell, Schulman 2005-6; Hallgren, Rötteler, Sen 2006]

HSP by optimal measurement

Question: What measurement maximizes the probability of successfully identifying the hidden subgroup?

HSP by optimal measurement

Question: What measurement maximizes the probability of successfully identifying the hidden subgroup?

[Ip 2003]: Shor's algorithm implements the optimal measurement for the abelian HSP.

HSP by optimal measurement

Question: What measurement maximizes the probability of successfully identifying the hidden subgroup?

[Ip 2003]: Shor's algorithm implements the optimal measurement for the abelian HSP.

Can we use this as a principle to find quantum algorithms?

Optimal measurement

Theorem. [Holevo 1973, Yuen-Kennedy-Lax 1975]

Given an ensemble of quantum states ρ_i with a priori probabilities p_i , the measurement with POVM elements E_i maximizes the probability of successfully identifying the state if and only if $R = R^{\dagger}$ and $R \ge p_i \rho_i$ for all i, where

$$R := \sum_{i} p_i \rho_i E_i \,.$$

Optimal measurement

Theorem. [Holevo 1973, Yuen-Kennedy-Lax 1975] Given an ensemble of quantum states ρ_i with a priori probabilities p_i , the measurement with POVM elements E_i maximizes the probability of successfully identifying the state if and only if $R = R^{\dagger}$ and $R \ge p_i \rho_i$ for all i, where

$$R := \sum_{i} p_i \rho_i E_i \,.$$

In general, it is nontrivial to find a POVM that satisfies these conditions (although it is a semidefinite program!).

But for all the cases discussed in this talk, the optimal measurement is a particularly simple POVM, the *pretty good measurement*.

Pretty good measurement

Given states ρ_i with a priori probabilities p_i , define POVM elements

$$E_i := p_i \frac{1}{\sqrt{\Sigma}} \rho_i \frac{1}{\sqrt{\Sigma}}$$

where
$$\Sigma := \sum_{i} p_i \rho_i$$

(invert Σ over its support)

Pretty good measurement

Given states ρ_i with a priori probabilities p_i , define POVM elements

$$E_i := p_i \frac{1}{\sqrt{\Sigma}} \rho_i \frac{1}{\sqrt{\Sigma}}$$

where
$$\Sigma := \sum_{i} p_i \rho_i$$

(invert Σ over its support)

This is a POVM:

$$\sum_{i} E_{i} = \frac{1}{\sqrt{\Sigma}} \left(\sum_{i} p_{i} \rho_{i} \right) \frac{1}{\sqrt{\Sigma}} = 1$$

Pretty good measurement

Given states ρ_i with a priori probabilities p_i , define POVM elements

$$E_i := p_i \frac{1}{\sqrt{\Sigma}} \rho_i \frac{1}{\sqrt{\Sigma}} \qquad \mathbf{w}$$

where
$$\Sigma := \sum_{i} p_i \rho_i$$

(invert Σ over its support)

This is a POVM:

$$\sum_{i} E_{i} = \frac{1}{\sqrt{\Sigma}} \left(\sum_{i} p_{i} \rho_{i} \right) \frac{1}{\sqrt{\Sigma}} = 1$$

The PGM often does a pretty good job of distinguishing the ρ_i . In fact, sometimes it is optimal! (Check Holevo/YKL conditions)

Coset states:
$$|(a',0)H\rangle = \frac{1}{\sqrt{2}}(|a',0\rangle + |a+a',1\rangle)$$

Coset states:
$$|(a',0)H\rangle = \frac{1}{\sqrt{2}}(|a',0\rangle + |a+a',1\rangle)$$

Fourier transform:

$$\frac{1}{\sqrt{2N}} \sum_{x \in \mathbb{Z}_N} |x\rangle (|0\rangle + \omega^{xa} |1\rangle)$$

Coset states:
$$|(a', 0)H\rangle = \frac{1}{\sqrt{2}}(|a', 0\rangle + |a + a', 1\rangle)$$

