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Quantum walk
Quantum analog of a random walk on a graph.

Idea: Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!
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• Exponential speedup for black-box graph traversal [CCDFGS 02]

• Quantum walk search framework [Szegedy 05], [Magniez et al. 06]

- Spatial search [Shenvi-Kempe-Whaley 02], [CG 03, 04], [Ambainis-Kempe-Rivosh 04]

- Element distinctness [Ambainis 03]

- Subgraph finding [Magniez, Santha, Szegedy 03], [CK 10]

- Matrix/group problems [Buhrman, Špalek 04], [Magniez, Nayak 05]

• Evaluating formulas/span programs
- AND-OR formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRŠZ 07]

- Span programs for general query problems [Reichardt 09]

- Learning graphs [Belovs 11] → new upper bounds (implicitly, quantum 
walk algorithms), new kinds of quantum walk search

Quantum walk algorithms
Quantum walk is a major tool for quantum algorithms (especially 
query algorithms with polynomial speedup).



Universality of quantum walk

Note:  The graph is necessarily exponentially large in the number of 
qubits!  Vertices represent basis states.

Quantum walk can be efficiently simulated by a universal quantum 
computer.

circuit with
poly(logN) qubits
poly(logN) gates

)
poly(logN)max degree

efficiently computable neighbors

N-vertex graph

Conversely, quantum walk is a universal computational primitive: any 
quantum circuit can be simulated by a quantum walk.  [C 09]
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Quantum walk experiments

Experimental realization of a quantum quincunx

by use of linear optical elements
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We report the experimental realization of a quantum analog of the classical Galton quincunx and discuss its

possible use as a device for quantum computation. Our quantum quincunx is implemented with linear optical

elements that allow an incoming photon to interfere with itself while traversing all possible paths from the

source to the detector. We show that the experimentally determined intensity distributions are in excellent

agreement with theory. © 2005 Optical Society of America

OCIS codes: 200.0200, 230.0230.

Much recent theoretical work has examined the prop-

erties of a quantum walk (QW) in one and two

dimensions.1–11 A two-dimensional QW is the quantum

analog of the classical random walk, a statistical concept

that has been used to demonstrate such phenomena as

Brownian motion and the transition from a binomial to a

Gaussian distribution in the limit of large statistics. The

random walk can be implemented with a device known as

Galton’s quincunx,12 which consists of a matrix of pins

through which a ball travels, with probability 50:50 of go-

ing right or left at each pin.

Here we describe the implementation of the QW using

an optical quantum quincunx (QQ).2,5,13 The primary

difference between the Galton quincunx and a QQ is that

an object traversing the Galton quincunx travels along a

single path from the source to the detector, whereas each

incident object in a QQ can be viewed as simultaneously

traversing all possible paths to the detector. A schematic

version of a QW1–10 is shown in Fig. 1, where in our case

the quantum object is a photon. At each node (indicated

by a dark circle) a photon with x or y polarization is split

into two beams (denoted by x! and y!) that are rotated
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lation between brig
htness and vertical

flow direction

(12). This constitut
es evidence for a co

nvective flow

pattern that transports the
energy flux emitted in

the penumbra. Other
studies show a correlation

between intensity and line-of-sight velocities

(13), which for sunspots observed outside the

center of the sola
r disk is dominated by the hor-

izontal Evershed flow. This is cons
istent with our

findings, because
in the penumbra the

horizontal

flow velocity is correlated with the vertical flow

direction.
Our detailed analy

sis (8) shows that
the spatial

scales of the flows
providing the maj

or part of the

convective energy transport are similar for both

undisturbed granul
ation and penumbr

a. The primary

difference is that
there is no preferred horizontal

direction for granulation, whereas the energy-

transporting flows in the penumbra are distinctly

asymmetric: Conv
ective structures ar

e elongated in

the radial direction
of the sunspot. Th

ese properties

were already indicated in earlier simulations
(5, 6)

and suggested as an explanation for the Evershed

outflow in (14). The simulation shown here con-

firms this suggestio
n and demonstrate

s the convec-

tive nature of a ful
ly developed penu

mbra.

