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Quantum walk

Quantum analog of a random walk on a graph.

Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!
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Quantum walk algorithms

Quantum walk is a major tool for quantum algorithms (especially
query algorithms with polynomial speedup).

* Exponential speedup for black-box graph traversal [CCDFGS 02]
e Quantum walk search framework [Szegedy 05], [Magniez et al. 06]
- Spatial search [Shenvi-Kempe-Whaley 02], [CG 03, 04], [Ambainis-Kempe-Rivosh 04]
- Element distinctness [Ambainis 03]
- Subgraph ﬁnding [Magniez, Santha, Szegedy 03], [CK 10]
- Matrix/group problems [Buhrman, Spalek 04], [Magniez, Nayak 05]
e Evaluating formulas/span programs
- AND-OR formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRSZ 07]
- Span programs for general query problems [Reichardt 09]

- Learning graphs [Belovs 117 = new upper bounds (implicitly, quantum
walk algorithms), new kinds of quantum walk search



Universality of quantum walk

Quantum walk can be efficiently simulated by a universal quantum
computer.

Conversely, quantum walk is a universal computational primitive: any
quantum circuit can be simulated by a quantum walk. [C 09]

Note: The graph is necessarily exponentially large in the number of
qubits! Vertices represent basis states.



Quantum walk experiments
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Multi-particle quantum walk

With many walkers, the Hilbert space can be much bigger.
m distinguishable particles on an n-vertex graph: n'""* dimensions

(similar scaling for indistinguishable bosons/fermions)

Any n-qubit, g-gate quantum circuit can be simulated by a
multi-particle quantum walk of n + 1 particles interacting for time
poly(n, g) on a graph with poly(n, g) vertices.

Consequences:

* Architecture for a quantum computer with no time-dependent
control

e Simulating interacting many-body systems is BQP-hard (e.g., Bose-
Hubbard model on a sparse, unweighted, planar graph)



Outline

* Scattering theory on graphs

* Single-particle universality (review)
e Multi-particle universality

* Proof ideas

e Refinements and extensions

* Open questions



Scattering theory on graphs

d2 scattering
detector

incident beam Target transmitted beam

[Liboff, Introductory Quantum Mechanics]



Quantum walk

Quantum analog of a random walk on a graph G = (V. FE).

Replace probabilities by quantum amplitudes.

P(t) = > ay(t)|v)
veV \
amplitude for vertex v at time ¢

Define time-homogeneous, local dynamics on G.

e
[0 () = HIw ()

Adjacency matrix: H = Z u) (v
(u,v)EE(QG)



Momentum states

Consider an infinite path:

-7 -6 -5 -4 -3 -2 -1 0 2 3 4

Hilbert space: span{|z):z € Z}

Eigenstates of the adjacency matrix: |k) with

<aj|l~c> = 'F7 kel|—mm)

We have (z|Alk) = (z — 1|k) + (z + 1|k)
_ eik(x—l) _|_6ik(w—|—1)
= (2cos k) {z|k)

so this is an eigenstate with eigenvalue 2 cos k.

® ® ® ® *r—o—0—0—0—0— - -
1



Wave packets

A wave packet is a normalized state with momentum concentrated
near a particular value k.

L
1 .

Example: — E e P 1) (large L)
VL

k —

dE
Propagation speed: el 2|sin k|




Scattering on graphs

Now consider adding semi-infinite lines to two vertices of an arbitrary
finite graph.

Before:
k —
J @ .I' o o @ @ @ @ @ @
After:
— k k—
R(k)] [ T'(k)] I




The S-matrix

This generalizes to any number N of semi-infinite paths attached to
any finite graph.

Incoming wave packets of
momentum near k are mapped
to outgoing wave packets (of
the same momentum) with
amplitudes corresponding to
entries of an NV X N unitary
matrix S(k), called the S-matrix.




Single-particle universality

arXiv:0806.1972
Physical Review Letters 102, 180501 (2009)


http://arxiv.org/abs/0806.1972
http://arxiv.org/abs/0806.1972

Encoding a qubit
Encode quantum circuits into graphs.

Computational basis states correspond to paths (“‘quantum wires”).

For one qubit, use two wires (“dual-rail encoding”):

e o o 0000000000000 0000000 0-0-0-0-0-0 °+ - o o o 0000000000000 00000-0-0 - -

encoded |0) encoded |1)

Fix some value of the momentum (e.g., k = 7/4).

Quantum information propagates from left to right at constant speed.



Implementing a gate

To perform a gate, design a graph whose S-matrix implements the
desired transformation U at the momentum used for the encoding.




Universal set of single-qubit gates

OinC e oOout

Lip o o lout
1 0 1 (i1
0 Vi V2 \1 i

momentum for logical states: k = 7/4



Single-particle universality construction

With an appropriate encoding of n-qubit states, two-qubit gates are
trivial.

