Evaluating formulas
with a quantum computer

Andrew Childs (VWaterloo)

Andris Ambainis (VWaterloo & Latvia)
Ben Reichardt (VVaterloo)

Robert Spalek (Goog
Shengyu Zhang (Chinese U. of

quant-ph/0703015
FOCS 2007

e)

ong Kong)

http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/quant-ph/0703015
http://arxiv.org/abs/quant-ph/0703015
http://focs2007.org
http://focs2007.org

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

a - »

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

-

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

o

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

a2 B

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

OR

How fast can we compute the OR of n bits!?

Evaluate formula: 1 OR 2 OR ... OR z,

Applications:
* unstructured search
e fundamental building block for other computations

Model: Given a black box for the bits.

How many queries are required to evaluate OR?

Classical complexity: ©(n)
Quantum algorithm [Grover 1996]: O(1/n)
Quantum lower bound [BBBV 1996]: Q2(+/n)

The query complexity of two-player games

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first
* players alternate moves

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first
* players alternate moves
* each player has d possible moves during their turn

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first
* players alternate moves
* each player has d possible moves during their turn
* there are a total of £ turns

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first
* players alternate moves
e each player has d possible moves during their turn
* there are a total of £ turns
e the winner after any given sequence of moves (n = d* possibilities)

is given by a black box function f: {0,1,...,d}" — {0, 1}

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first

* players alternate moves

e each player has d possible moves during their turn

* there are a total of £ turns

e the winner after any given sequence of moves (n = d* possibilities)
is given by a black box function f: {0,1,...,d}" — {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first

* players alternate moves

e each player has d possible moves during their turn

* there are a total of £ turns

e the winner after any given sequence of moves (n = d* possibilities)
is given by a black box function f: {0,1,...,d}" — {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

We must evaluate a formula involving AND and OR gates:

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first

* players alternate moves

e each player has d possible moves during their turn

* there are a total of £ turns

e the winner after any given sequence of moves (n = d* possibilities)
is given by a black box function f: {0,1,...,d}" — {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

We must evaluate a formula involving AND and OR gates:

Orlando wins if he can make any move that gives 1 (OR)

The query complexity of two-player games

Consider a two-player game between Andrea and Orlando where
e Andrea goes first

* players alternate moves
e each player has d possible moves during their turn
e there are a total of £ turns

e the winner after any given sequence of moves (n = d* possibilities)
is given by a black box function f: {0,1,...,d}" — {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

We must evaluate a formula involving AND and OR gates:

Andrea wins if she can make any move that gives 0
i.e., she only loses if all of her moves give 1 (AND)

Orlando wins if he can make any move that gives 1 (OR)

Game trees

Example: d =2,k =4

and and and and

or or or or or or or or

Game trees

Example: d =2,k =4

and and and and

or or or or or or or or

Game trees

Example: d =2,k =4

I 0 I I

I I 0 0

Game trees

Example: d =2,k =4

I 0 I I

I I 0 0

Game trees

Example: d =2,k =4

Game trees

Example: d =2,k =4

Evaluating game trees

d—14++/d2+14d+1

Classical complexity: @(nlogd a) (d=2: O(n" %))
[Snir 85; Saks,Wigderson 86; Santha 95]

Evaluating game trees

d—14++/d2+14d+1

Classical complexity: @(nlogd a) (d=2: O(n" %))
[Snir 85; Saks,Wigderson 86; Santha 95]

Quantum lower bound [Barnum, Saks 02]: Q2(+/n)

Evaluating game trees

d—14+/d2+14d+1

Classical complexity: @(nlogd 1) (d =2: @(n0'753))
[Snir 85; Saks,Wigderson 86; Santha 95]

Quantum lower bound [Barnum, Saks 02]: Q2(+/n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]: v/n O(log n)F=1

Evaluating game trees

d—14++v/d2+14d+1

Classical complexity: @(nlogd a) (d=2: O(n" %))
[Snir 85; Saks,Wigderson 86; Santha 95]

Quantum lower bound [Barnum, Saks 02]: Q2(+/n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]: v/n O(log n)F=1

Grover with noisy inputs [Hayer, Mosca, de Wolf 03]: O(+/n - ck)

Evaluating game trees

d—1++/d2+14d+1

Classical complexity: @(nlogd a) (d=2: O(n" %))
[Snir 85; Saks,Wigderson 86; Santha 95]

Quantum lower bound [Barnum, Saks 02]: Q2(v/n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]: v/n O(log n)*~*

Grover with noisy inputs [Heyer, Mosca, de Wolf 03]: O(+1/n - c¥)

But these algorithms are only close to tight for £ constant.