The horizontal as
ymmetry of the convective

flows is also manifest in the correlation of 0.42

between the corresponding
flow component (vx)

and the brightness. We find that the rms of the

outflowingvelocity
component (vx) in t

he penumbra

is much larger than the transverse com
ponent (vy)

(perpendicular to
the filament direct

ion), showing

an asymmetry similar to that found by the scale

analysis. The tota
l rms velocity profile as a func-

tion of depth is very similar to its counterpart for

undisturbed granulation, apart from a slightly

higher peak value, confirming
the physical sim-

ilarity of convectio
n in granulation an

d penumbra.

The mass flux and energy flux show similar

properties with respect to the length scales and

asymmetry (8), indicating that most of the

outflowing materi
al emerges, turns

over, and de-

scends within the
penumbra. In the

deeper layers,

there is some con
tribution (of the order of 1

0 to

20%) to both energy an
d mass fluxes by t

he large-

scale flow cell surrounding t
he sunspots.

The analysis of ou
r simulations indi

cates that

granulation and p
enumbral flows ar

e similar with

regard to energy transport; the asymmetry be-

tween the horizontal directio
ns and the reduced

overall energy flux reflect the constraints im-

posed on the conv
ective motions by

the presence

of a strong and inclined magnetic field. T
he de-

velopment of syst
ematic outflows is

a direct con-

sequence of the anisotropy, and the similarities

between granulati
on and penumbral

flows strong-

ly suggest that driv
ing the Evershed f

low does not

require physical processe
s that go beyond the

combination of convection and
anisotropy intro-

duced by the magnetic field. Weaker laterally

overturning flows
perpendicular to t

he main fila-

ment direction ex
plain the apparent

twisting mo-

tions observed in some filaments (15, 16) and

lead to a weakening of the magnetic f
ield in the

flow channels through
flux expulsion (6)

.

Although our simulation of large sunspots
is

realistic in terms of relevant
physics, it does n

ot

faithfully reproduc
e all aspects of the

morphology

of observed penumbral filamen
ts. The penumbral

regions are considerably more extended than in

previous local sim
ulations, but they

are still some-

what subdued, pro
bably owing to the

proximity of

the periodic bound
aries. The filamen

ts in the inner

penumbrae appear
to be too fragment

ed, and short,

dark lanes along bright filaments (1
7) form only

occasionally, likel
y a consequence of the still-

limited spatial reso
lution of the simu

lation. Lastly,

the initial condition of the magnetic field under-

lying the sunspot is quite arbitrary, owing to our

ignorance of the s
ubsurface structur

e of sunspots.

Notwithstanding th
ese limitations, the

present sim-

ulations are consis
tent with observat

ions of global

sunspot properties,
penumbral structur

e, and system-

atic radial outflows. T
hese and earlier simulations

(5, 6, 10) suggest a
unified physical ex

planation for

umbral dots aswel
l as inner and outer

penumbrae in

terms of magnetoconvec
tion in a magnetic field

with varying inclination. Furthe
rmore, a consisten

t

physical picture of all observationa
l characteristics

of sunspots and the
ir surroundings is n

ow emerging.
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Quantum Walk in Position Space with

Single Optically Trapped Atoms

Michal Karski,* Leonid Förster, Jai-Min Choi, Andreas Steffen, W
olfgang Alt,

Dieter Meschede, Artur W
idera*

The quantum walk is the quantum analog of the well-known random walk, which forms the basis

for models and applications in many realms of sc
ience. Its properti

es are markedly different

from the classical counterpa
rt and might lead to extensive applications in quantum information

science. In our experiment, w
e implemented a quantum walk on the line with single neutral atom

s

by deterministical
ly delocalizing them over the sites of a one-dimensional s

pin-dependent

optical lattice. Wit
h the use of site-resolved fluorescence imaging, the final wave function is

characterized by local quantum
state tomography, and

its spatial coheren
ce is demonstrated.