Fourier transform:

$$\frac{1}{\sqrt{2N}} \sum_{x \in \mathbb{Z}_N} |x\rangle (|0\rangle + \omega^{xa} |1\rangle)$$

By symmetry, we can measure x wlog (Fourier sampling: measure which irreducible representation)

Multiple dihedral coset states

$$\frac{|0\rangle + \omega^{x_1 a} |1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle + \omega^{x_k a} |1\rangle}{\sqrt{2}}$$
Multiple dihedral coset states

Multiple dihedral coset states

$$\begin{aligned} \frac{|0\rangle + \omega^{x_1 a} |1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle + \omega^{x_k a} |1\rangle}{\sqrt{2}} \\ &= \frac{1}{\sqrt{2^k}} \sum_{\vec{b} \in \mathbb{Z}_2^k} \omega^{(\vec{b} \cdot \vec{x}) a} |b\rangle \\ &= \frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{w a} \sqrt{\eta_w^{\vec{x}}} |S_w^{\vec{x}}\rangle \end{aligned}$$

solutions of subset sum problem:

$$S_w^{\vec{x}} := \{ \vec{b} \in \mathbb{Z}_2^k : \vec{b} \cdot \vec{x} = w \}$$
$$\eta_w^{\vec{x}} := |S_w^{\vec{x}}|$$
$$S_w^{\vec{x}} \rangle := \frac{1}{\sqrt{\eta_w^{\vec{x}}}} \sum_{\vec{b} \in S_w^{\vec{x}}} |\vec{b}\rangle$$

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the *quantum sampling* transformation:

$$|w\rangle \mapsto |S_w^{\vec{x}}\rangle$$

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the *quantum sampling* transformation:

$$|w\rangle \mapsto |S_w^{\vec{x}}\rangle$$

Applying this to the coset state gives

$$\frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |S_w^{\vec{x}}\rangle \mapsto \frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |w\rangle$$

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the *quantum sampling* transformation:

$$|w\rangle \mapsto |S_w^{\vec{x}}\rangle$$

Applying this to the coset state gives

$$\frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |S_w^{\vec{x}}\rangle \mapsto \frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |w\rangle$$

This is close to the FT of $|a\rangle$ if the $\eta^{\vec{x}}_w$ are nearly uniform in w

The PGM (which is optimal) can be implemented unitarily by doing the inverse of the *quantum sampling* transformation:

$$|w\rangle \mapsto |S_w^{\vec{x}}\rangle$$

Applying this to the coset state gives

$$\frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |S_w^{\vec{x}}\rangle \mapsto \frac{1}{\sqrt{2^k}} \sum_{w \in \mathbb{Z}_N} \omega^{wa} \sqrt{\eta_w^{\vec{x}}} |w\rangle$$

This is close to the FT of $|a\rangle$ if the $\eta^{\vec{x}}_w$ are nearly uniform in w

Questions:

- How big must k be so that the solutions of the subset sum problem are nearly uniformly distributed?
- For such values of k, can we quantum sample from the subset sum solutions?

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

Problem: Given k integers $x_1,...,x_k$ from \mathbb{Z}_N and a target w from \mathbb{Z}_N , find a subset of the k integers that sum to the target (i.e., find $b_1,...,b_k$ from \mathbb{Z}_2 so that $b \cdot x = w$).