And for low degree (e.g., d = 2), nothing better than classical was
known until very recently!

e —

- p—r Q—m"’q <‘1}‘
|v—.(:r-".¢?—_—.._‘

3 e me Zev-d
8",
5.

ol

e 08eTTI

3 .

3 e me Zev-d
8",
5.

ol

e 08eTTI

3 .

.

and

. . %
and and and and
. S

- or or or or or or or or 3 " i
B o ’

- -. 4

. / o1 v 448

. "
‘

-

)

o L
S e R

Continuous-time quantum walk

1 2

Graph G: .> ’
3 4

Continuous-time quantum walk

1 2 (01 1 0 0)

; 100 1 1

GraPhG: .> A=11 0 0 1 0
] A 01 1 0 1

\0 1 0 1 0

adjacency matrix

Continuous-time quantum walk

L 00110 0 2 1 1 0 0

. (10011\ (1 -3 0 1 1\

Graph G A=[1 0 0 1 0 L=]11 0 -2 1 0
sy 01 10 1 0 1 1 -3 1

\0 1 0 1 0 \0 1 0 1 -2

adjacency matrix Laplacian

Continuous-time quantum walk

1 2 /0

1

Graph G: .> A=|1
3 4 \8

adjacency matrix

Random walk on G

_ o O =

1

oL O O

—_ O = = O

0

')
0
1

0)

State: Probability pj(t) of being at vertex j at time ¢

d
Dynamics: —p = —~ LD

-2 1 1 0 0
(1 -3 0 1 1 \
1 0 -2 1 0
0o 1 1 -3 1
\0 1 0 1 -2

Laplacian

Continuous-time quantum walk

1 2

Graph G: .> ’ A=
3 4

Random walk on G

0
/1
1

0

\0

_ o O =

1

oL O O

—_ O = = O

0

0

1

0)

adjacency matrix

Laplacian

State: Probability pj(t) of being at vertex j at time ¢

d

Dynamics: —
/ dt

p=—vLp

Quantum walk on GG

State: Amplitude ¢;(t) to be at vertex j at time ¢

d
D ics: 1—q = —vyLq
ynamics Zdtq vLq

Continuous-time quantum walk

1

2 /0

1
Graph G: .> A=|1
3 4 U

\0

adjacency matrix

Random walk on G

_O O =

1

O R OO =

—_ O = = O

0
')
0

1

0)

Laplacian

State: Probability pj(t) of being at vertex j at time ¢
d

Dynamics:

Quantum wal

State: Amp

Dynamics: ¢

dt

d

dt

p=—vLp

<on GG

q=—vLqg (ori

d

dt

itude ¢;(t) to be at vertex j at time ¢

qg=vAqg,or...)

Evaluating AND-OR trees by scattering

/.&é [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

/Xé [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

/Xé [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

/Xé [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

/Xé [Farhi, Goldstone, Gutmann 07]

o | 0 0 | I Il 0 | 0 | | 0 0 0 O

Claim: For small k, the wave is transmitted if the formula (translated
into NAND gates) evaluates to 0, and reflected if it evaluates to 1.

Gate sets
{AND, OR, NOT} equivalent to {NAND}

Gate sets
{AND, OR, NOT} equivalent to {NAND}

52

Gate sets
{AND, OR, NOT} equivalent to {NAND}

Gate sets
{AND, OR, NOT} equivalent to {NAND}

General formulas

nand nand

nand nand nand

nand nand

General formulas

nand nand

nand nand nand

In a formula (instead of a circuit), the fanout of every gate is |
(so the graph is a tree).

nand nand

General formulas

In a formula (instead of a circuit), the fanout of every gate is |
(so the graph is a tree).