Our system allows the observation of the quantum-to-classic
al transition and paves the way for

applications, such
as quantum cellular automata.

Interference phenomena with microscopic

particles are a direct consequen
ce of their

quantum-mechan
ical wave nature (

1–5). The

prospect to fully control quantum
properties of

atomic systems h
as stimulated ideas to engineer

quantum states that would
be useful for appl

ica-

tions in quantum information processing, for

example, and also would elucidate fundam
ental

questions, such as the quantum-to-classical

transition (6). A prominent examp
le of state engi-

neering by controlled multipath interference is

the quantum walk of a particle (7). Its classical

counterpart, the ra
ndomwalk, is relevant in

many

aspects of our live
s, providing insigh

t into diverse

fields: It forms th
e basis for algorithm

s (8), de-

scribes diffusion processes in physics or biolog
y

(8, 9), such as Brownian motion, or has been

used as a model for stock
market prices (10).

Similarly, the qua
ntum walk is expected to have
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ersität Bonn Wegele
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Realization of Quantum Walks with Negligible Decoherence in Waveguide Lattices
Hagai B. Perets,1,* Yoav Lahini,1 Francesca Pozzi,2 Marc Sorel,2 Roberto Morandotti,3 and Yaron Silberberg1
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Quantum random walks are the quantum counterpart of classical random walks, and were recently

studied in the context of quantum computation. Physical implementations of quantum walks have only

been made in very small scale systems severely limited by decoherence. Here we show that the

propagation of photons in waveguide lattices, which have been studied extensively in recent years, are

essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large

scales and display negligible decoherence, they can serve as an ideal and versatile experimental

playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum

walks in large systems (! 100 sites) and confirm quantum walks effects which were studied theoretically,

including ballistic propagation, disorder, and boundary related effects.DOI: 10.1103/PhysRevLett.100.170506
PACS numbers: 03.67.Lx, 05.40.Fb, 42.25.Dd, 42.50.XaIn classical random walks, a particle starting from an

initial site on a lattice randomly chooses a direction, and
then moves to a neighboring site accordingly. This process
is repeated until some chosen final time. This simple
random walk scheme is known to be described by a
Gaussian probability distribution of the particle position,
where the average absolute distance of the particle from the
origin grows as the square root of time. First suggested by
Feynman [1] the term quantum random walks was defined
to describe the random walk behavior of a quantum parti-
cle. The coherent character of the quantum particle plays a
major role in its dynamics, giving rise to markedly differ-
ent behavior of quantum walks (QWs) compared with
classical ones. For example, in periodic systems, the quan-
tum particle propagates much faster than its classical
counterpart, and its distance from the origin grows linearly
with time (ballistic propagation) rather then diffusively [2].
In disordered systems, the expansion of the quantum me-
chanical wave-function can be exponentially suppressed
even for infinitesimal amount of disorder, while such sup-
pression does not occur in classical random walks.In recent years QWs have been extensively studied
theoretically [2] and have been used to devise new quan-
tum computation algorithms [3]. Both discrete and con-
tinuous time QWs (DQWs; CQWs) [4–6] have been
studied. In DQWs the quantum particle hops between
lattice sites in discrete time steps, while in CQW the
probability amplitude of the particle leaks continuously
to neighboring sites. Experimentally, many methods have
been suggested for the implementation of DQWs (see [2]),
but only a small scale system consisting of a few states was
implemented, using linear optical elements [7]. For CQWs,
a few suggestions have been made [8,9], yet only one
experimental method have been implemented by realizing
a small scale cyclic system (4 states) using a nuclear
magnetic resonance system [10]. Such systems are difficult