Implement sequences of gates by concatenation.

Any n-qubit circuit can be simulated by some graph. The number of
vertices is (necessarily) exponential in n.

|OOout>

|001n oO—eo—o $ ®
|011n i i — i i |01out

|10H1 |1Oout

R f??/\w




Multi-particle universality



Multi-particle quantum walk

With m distinguishable particles:
states: |U1,...,Um) v; € V(G)

Hamiltonian: Hc(;m) = Z Z lu)(v|; +U
i=1 (u,v)€E(G)

Indistinguishable particles:

bosons: symmetric subspace
fermions: antisymmetric subspace

Many possible interactions:
on-site: U=.J Z Ny (Ny — 1)
veV(G)

nearest-neighbor: U = J Z My Ty
(u,v)EE(G)

m
o = 3 [0} {0l
1=1



Logical encoding

Encode each qubit in a single-particle state as before:

k —

o o o 0000000000000 0000000000 0=9 - ° o o o o O 0000000000000 0-0-0-0-0-0-0-0=0=9 -+ ° o

encoded |0) encoded |1)

For n qubits, use n particles on 2n paths.

Perform single-qubit gates as before.
How to perform interactions!?



Two-particle scattering

In general, multi-particle scattering is complicated.

But scattering of indistinguishable particles on an infinite path is simple.

Before:
k— —p
| 1 1
After:
i6 — P k —
e’ X
] I ] I

Phase 6 depends on momenta and interaction details.



Momentum switch

To selectively induce the two-particle scattering phase, we route
particles depending on their momentum.

N
1@2 _ ;O_I_‘ °2

e

Particles with momentum 7 /4 follow the single line.

Particles with momentum 7 /2 follow the double line.



Controlled phase gate

Computational qubits have momentum 7 /4. Introduce a “mediator
qubit” with momentum 7/2. We can perform an entangling gate with
the mediator qubit.

1 00 O
001 0 O
0 01 0
0 0 0 €




Canonical form of a circuit

1 0 0 O
0 1 0 O
For almost all 0, we can use C6 to do CP = 0 0 1 O
0 0 0 -—i

Any circuit can be implemented using

* Single-qubit gates on computational qubits
e CP gates between a computational and the mediator qubit
* Hadamard gates on the mediator qubit

Proof: / CP gate

< . .

0) — o) |0) [H]-eeT{H I H}——e{H}- [0




Hadamard on mediator qubit

Oin Oout

out

[Blumer-Underwood-Feder | 1]



° O1,0ut
° 11,0ut

° O2,0ut
° 12,0ut

° Om,out

° 1m,out



Error bound

Initial state: each particle is a square wave packet of length L

Consider a g-gate, n-qubit circuit:

Ol,in ¢ © O1,0u
11,in ¢ PP &P ° 11,out
0 in o 0 ,ou
1z:in © 1z,ouz
Om n

Lo b

°Om0u
P .

]-m,out

2(n + 1) paths, O(gL) vertices on each path
Evolution time O(gL)

Total # of vertices O(nglL)

The error can be made arbitrarily small with L = poly(n, g).

Example: For Bose-Hubbard model, L = O(n'?g*) suffices.



Proof ideas



Approximating wave packet scattering

Analysis of single-particle construction: method of stationary phase

Instead, we directly prove that, with long enough incoming square wave

packets (length L), the outgoing wave packets are well-approximated
by the effect of the S-matrix (error O(L_1/4)).




Truncation

If, for all times of interest, the state is well-
approximated by one that is well-localized to some region, then
changing how the Hamiltonian acts outside that region has little effect.

This lets us
e approximate finite graphs by infinite ones

e approximate the evolution by piecewise scattering through
separate gate gadgets

 focus exclusively on one- and two-particle scattering

Example: For small enough times,

— k —
g §C g



Refinements and extensions



Planarity

Planar Hadamard: Oin Oout

1 n 1 out

Put a mediator between every pair of computational qubits and
unwind pairs of C0 gates:

Om(i),in © o

Lngi),n o o

m(7),out

— O

m(7),out

Oit1,n o© o 0it1,0ut

1i—l—l,in © © 1i—l—l,out



Distinguishable particles

For two distinguishable particles on a long path, reflected and
transmitted states are distinct:

k— “—p —p k— —p k —

J L |~ 1] L | L + R L] L

Then the effect of scattering on a long path is not just to accumulate a
phase.

But with an appropriate choice of parameters, can ensure (say) R = 0.



Open questions

* Improved error bounds

e Simplified initial state

* Are generic interactions universal for distinguishable particles?
* New quantum algorithms

e Experiments

e Fault tolerance