General formulas

nand nand

nand nand nand

In a formula (instead of a circuit), the fanout of every gate is |
(so the graph is a tree).

nand nand

General formulas

nand nand

nand nand nand

In a formula (instead of a circuit), the fanout of every gate is |
(so the graph is a tree).

nand nand

Consider read-once formulas: every leaf is a different input.
(Equivalently, count duplicated inputs with multiplicity.)

General formulas

nand nand

nand nand nand

In a formula (instead of a circuit), the fanout of every gate is |
(so the graph is a tree).

nand nand

Consider read-once formulas: every leaf is a different input.
(Equivalently, count duplicated inputs with multiplicity.)

Quantum lower bound [Barnum-Saks 02]: Q(v/n)

Results

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 0/]

o \/n1+0(1) time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

Results

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 0/]

o \/n1+0(1) time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

Results

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 0/]

e \/plt+o(l) time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

This talk:

* O(1/n) query quantum algorithm for evaluating
“approximately balanced” NAND formulas (optimal!)

Results

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 0/]

e \/plt+o(l) time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

This talk:

* O(1/n) query quantum algorithm for evaluating
“approximately balanced” NAND formulas (optimal!)

o \/n1+0(1) time (and query) quantum algorithm for
evaluating arbitrary NAND formulas

The algorithm

|. Start at the root of the tree

2. Perform phase estimation
with precision =~ 1/1/n on
a discrete-time quantum
walk on the tree

3. If the estimated phase is 0
or m, then output 1;
otherwise output (

The algorithm

|. Start at the root of the tree

2. Perform phase estimation
with precision =~ 1/1/n on
a discrete-time quantum
walk on the tree

3. If the estimated phase is 0
or m, then output 1;
otherwise output (

Outline

* Scattering — phase estimation

* Hamiltonian for a continuous-
time quantum walk (with non-
uniform edge weights)

* L ow-energy eigenstates
“compute NAND”

* Continuous time — discrete
time (gives a small speedup)

* Formula rebalancing

From scattering to phase estimation

To do scattering calculations, we compute a complete basis of
eigenstates:

...% P

Left: e + R(k) e F* T(k) e
Right: T(k) etk e L R(k) e?

Bound: e B(k)e "*

From scattering to phase estimation

To do scattering calculations, we compute a complete basis of
eigenstates:

...% P

Left: e + R(k) e F* T(k) e
Right: T(k) etk e T L R(k) e
Bound: e B(k)e "*

Instead, we can just look at eigenstates of the graph itself.

Phase estimation: Given U and an eigenstate |) with U|p) = ei¢ |p),
we can estimate ¢ to precision § in O(1/9) steps.

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs

(so that all leaves evaluate to 0). ’
vg” Mpv
Hv) = hpo|p) + Z huele) o /e
Edge weights: h,, ~ 4 v Sy = # of inputs in subformula under v

Sp

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs

(so that all leaves evaluate to 0). ’
vg” Mpv
Hv) = hpo|p) + Z huele) o /e
Edge weights: h,, ~ 4 v Sy = # of inputs in subformula under v

Sp

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs

(so that all leaves evaluate to 0). ’
vg” Mpv
Hv) = hpo|p) + Z huele) o /e
Edge weights: h,, ~ 4 v Sy = # of inputs in subformula under v
Sp

Eigenstates: H|E) = E|E)

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs

(so that all leaves evaluate to 0). ’
vg” Mpv
Hv) = hpo|p) + Z huele) o /e
Edge weights: h,, ~ 4 v Sy = # of inputs in subformula under v
Sp

Eigenstates: H|E) = E|E) hpo(p|E) + » hye(c|E) = E(v|E)

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs

(so that all leaves evaluate to 0). ’
vg” Mpv
Hv) = hpo|p) + Z huele) o /e
Edge weights: h,, ~ 4 v Sy = # of inputs in subformula under v
Sp

Eigenstates: H|E) = E|E) hpo(p|E) + » hye(c|E) = E(v|E)

hoe
Ry

For E=0: (p|¥) =—)

C

(W)

Zero-energy eigenstates evaluate NAND

Let = root of the tree.