to scale to much larger configurations. Moreover, even at
these very small scales, errors attributed to decoherence
have been observed.Here we suggest a very different implementation of
CQWs using optical waveguide lattices. These systems
have been studied extensively in recent years [11], but
not in the context of QWs and quantum algorithms. We
show that these systems can serve as a unique and robust
tool for the study of CQWs. For this purpose we demon-
strate three fundamental QW effects that have been theo-
retically analyzed in the QW literature. These include
ballistic propagation in the largest system reported to
date (! 100 sites), the effects of disorder on QWs, and
QWs with reflecting boundary conditions (related to
Berry’s ‘‘particle in a box’’ and quantum carpets
[12,13]). Waveguide lattices can be easily realized with
even larger scales than shown here (102–104 sites with
current fabrication technologies), with practically no de-
coherence. The high level of engineering and control of
these systems enable the study of a wide range of different
parameters and initial conditions. Specifically it allows the
implementation and study of a large variety of CQWs and
show experimental observations of their unique behavior.

The CQW model was first suggested by Farhi and
Gutmann [6], where the intuition behind it comes from
continuous time classical Markov chains. In the classical
random walk on a graph, a step can be described by a
matrix M which transforms the probability distribution for
the particle position over the graph nodes (sites). The
entries of the matrix Mj;k give the probability to go from
site j to site k in one step of the walk. The idea was to carry
this construction over to the quantum case, where the
Hamiltonian of the process is used as the generator matrix.
The system is evolved usingU"t# $ exp"%iHt#. If we start
in some initial state j!ini, evolve it under U for a time T
and measure the positions of the resulting state, we obtain a

PRL 100, 170506 (2008) P H Y S I C A L R E V I E W L E T T E R S
week ending2 MAY 2008

0031-9007=08=100(17)=170506(4)
170506-1  2008 The American Physical Society



Multi-particle quantum walk

Consequences: 
• Architecture for a quantum computer with no time-dependent 

control
• Simulating interacting many-body systems is BQP-hard (e.g., Bose-

Hubbard model on a sparse, unweighted, planar graph)

With many walkers, the Hilbert space can be much bigger.

(similar scaling for indistinguishable bosons/fermions)
distinguishable particles on an    -vertex graph:       dimensionsm n nm

Main result:  Any   -qubit,    -gate quantum circuit can be simulated by a 
multi-particle quantum walk of           particles interacting for time
                on a graph with                 vertices.

n g

poly(n, g)
n+ 1

poly(n, g)



Outline
• Scattering theory on graphs

• Single-particle universality (review)

• Multi-particle universality

• Proof ideas

• Refinements and extensions

• Open questions



Scattering theory on graphs

[Liboff, Introductory Quantum Mechanics]



Quantum walk
Quantum analog of a random walk on a graph                  .G = (V,E)

Idea: Replace probabilities by quantum amplitudes.

| (t)i =
X

v2V

av(t)|vi

amplitude for vertex    at timev t

i
d
dt

|�(t)� = H|�(t)�

Define time-homogeneous, local dynamics on    .G

Adjacency matrix: H =
X

(u,v)2E(G)

|uihv|



Momentum states

Consider an infinite path:

Hilbert space: span{|x⌅ : x � Z}

Eigenstates of the adjacency matrix:       with|k̃�

⇤x|k̃⌅ := eikx k ⇥ [��,�)

= eik(x�1) + eik(x+1)

= (2 cos k)�x|k̃⇥

We have �x|A|k̃⇥ = ⇥x � 1|k̃⇤ + ⇥x + 1|k̃⇤

�7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

so this is an eigenstate with eigenvalue           .2 cos k



Wave packets
A wave packet is a normalized state with momentum concentrated 
near a particular value   .k

����
dE

dk

���� = 2|sin k|Propagation speed:

�1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

k !

1p
L

LX

x=1

e

�ikx|xiExample: (large   )L



Scattering on graphs
Now consider adding semi-infinite lines to two vertices of an arbitrary 
finite graph.

Before:

k !

Ĝ

After:

k !
T (k)R(k)

 k

Ĝ



The S-matrix

A

(1, 1)
(1, 2)

(1, N)

bG

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

B

k !

k !