General approach

- Cast problem as a state distinguishability problem (e.g., coset states for HSP)
- Express the states in terms of an average-case algebraic problem (e.g., subset sum for dihedral HSP)
- Perform the pretty good measurement on k copies of the states:
 - Choose k large enough that the measurement succeeds with reasonably high probability (this happens if the average-case problem typically has many solutions)
 - Implement the measurement by solving the problem on average (quantum sampling from the set of solutions)

The Heisenberg group

Subgroup of
$$\operatorname{GL}_3(\mathbb{F}_p)$$

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ a & c & 1 \end{pmatrix} : a, b, c \in \mathbb{F}_p \right\}$$

Semidirect product $\mathbb{Z}_p^2 \rtimes_{\varphi} \mathbb{Z}_p$ $\varphi : \mathbb{Z}_p \to \operatorname{Aut}(\mathbb{Z}_p^2)$ with $\varphi(c)(a, b) = (a + bc, b)$ (a, b, c)(a', b', c') = (a + a' + b'c, b + b', c + c')

Group of $p \times p$ unitary matrices $\langle X, Z \rangle = \{ \omega^a X^b Z^c : a, b, c \in \mathbb{Z}_p \}$ where $X := \sum_{x \in \mathbb{Z}_p} |x+1\rangle \langle x|, \quad Z := \sum_{x \in \mathbb{Z}_p} \omega^x |x\rangle \langle x|, \quad \omega := e^{2\pi i/p}$

Heisenberg subgroups

Fact: To solve the HSP in the Heisenberg group, it is sufficient to distinguish the order p subgroups $\langle (a, b, 1) \rangle = \{(a, b, 1)^j : j \in \mathbb{Z}_p\}$

$$(a, b, 1)^{2} = (a, b, 1)(a, b, 1) = (2a + b, 2b, 2)$$

$$(a, b, 1)^{3} = (a, b, 1)(2a + b, 2b, 2) = (3a + 3b, 3b, 3)$$

$$(a, b, 1)^{4} = (a, b, 1)(3a + 2b, 3b, 3) = (4a + 6b, 4b, 4)$$

$$\vdots$$

$$(a, b, 1)^{j} = (ja + {j \choose 2}b, jb, j)$$

Average-case problem: Two quadratic equations in k variables.

Heisenberg HSP algorithm

Two copies of the coset states are sufficient to distinguish these subgroups. The optimal measurement can be implemented by solving a pair of quadratic equations in two variables.

Heisenberg HSP algorithm

Two copies of the coset states are sufficient to distinguish these subgroups. The optimal measurement can be implemented by solving a pair of quadratic equations in two variables.

More generally, for $\mathbb{Z}_p^r \rtimes \mathbb{Z}_p$, the optimal measurement on r copies solves the HSP, and can be implemented by solving rth order equations (use Buchberger's algorithm to compute a Gröbner basis; efficient for r constant).

Heisenberg HSP algorithm

Two copies of the coset states are sufficient to distinguish these subgroups. The optimal measurement can be implemented by solving a pair of quadratic equations in two variables.

More generally, for $\mathbb{Z}_p^r \rtimes \mathbb{Z}_p$, the optimal measurement on r copies solves the HSP, and can be implemented by solving rth order equations (use Buchberger's algorithm to compute a Gröbner basis; efficient for r constant).

This algorithm implements an entangled measurement across r coset states. This is encouraging, since entangled measurements are information-theoretically necessary for some groups!*

*But not for the Heisenberg group [Radhakrishnan, Rötteler, Sen 2005], although no efficient single-register algorithm is known for this case.

Problem: Given a function $f : \{0, 1, \dots, M-1\} \times \mathbb{Z}_N \to S$ satisfying f(b, x) = f(b+1, x+s) for $b = 0, 1, \dots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_N$.

Problem: Given a function $f : \{0, 1, \dots, M-1\} \times \mathbb{Z}_N \to S$ satisfying f(b, x) = f(b+1, x+s) for $b = 0, 1, \dots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_N$.

M=2: equivalent to dihedral HSP M=N: an instance of abelian HSP (efficiently solvable)

Problem: Given a function $f : \{0, 1, \dots, M-1\} \times \mathbb{Z}_N \to S$ satisfying f(b, x) = f(b+1, x+s) for $b = 0, 1, \dots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_N$.

M=2: equivalent to dihedral HSP M=N: an instance of abelian HSP (efficiently solvable)

Average-case problem: Given $x \in \mathbb{Z}_N^k$ and $w \in \mathbb{Z}_N$ chosen uniformly at random, find $b \in \{0, 1, \dots, M-1\}^k$ such that $b \cdot x = w \mod N$.

