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“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”	


!
Richard Feynman	


Simulating physics with computers (1981)



Outline
• The Hamiltonian simulation problem	



• Three approaches to simulation	


- Product formulas	


- Quantum walk	


- Fractional queries	



• Comparison of methods for small-scale simulations



Hamiltonian simulation

Applications:

• Simulating physics	



• Implementing continuous-time quantum algorithms (quantum walk, 
adiabatic optimization, linear equations, ...)

* For an efficient simulation, H should be concisely specified.

Problem: Given* a Hamiltonian H, a time t, and an error tolerance ² 
(say, with respect to trace distance), find a quantum circuit that 
performs the unitary operation e—iHt (on an unknown quantum state) 
with error at most ².

More generally, H can be time-dependent.



Local and sparse Hamiltonians

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries per row, d = poly(log N) 
(where H is N £ N)

In any given row, the location of the jth nonzero entry and its 
value can be computed efficiently (or is given by a black box)

Note:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each      acts on k = O(1) qubitsH =
Pm

j=1 Hj



What should we simulate?
Consider a two-dimensional grid of n qubits, with interactions only 
between nearest neighbors (at most 2n terms).

• Initialize system in a product state	


• Evolve for time t	


• Measure a local observable for each spin

This is probably hard to do with a classical computer for more than 
about 30 qubits.

Related question: How can we apply quantum simulation to solve 
computational problems in quantum chemistry, materials science, etc.?  
(See, e.g., the talks by Alán and Matthias.)



Overview of simulation methods

• Decompose Hamiltonian into a sum of terms and recombine by 
alternating between them	



• With high-order formulas, complexity can be close to linear in t, but 
with an exponential prefactor

Product formulas

• Implement a unitary operation whose spectrum is related to the 
Hamiltonian; use phase estimation to adjust the eigenvalues	



• Complexity is linear in t with no large prefactor; also improved 
dependence on sparsity

Quantum walk

• Perform a compressed simulation of a very accurate product 
formula	



• Strictly improves over product formulas, with no large prefactors	


• Dependence on error is poly(log (1/²)) instead of poly(1/²) 

Fractional queries



Product formulas



Simulating a sum of terms

Suppose we want to simulate H =
Pm

i=1 Hi

[Lloyd 96]

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

Combine individual simulations with the Lie product formula:

lim
r!1

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t

To ensure error at most ², take                              r = O
�
(kHkt)2/✏

�



High-order product formulas

Systematic expansions to arbitrary order are known [Suzuki 92]

With k large, this is only slightly superlinear in t.  Sublinear simulation 
is impossible (“no-fast-forwarding theorem”).

To get a better approximation, use higher-order formulas:

..
.

[Berry, Ahokas, Cleve, Sanders 07]

Using the kth order expansion, the number of exponentials required 
for an approximation with error at most ² is at most

52km2kHkt
⇣

mkHkt
✏

⌘1/2k

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)



High-order product formulas

Choose k to minimize 52km2kHtk
✓

mkHkt
✏

◆1/2k

This is subpolynomial (but superlogarithmic) in 1/²; closer to 
polynomial (cf. best known classical factoring algorithms).

givesk ⇡ 1

2

s

log5

✓
mkHkt

✏

◆
O
⇣
m2kHkt 52

p
log5(mkHkt/✏)

⌘

When does it help to use 
higher-order formulas?

100 104 106 108 1010 1012
x

0.5

1.0

1.5

2.0

1
2

log5 x



Sparse Hamiltonians and coloring

Strategy [Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03; Aharonov, 
Ta-Shma 03]: Color the edges of the graph of H.  Then the simulation 
breaks into small pieces that are easy to handle.

= + +

A sparse graph can be efficiently colored using only local information 
[Linial 87], so this gives efficient simulations.

Can produce a d2-coloring locally ) overhead of d4



Star decompositions

= +

Tradeoff vs. edge coloring:	


• Decomposition has fewer terms	


• Each term is harder to simulate (2nd neighbors)

= + +

[Childs, Kothari 10]

Strategy:  Color the edges so that each color forms a “galaxy” (every 
component is a star graph).  Simulate each galaxy by brute force and 
recombine.