This generalizes to any number     of semi-infinite paths attached to 
any finite graph.

N

Incoming wave packets of 
momentum near    are mapped 
to outgoing wave packets (of 
the same momentum) with 
amplitudes corresponding to 
entries of an            unitary 
matrix        , called the S-matrix.

N ⇥N
S(k)

k



Single-particle universality

arXiv:0806.1972
Physical Review Letters 102, 180501 (2009)

http://arxiv.org/abs/0806.1972
http://arxiv.org/abs/0806.1972


Encoding a qubit
Encode quantum circuits into graphs.

Computational basis states correspond to paths (“quantum wires”).

For one qubit, use two wires (“dual-rail encoding”):
A

(1, 1)
(1, 2)

(1, N)

bG

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

B

k !

k !

encoded |0i

A

(1, 1)
(1, 2)

(1, N)

bG

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

B

k !

k !

encoded |1i

Quantum information propagates from left to right at constant speed.

Fix some value of the momentum (e.g.,              ).k = ⇡/4



Implementing a gate

S(k) =

✓
0 V
U 0

◆

Ĝ
0in 0

out

1
out

1in

To perform a gate, design a graph whose S-matrix implements the 
desired transformation     at the momentum used for the encoding. U



Universal set of single-qubit gates

�
1 0
0
�

i

⇥
� 1p

2

✓
i 1
1 i

◆

1
in

1
out

0
in

0
out 0

in

1
in

0
out

1
out

k = ⇡/4momentum for logical states:



Single-particle universality construction

Implement sequences of gates by concatenation.

With an appropriate encoding of   -qubit states, two-qubit gates are 
trivial.

n

Any   -qubit circuit can be simulated by some graph.  The number of 
vertices is (necessarily) exponential in   .n

n

|11
in

i

|10
in

i
|01

in

i

|00
in

i

|11
out

i

|10
out

i
|01

out

i

|00
out

i



Multi-particle universality



Multi-particle quantum walk

U = J
X

(u,v)2E(G)

n̂un̂vnearest-neighbor:

Indistinguishable particles:
bosons:  symmetric subspace
fermions:  antisymmetric subspace

Hamiltonian:

states:

With     distinguishable particles:m

H
(m)
G =

mX

i=1

X

(u,v)2E(G)

|uihv|i + U

|v1, . . . , vmi vi 2 V (G)

Many possible interactions:

on-site: n̂v =
mX

i=1

|vihv|iU = J
X

v2V (G)

n̂v(n̂v � 1)



Logical encoding

Perform single-qubit gates as before.
How to perform interactions?

Encode each qubit in a single-particle state as before:
A

(1, 1)
(1, 2)

(1, N)

bG

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

B

k !

k !

encoded |0i

A

(1, 1)
(1, 2)

(1, N)

bG

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

B

k !

k !

encoded |1i

For    qubits, use    particles on      paths.n n 2n



Two-particle scattering
In general, multi-particle scattering is complicated.

But scattering of indistinguishable particles on an infinite path is simple.

Before:

k !  p

After:

Phase    depends on momenta and interaction details.✓

k !ei✓⇥  p



Momentum switch

A

3

1 2

1 2

3

=

B

1m,in

0m,in 0m,out

0c,in 0c,out

1c,in

1m,out

1c,out

To selectively induce the two-particle scattering phase, we route 
particles depending on their momentum.

Particles with momentum        follow the single line.

Particles with momentum        follow the double line.

⇡/4

⇡/2



Controlled phase gate

A

3

1 2

1 2

3

=

B

1m,in

0m,in 0m,out

0c,in 0c,out

1c,in

1m,out

1c,out

Computational qubits have momentum       .  Introduce a “mediator 
qubit” with momentum       .  We can perform an entangling gate with 
the mediator qubit.