-

Theorem (qualitative).

If formu

If formu

a—=~0,t
a—=1,t

nen [(r|W)| > 0 for some |¥) with H |¥) = 0.

nen (r|W) =0 for any |¥) with H |¥)=0.

Zero-energy eigenstates evaluate NAND

Let = root of the tree.

-

Theorem (qualitative).
If formula = 0, then |(r|¥)| > 0 for some |¥) with H |¥) =0.
If formula =1, then (r|¥) =0 for any |¥) with H|¥)=0.

Theorem (quantitative). For approximately balanced formulas:

If formula =0, then |(r|¥)| > Q(1) for some |¥)
with H |[T) = 0.

If formula = 1, then eigenstates |E) with |E| < O(n)
have (r|E)=0.

By

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

67J(A—|—B) ~ (eiA/meiB/m)m

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

simulation steps

67J(A—|—B) ~ (eiA/meiB/m)m (I'U_Il time)Z

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

simulation steps

67J(A—|—B) ~ (eiA/meiB/m)m (I'U_Il time)Z
~ (eiA/QmeiB/meiA/Zm)m (I‘U_l’l time)S/Z

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

simulation steps

67J(A—|—B) ~ (eiA/meiB/m)m (I'U_Il time)Z
~ (eiA/QmeiB/meiA/Zm)m (I‘U_l’l time)S/Z

(run time)! oW

Simulating the quantum walk

[C., Cleve, Jordan,Yeung 07/]

We could perform phase estimation directly on the dynamics of this
Hamiltonian

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

simulation steps
67J(A—|—B) ~ (eiA/meiB/m)m (I'U_Il time)Z

~ (eiA/QmGiB/meiA/Zm)m (I‘U_Il time)S/Z

(run time)! oW

Instead, we can avoid the o(1) by using a discrete-time quantum walk.

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk

Stochastic matrix P

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk Quantum walk

Stochastic matrix P Unitary operator U derived from P
(locality of P — locality of U)

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk Quantum walk

Stochastic matrix P Unitary operator U derived from P
(locality of P — locality of U)

Eigenvalues of VP o PT:),

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk Quantum walk

Stochastic matrix P Unitary operator U derived from P
(locality of P — locality of U)

Eigenvalues of VP o PT: \; Eigenvalues of U: e?2rosinA;

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk Quantum walk

Stochastic matrix P Unitary operator U derived from P
(locality of P — locality of U)

+1 arcsin \;

Eigenvalues of VP o PT: Aj Eigenvalues of U: ¢

Claim: Any symmetric matrix H with positive entries can be factorized
as H = VP o PT for some stochastic matrix P (use Perron vector)

(note that locality of H — locality of P)

Continuous time — discrete time

Szegedy quantization of classical Markov chains:

Classical random walk Quantum walk

Stochastic matrix P Unitary operator U derived from P
(locality of P — locality of U)

+1 arcsin \;

Eigenvalues of VP o PT: Aj Eigenvalues of U: ¢

Claim: Any symmetric matrix H with positive entries can be factorized
as H = V P o PT for some stochastic matrix P.

(note that locality of H — locality of P)

This gives a general way to relate continuous- and discrete-time
quantum walk. Small eigenphases of e "’ and U are equal up to third
order.

Formula rebalancing

A quantum walk algorithm clearly cannot work for highly unbalanced
formulas:

Formula rebalancing

A quantum walk algorithm clearly cannot work for highly unbalanced
formulas:

But we can apply

Theorem [Bshouty, Cleve, Eberly 91]: Any NAND formula of size n
can be rewritten as an equivalent NAND formula of depth O(logn)

and size nl+o(1),

Applications to recursive functions

Recursive “all equal” function [Ambainis 03]

1l z=y==z2
flz,y,2) = v , recurse k times
0 otherwise

Polynomial degree: 2"
Q. query complexity: Q((%)k) = Q(2.12%) (adversary method)

O(V6F) = 0(2.45%) (NAND of 6)