Total overhead is d3



Quantum walk

[Berry and Childs, arXiv:0910.4157 ]
[Childs, arXiv:0810.0312]

http://arxiv.org/abs/0910.4157
http://arxiv.org/abs/0810.0312


Hamiltonian simulation by quantum walk

[Childs 10]

Expand space from      to                       . CN CN+1 ⌦ CN+1

Walk operator is the product of two reflections:

• Swap:  S |j, k i = |k, j i
span{| 1i, . . . , | N i}• Reflect about                                 , where

| ji := |ji ⌦
 

1p
kHk1

NX

k=1

q
H⇤

jk |ki+ ⌫j |N + 1i
!

kHk1 := maxj
PN

k=1 |Hjk|

i.e.,                  where2TT † � T |ji = | ji

Another way to simulate an             Hamiltonian H is to implement a 
related discrete-time (Szegedy) quantum walk.

N ⇥N



Hamiltonian simulation by quantum walk

1. Apply T to the input state |Ãi.
To simulate H for time t:

3. Use the estimate of arcsin ¸ to estimate ¸, and apply the phase 
e—i¸t.

4. Uncompute the phase estimation and T, giving an approximation 
of e—iHt|Ãi.

[Childs 10]

Theorem:                     steps of this walk suffice to simulate H for 
time t with error at most ² (in trace distance).

O(kHtk1/✏)

2. Perform phase estimation with                              , estimating a 
phase                    for the component of         corresponding to 
an eigenvector of H with eigenvalue ¸.

U = iS(2TT † � )
±e±i arcsin� T | i



Faster simulation of sparse Hamiltonians

[Berry, Childs 12]

This is exactly linear in t; also scales better in d, but worse in ².

Perform quantum walk steps by brute force (query all d neighbors):

Resulting complexity:

O

✓
kHktp

✏
+ dkHk

max

t

◆
 O

✓
dkHk

max

tp
✏

◆

Improved alternative: using only two queries, prepare

| 0
ji := |ji ⌦ 1p

d

NX

k=1

0

@
s

H⇤
jk

kHk
max

|k, 0i+

s

1� |Hjk|
kHk

max

|k, 1i

1

A

kHk
max

:= maxj,k |Hjk|

O(dkHk
1

t/✏)  O(d3/2kHkt/✏)  O(d2kHk
max

t/✏)



Fractional queries

[Berry, Childs, Cleve, Kothari, and Somma, arXiv:1312.1414]

http://arxiv.org/abs/1312.1414


Fractional- and continuous-query models
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e�i⇡(HQ+HD)t

Useful for designing algorithms [Farhi, Goldstone, Gutmann 07]

Quantum query: Q|i, bi = (�1)bxi |i, bi
Black box hides a string x 2 {0, 1}n

More powerful than the discrete query model?

No: Can simulate a t-query fractional-query algorithm with	


discrete queries [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

O(t log t
log log t )



Simulating fractional queries

R↵ =
1p
c+ s

✓p
c

p
sp

s �
p
c

◆
c = cos

⇡↵
2

s = sin

⇡↵
2

P =

✓
1 0
0 i

◆

Fractional-query gadget: |0i R↵ • P R↵ 0

Q| i ...
... Q↵| i

“Segment” implementing                                           :UmQ↵mUm�1 · · ·U1Q
↵1U0

|0i R↵1 • · · · R↵1P

...
. . .

...

|0i R↵m · · · • R↵mP

U0 Q U1

· · ·

Um�1 Q Um
| i ...

. . .

· · ·



Behavior of a segment

By rearranging the circuit, k queries suffice

But this still only succeeds with constant probability

Truncating the ancillas to Hamming weight                          
introduces error at most ²

k = O( log(1/✏)
log log(1/✏) )

“Segment” implementing                                           :UmQ↵mUm�1 · · ·U1Q
↵1U0

|0i R↵1 • · · · R↵1P

...
. . .