⇡/2
⇡/4

C✓ =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei✓

1

CCA



Canonical form of a circuit

For almost all   , we can use      to do                                    .CP =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �i

1

CCA✓ C✓

Any circuit can be implemented using

• Single-qubit gates on computational qubits
•       gates between a computational and the mediator qubit
• Hadamard gates on the mediator qubit
CP

Proof:

•

•

|0i |0i

=

• • • •

•

|0i H • • H • H • • H |0i

gateCP



Hadamard on mediator qubit

A

1
in

1
out

0
in

0
out

B

0
in

1
in

0
out

1
out

C

1
in

0
in

0
out

1
out
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Example
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Error bound
Initial state: each particle is a square wave packet of length L

0m,out

1m,out

12,out

02,out

11,out

01,out

01,in
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02,in
12,in

0m,in

1m,in

B
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T

Consider a   -gate,   -qubit circuit:g n

paths,            vertices on each path2(n+ 1) O(gL)

Evolution time O(gL)

O(ngL)Total # of vertices

Theorem:  The error can be made arbitrarily small with                       .L = poly(n, g)

Example:  For Bose-Hubbard model,                        suffices.L = O(n12g4)



Proof ideas



Approximating wave packet scattering
Analysis of single-particle construction: method of stationary phase

Theorem 1:

bG

 
k

bG

k !

S
N
1 (k)

k !

S21
(k)

k
!

S 1
1
(k
)

⇡

Theorem 2:
k ! k !ei✓⇥⇡

Instead, we directly prove that, with long enough incoming square wave 
packets (length   ), the outgoing wave packets are well-approximated 
by the effect of the S-matrix (error                ).

L
O(L�1/4)



Truncation
Truncation Lemma:  If, for all times of interest, the state is well-
approximated by one that is well-localized to some region, then 
changing how the Hamiltonian acts outside that region has little effect.

This lets us
• approximate finite graphs by infinite ones

• approximate the evolution by piecewise scattering through 
separate gate gadgets

• focus exclusively on one- and two-particle scattering

Example:  For small enough times,

⇡
k !

k !

Ĝ

Ĝ

k !

k !



Refinements and extensions



Planarity

1in

0in 0out

1out

Figure 8: A planar graph that implements a Hadamard gate at momentum �⇡/2.

C Refinements of the universality construction
In this section we present two refinements of our scheme. We first show how our scheme can be
modified to use planar graphs of maximum degree four. We then give a universality construction
using distinguishable particles with nearest-neighbor interactions.

C.1 Making the graph planar
The example in Figure 6 shows that the graphs in the scheme described by the main text of our
paper may not be planar: the mediator qubit can interact with any of the computational qubits, so
the vertical paths for the C✓ gate cross other paths in the graph. Furthermore, both the graph used
to implement the Hadamard gate on the mediator qubit (Figure 4) and the graph used to implement
the C✓ gate (Figure 5(b)) can lead to a nonplanar overall graph when input and output paths are
attached in the prescribed manner. In this section we describe how to modify the scheme so that
the resulting graph is planar and has maximum degree 4.

The first simple modification is to replace the graph from Figure 4 with a planar graph (with
input and output vertices on the same face in the correct relative positions) that also implements
a Hadamard gate on the mediator qubit. The graph in Figure 8 does the trick: its S-matrix at
momentum �⇡/2 has the form (5) with lower left submatrix

UH0 =
1p
2
e�3⇡i/4

✓
1 1
1 �1

◆
.

The smaller maximum degree (4 instead of 5) and planarity of this graph come at the expense of
increasing the number of vertices (as compared to the graph in Figure 4).

As a second modification, we introduce additional mediator qubits. Throughout the graph,
we arrange the input and output paths for the computational qubits vertically from 1, . . . , n with
the path corresponding to logical 0 always above the path corresponding to logical 1. For each
i 2 {1, . . . , n � 1} we place a mediator qubit labeled m(i) between computational qubits i and
i+ 1. We only perform two-qubit gates between adjacent qubits throughout the computation (i.e.,
mediator qubit m(i) only interacts with logical qubits i and i+ 1).

