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Why quantum computing?

Information is physical.

Physics is quantum mechanical.

In particular: Physical systems are described 
by vectors in Hilbert space that evolve by 
unitary transformations and can be measured 
by projection onto orthogonal subspaces.



The quantum circuit model

• Start in the state |0L

• Apply a sequence of unitary 
transformations U1, U2, …, Uk chosen from 
a universal gate set, e.g. {H,T,CNOT}

• Measure in the computational basis

But time is not really discrete!



Hamiltonian dynamics

H=H† so that the time evolution is unitary:

H(t) is the Hamiltonian.

Quantum systems evolve according to 
the Schrödinger equation:



Solution of Schrödinger equation

Eigenstates of H: H |qjL = Ej |qjL

H = ¦j Ej |qjLKqj| Ej � R since H=H†

Suppose |s(0)L = |qjL

Then |s(t)L = exp(–i Ej t) |qjL

Expand a general initial state: |s(0)L = ¦j cj |qjL

|s(t)L = ¦j cj exp(–i Ej t) |qjL = U(t) |s(0)L

where U(t) = exp(–i H t) = ¦j (–i H t)j / j!

time independent



Solution of Schrödinger equation

Time dependent case

|s(t)L = U(t) |s(0)L

where U(t) = T exp[–i V0t do H(o)]

time ordering operator

Special case: Suppose H(t) changes very 
slowly.  Then the evolution is much simpler 
because of the Adiabatic Theorem.  More on 
this later.



Relation to the circuit model

Unitary quantum gates arise from 
Hamiltonian dynamics.

Simple example: Two level atom.

|1L

|0L

Apply a laser pulse.

But perhaps we can use many-body Hamiltonians 
to perform interesting computations.



Why consider Hamiltonians?

Simulating physical systems

Quantum analogue of the Cook-Levin 
Theorem (Kitaev: “LOCAL HAMILTONIAN is 
QMA-complete”)

New kinds of quantum algorithms
• Quantum walks
• Adiabatic quantum computation



Efficiently realizable Hamiltonians

How do we know what Hamiltonians are 
legal for use in computations?

Example:
Let x = instance of a hard problem
Let sx = solution of x

The Hamiltonian

seems hard to implement!



Efficiently realizable Hamiltonians

Two notions of efficient realizability:

1. H is the Hamiltonian of a physical system 
we can “easily” build

Spins arranged on a 2D lattice

j k

where ajk=0 for non-adjacent sites



Efficiently realizable Hamiltonians

Two notions of efficient realizability:

2. H is a Hamiltonian that can be efficiently 
simulated in the circuit model

Def. A Hamiltonian H acting on n qubits
can be efficiently simulated if for any 
¡>0, t>0 there is a quantum circuit U
consisting of poly(n,t,1/¡) gates such 
that NU – e–iHtN<¡.

Note: This will include the “physically reasonable” 
Hamiltonians.



Tools for simulating Hamiltonians

Rule 1. Local Hamiltonians.

If H acts on O(1) qubits, it can be 
efficiently simulated.

Rule 2. Rescaling.

If H can be efficiently simulated, then 
c H can be efficiently simulated for any 
c=poly(n).



Tools for simulating Hamiltonians

Rule 3. Linear combination.

If Hj can be efficiently simulated, then 
¦j Hj can be efficiently simulated.

Lemma. Lie product formula.

Let h=maxj NHjN.  Then



Lie product formula

Proof.

By Taylor expansion,

Thus



The story so far

Using Rules 1,2,3 we can simulate many 
“physical” Hamiltonians.

H = sum of terms, each acting on a 
constant number of qubits

Lloyd 96

Recall example of a spin glass:



Tools for simulating Hamiltonians

Rule 4. Commutation.

If H1, H2 can be efficiently simulated, 
then i[H1,H2] can be efficiently 
simulated.

Rule 5. Unitary conjugation.

If H can be efficiently simulated and the 
unitary operation U can be efficiently 
implemented, then U†HU can be 
efficiently simulated.

Proof.



Tools for simulating Hamiltonians

Rule 6. Computable phase shifts.

If H is diagonal and the diagonal 
element d(a)=Ka|H|aL can be efficiently 
computed for any a, then H can be 
efficiently simulated.

|aL

|0L

Proof.

d

e–it|1LK1|

e–2it|1LK1|

e–4it|1LK1|

d



Tools for simulating Hamiltonians
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Rule 7. Sparse Hamiltonians.

Suppose that for any a, one can 
efficiently compute all the values of b for 
which Ka|H|bL is nonzero.  Then H can be 
efficiently simulated.
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Coloring a sparse graph

Lemma.
Given an undirected graph G with N
vertices and maximum degree d, 
suppose one can efficiently compute the 
neighbors of a given vertex.  Then there 
is an efficiently computable function 
c(a,b)=c(b,a) taking O(d2 log2 N) values 
such that for all a, c(a,b)=c(a,b’) implies 
b=b’.

Aharonov, Ta-Shma 03



Coloring a sparse graph

Proof.

Let index(a,b) be the index of b in the list of neighbors of a.

Let k(a,b) be the smallest k such that a&b (mod k).
Note k(a,b)=k(b,a) and k=O(log N).

For a<b, define

c(a,b) := (index(a,b), index(b,a), k(a,b), b mod k(a,b))
For a>b, define c(a,b) := c(b,a).

Suppose c(a,b)=c(a,b’). Four cases:

i. a<b, a<b’. index(a,b)=index(a,b’) � b=b’.
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Simulating a sparse Hamiltonian

Proof. (of Rule 7)

CCDFGS 02

Write H as a diagonal matrix plus a matrix with zeros on the 
diagonal.  The diagonal part can be simulated using Rule 6
and combined with the off-diagonal piece using Rule 3.  Thus 
assume H has zeros on the diagonal WLOG.

Let vc(a) be the vertex connected to a by an edge of color c.
Let xc(a) := Re Ka|H|vc(a)L, yc(a) := Im Ka|H|vc(a)L.

We can efficiently implement unitary operators
Vc |a,0,0L = |a, vc(a), xc(a)L
Wc |a,0,0L = |a, vc(a), yc(a)L.

Consider the state space |a,b,zL where vertices are |a,0,0L.

We can efficiently simulate the Hamiltonians
S |a,b,xL = x |b,a,xL
T |a,b,yL = i y |b,a,–yL

using Rules 1,5,6. 

(If no such vertex,
vc(a)=11…1,

xc(a)=yc(a)=0.)



Simulating a sparse Hamiltonian

Proof. (of Rule 7, continued)

CCDFGS 02

This has the proper action on vertices:

Using Rules 3,5 we can efficiently simulate



Example: Particle in a potential

Wiesner 96, Zalka 98

Lattice version (lattice spacing l):

p2 is diagonal in the Fourier basis, and the 
unitary operator corresponding to the Fourier 
transform is efficiently implementable, so H 
can be simulated using Rules 3,5,6.

Alternatively, just note that H is sparse and 
computable, so Rule 7 applies.

Consider the Hamiltonian



Summary

Quantum systems evolve according to the 

Schrödinger equation

Such systems can be efficiently simulated by a 
universal quantum computer when H

• Is a sum of terms, each acting on at most a 
constant number of qubits (Rule 1,2,3)

• Is i times the commutator of two simulable 
Hamiltonians (Rule 4)

• Differs from a simulable Hamiltonian by an 
efficiently implementable unitary transformation 
(Rule 5)

• Is sparse and efficiently computable (Rules 6,7)
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