Recursive majority function [Boppana 86]

Il z4+y+22>2 .
flz,y,2) = | , recurse k times
0 otherwise

C. query complexity [JKS 03]: Q((%)) = Q(2.33%)
o((5)F) = 0(2.67°)
Q. query complexity: Q(2") (adversary method)
O(V5F) = 0(2.24%) (NAND of 5)

Closed problems

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial
of degree \/nlto(1)
Hence formulas are (classically!) PAC learnable in time AL

1+0(1)

Closed problems

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial
of degree \/nlto(1)
Hence formulas are (classically!) PAC learnable in time AL

14+o0(1)

[Reichardt, Spalek, STOC 08]: Generalization to formulas built from
other gates, using new gate widgets derived from span programs.

Gives optimal (or nearly optimal) algorithms for many other functions,
including an optimal algorithm (O(2%)) for recursive ternary majority.

Closed problems

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial
of degree \/nlto(1)
Hence formulas are (classically!) PAC learnable in time gVnitel)

[Reichardt, Spalek, STOC 08]: Generalization to formulas built from
other gates, using new gate widgets derived from span programs.

Gives optimal (or nearly optimal) algorithms for many other functions,
including an optimal algorithm (O(2%)) for recursive ternary majority.

Open problems

* Formulas with yet more general gates!?

e Similar algorithms for circuits!?

e Can we compute a certificate for the value of a formula?
* [mproved formula rebalancing?

Zero-energy eigenstates evaluate NAND:
Qualitative version

Let NAND(p) denote the value of the NAND subformula under p.
Let 7 = root of the tree.

Zero-energy eigenstates evaluate NAND:
Qualitative version

Let NAND(p) denote the value of the NAND subformula under p.
Let 7 = root of the tree.

Theorem.
If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥)=0.
If NAND(r) =0, then |[(r|T)| > 0 for some |¥V) with H|¥) = 0.

NAND =1

[If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥)=0. J

NAND =1

[If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥) =

Base case: Some child v of p is a leaf.

hpo(P|¥) = 0 —"Y @A

NAND =1

[If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥) =

Base case: Some child v of p is a leaf.

Induction: Some child v of p has NAND(v) = 0;
all its children ¢ have NAND(¢) =1.

NAND =1

[If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥) =

Base case: Some child v of p is a leaf.

Induction: Some child v of p has NAND(v) = 0;
all its children ¢ have NAND(¢) =1.

B (p|) = }:mmdm._of

NAND =0

[If NAND(r) =0, then |[{r|¥)| > 0 for some |¥) with H |¥) =0. J

NAND =0

[If NAND(r) =0, then |[{r|¥)| > 0 for some |¥) with H |¥) =0. J

Base case: A single leaf.

NAND =0

[If NAND(r) =0, then |{(r|¥)| > 0 for some |¥) with H |¥) =

Base case: A single leaf.

Induction: All children v of » have NAND (v)

some child ¢ of v has NAND(c¢) 0

NAND =0

[If NAND(r) =0, then |{(r|¥)| > 0 for some |¥) with H |¥) =

Base case: A single leaf.

Induction: All children v of » have NAND (v)

some child ¢ of v has NAND(c¢) 0

put a state here with |(c|¥)| >0 —

NAND =0

[If NAND(r) =0, then |{(r|¥)| > 0 for some |¥) with H |¥) =

Base case: A single leaf.

Induction: All children v of » have NAND (v)
some child ¢ of v has NAND(c¢) =

R (7| W) = —hye(c| W) # 0 _

0

put a state here with |(c|¥)| >0 —

Zero-energy eigenstates evaluate NAND:
Quantitative version

-

Theorem (qualitative).
If NAND(p) =1, then (p|¥) =0 for any |¥) with H |¥)=0.
If NAND(r) =0, then |[{r|¥)| > 0 for some |¥) with H |¥) =0.

Theorem (quantitative). For approximately balanced formulas:
If NAND(r) =1, then eigenstates |E) with |E| < O(%)
have (r|E) = 0.

If NAND(7) =0, then |(r|¥)| > Q(1) for some |¥)
with H) = 0.