...

|0i R↵m · · · • R↵mP

U0 Q U1

· · ·

Um�1 Q Um
| i ...

. . .

· · ·



Correcting faults

Rube Goldberg, Professor Butts and the Self-Operating Napkin

[Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]
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Oblivious amplitude amplification

To perform V with amplitude close to 1: use amplitude amplification?

Suppose U implements V with amplitude sin µ:

U |0i| i = sin ✓ |0iV | i+ cos ✓ |1i|�i

segment (without 
final measurement)

ideal evolution

With this oblivious amplitude amplification, we can perform the ideal 
evolution exactly with only three segments (one backward).

1
2

Using ideas from [Marriott, Watrous 05], we can show that a      -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!



Hamiltonian simulation using fractional queries
We reduce Hamiltonian simulation to fractional-query simulation.

Suppose H = H1 + H2 where H1, H2 have eigenvalues 0 and ¼.
Write                                                       for very large r (increasing 
r does not affect the query complexity, and only weakly affects the 
gate complexity).

e�i(H1+H2)t ⇡ (e�iH1t/re�iH2t/r)r

This is a fractional-query algorithm with oracles          and          .e�iH1 e�iH2

Package them as a single oracle                                                        .Q = |1ih1|⌦ e�iH1 + |2ih2|⌦ e�iH2

This may not be diagonal in the standard basis, but the fractional-
query simulation doesn’t require that.

To give a complete simulation, we decompose the Hamiltonian into a 
sum of terms, each with eigenvalues 0 and ¼ (up to an overall shift and 
rescaling).  (Start by coloring the edges to make the Hamiltonian 1-
sparse and then further refine the decomposition.)



Query and gate complexity
Query complexity of this approach: O

�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

twhere

Gate complexity is not much larger: O
�
⌧ log(⌧/✏)
log log(⌧/✏) (log(⌧/✏) + n)

�

where H acts on n qubits

Local Hamiltonians
Recall:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m.

We can reduce the overhead below d2 given a nice decomposition.  
Using the decomposition into m terms, each k-local (and hence 2k-
sparse), we can replace ¿ by                             .⌧̃ := 2kmkHk

max

t



Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

Main idea:	


• Query complexity of computing the parity of n bits is        .	


• There is a Hamiltonian that can compute parity by running for 

time O(n).

⌦(n)

New lower bound: ⌦( log(1/✏)
log log(1/✏) )

Main idea:	


• Query complexity of parity is         even for unbounded error.	


• The same Hamiltonian as above computes parity with unbounded 

error by running for any positive time.  Running for constant time 
gives the parity with probability £(1/n!).

⌦(n)



Comparison of sparse Hamiltonian simulations

Product formulas Quantum walk Fractional queries

Query complexity

Best known scaling 
with evolution time t 

and sparsity d
✓

Best known scaling 
with error ² ✓

Handles	


time-dependent 

Hamiltonians
✓ ✓

O

✓
dkHk

max

tp
✏

◆
d3kHkt

⇣
dkHkt

✏

⌘o(1) O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

t



How should we simulate small systems?
Consider a sum of m 2-local terms of constant norm acting on n 
qubits.

Product formulas

gate complexity O(m5/2t3/2/
p
✏)

should use next-lowest order (k = 1)

Fractional queries

O
�
mt log(mt/✏)

log log(mt/✏) (log(mt/✏) + n)
�

gate complexity

Quantum walk

gate complexity O(mnt/
p
✏)

with m = O(n)

O(n5/2t3/2/
p
✏)

Õ(n2t)

Õ(n2t/
p
✏)



Open questions
• Improvements to methods; (optimal?) tradeoffs between evolution 

time, error, and locality/sparsity	



• Careful estimates of gate complexity for small systems: what 
approach is best for particular simulations of interest?	



• Investigate parallel algorithms	



• Improved simulation of specific kinds of Hamiltonians	



• Better understanding of applications to problems in quantum 
chemistry, etc.	



• Real implementations!