Problem: Given a function $f : \{0, 1, \dots, M-1\} \times \mathbb{Z}_N \to S$ satisfying f(b, x) = f(b+1, x+s) for $b = 0, 1, \dots, M-2$, find the value of the hidden shift $s \in \mathbb{Z}_N$.

M=2: equivalent to dihedral HSP M=N: an instance of abelian HSP (efficiently solvable)

Average-case problem: Given $x \in \mathbb{Z}_N^k$ and $w \in \mathbb{Z}_N$ chosen uniformly at random, find $b \in \{0, 1, \dots, M-1\}^k$ such that $b \cdot x = w \mod N$.

This is an instance of integer programming in k dimensions. Lenstra's algorithm (based on LLL lattice basis reduction) solves this efficiently for k constant. $k = \log N / \log M \Rightarrow$ efficient algorithm for any $M = N^{\epsilon}$ for fixed $\epsilon > 0$.

Original problem	k	Average-case problem	Solution
Abelian HSP	1	Linear equations	Easy
Metacyclic HSP $\mathbb{Z}_N \rtimes \mathbb{Z}_p, \ p = \phi(N) / \operatorname{poly}(\log N)$	1	Discrete log	Shor's algorithm
$\mathbb{Z}_p^r times \mathbb{Z}_p$ ($r{=}2$ is Heisenberg)	r	Polynomial equations	Buchburger's algorithm, elimination
Generalized abelian hidden shift problem, $M = N^{\epsilon}$	$1/\epsilon$	Integer programming	Lenstra's algorithm
Dihedral HSP	$\log N$	Subset sum	?
Symmetric group HSP	$n\log n$?	?

• Can we find better solutions of average-case problems that arise from this approach?

- Can we find better solutions of average-case problems that arise from this approach?
 - Metacyclic group with $k=1: a\mu^x = b$, discrete log

with $k=2: a\mu^x + b\mu^y = c$, how to solve?

- Can we find better solutions of average-case problems that arise from this approach?
 - Metacyclic group with $k{=}1{:}~a\mu^x=b$, discrete log with $k{=}2{:}~a\mu^x+b\mu^y=c$, how to solve?
 - Faster solution of random subset sum problems/random integer programs (quantum algorithms?)

- Can we find better solutions of average-case problems that arise from this approach?
 - Metacyclic group with $k=1: a\mu^x = b$, discrete log with $k=2: a\mu^x + b\mu^y = c$, how to solve?
 - Faster solution of random subset sum problems/random integer programs (quantum algorithms?)
- Is there a problem that is not even information theoretically reconstructible from *single*-register measurements, but for which there is an *efficient*, *multi*-register algorithm?

- Can we find better solutions of average-case problems that arise from this approach?
 - Metacyclic group with $k=1: a\mu^x = b$, discrete log with $k=2: a\mu^x + b\mu^y = c$, how to solve?
 - Faster solution of random subset sum problems/random integer programs (quantum algorithms?)
- Is there a problem that is not even information theoretically reconstructible from *single*-register measurements, but for which there is an *efficient*, *multi*-register algorithm?
- Find new algorithms for the hidden subgroup problem. (Beyond the standard approach?)

- Can we find better solutions of average-case problems that arise from this approach?
 - Metacyclic group with $k=1: a\mu^x = b$, discrete log with $k=2: a\mu^x + b\mu^y = c$, how to solve?
 - Faster solution of random subset sum problems/random integer programs (quantum algorithms?)
- Is there a problem that is not even information theoretically reconstructible from *single*-register measurements, but for which there is an *efficient*, *multi*-register algorithm?
- Find new algorithms for the hidden subgroup problem. (Beyond the standard approach?)
- Are there other hidden subgroup problems (besides dihedral & symmetric groups) with practical applications?