To implement two-qubit gates in a planar manner, we use the graph shown in Figure 9. This
graph is obtained by concatenating two C✓ graphs and uncrossing paths to make the drawing
planar. We only use this gate between adjacent encoded qubits, one of which is a mediator qubit
and one of which is a computational qubit. Note that this graph involves two adjacent paths (path
1 of the top encoded qubit and path 0 of the bottom encoded qubit) as opposed to the two 1
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Planar Hadamard:

1i+1,in 1i+1,out

0m(i),in 0m(i),out

0i+1,in

1m(i),in 1m(i),out

0i+1,out

Figure 9: The planar entangling gate between adjacent encoded qubits m(i) and i + 1. This
graph implements the unitary Xi+1(C✓)2m(i),i+1Xi+1. A similar graph implements the unitary
Xm(i)(C✓)2i,m(i)Xm(i) between adjacent encoded qubits i and m(i).

paths in the C✓ gate in Figure 5. The resulting logical gate is (C✓)2 conjugated by an X gate on
the bottom qubit. More explicitly, if we interact computational qubit i and mediator m(i), we
implement Xm(i)(C✓)2i,m(i)Xm(i), whereas if we interact mediator m(i) and computational qubit
i + 1, we implement Xi+1(C✓)2m(i),i+1Xi+1. Applying this gate a times, where ei✓a ⇡ ±i, we can
approximate the gates Xm(i)CZi,m(i)Xm(i) and Xi+1CZm(i),i+1Xi+1.

Using these gates, we can perform a controlled-Z gate between computational qubits i and i+1
by the following sequence:

CZi,i+1|ai, bi+1, 0m(i)i = CNOTi+1,m(i)CZi,m(i)CNOTi+1,m(i)|ai, bi+1, 0m(i)i
= Xm(i)Xi+1CNOTi+1,m(i)CZi,m(i)CNOTi+1,m(i)Xm(i)Xi+1|ai, bi+1, 0m(i)i
= Hm(i)

�
Xi+1CZm(i),i+1Xi+1

�
Hm(i)

�
Xm(i)CZi,m(i)Xm(i)

�
Hm(i)�

Xi+1CZm(i),i+1Xi+1

�
Hm(i)|ai, bi+1, 0m(i)i.

To implement a CZ gate between arbitrary encoded qubits, we use these CZi,i+1 and one-qubit
gates to implement a SWAPi,i+1 gate, facilitating movement of encoded qubits. To implement a
CZi,j gate, we use SWAP gates to move the information encoded in qubit i to qubit j � 1 or j + 1,
perform the required CZ gate, and finally use SWAP gates to return qubit i to its original position.

Note that every graph implementing a gate preserves the relative position of each path for both
the input and the output (e.g., qubit 1 remains above qubit m(1) and each 0 path remains above each
1 path), so concatenation of the graphs preserves planarity. As each individual graph is planar, and
as concatenating two graphs preserves planarity, the overall graph simulating the quantum circuit
is planar.

C.2 Distinguishable particles
So far we have focused on the case of indistinguishable particles. However, we can also perform
universal quantum computation with distinguishable particles, provided the interaction has an ap-
propriate form.

For distinguishable particles we use the same encoding of qubits as before (computational
qubits have momentum �⇡/4 and mediator(s) have momentum �⇡/2), except that now each
qubit is associated with a specific particle (e.g., computational qubit 1 is associated with particle
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Put a mediator between every pair of computational qubits and 
unwind pairs of       gates:C✓



Distinguishable particles

But with an appropriate choice of parameters, can ensure (say)          .R = 0

Then the effect of scattering on a long path is not just to accumulate a 
phase.

For two distinguishable particles on a long path, reflected and 
transmitted states are distinct:

k !  p

T + R
k ! p k ! p



Open questions
• Improved error bounds

• Simplified initial state

• Are generic interactions universal for distinguishable particles?

• New quantum algorithms

• Experiments

• Fault tolerance


