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The origin of quantum speedup

Quantum computers allow for interference between computational paths
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To perform a computation, we should arrange that
* paths to the solution interfere constructively
* paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of high-dimensional interference



Quantum computing # exponential parallelism

Can we just explore all potential solutions in parallel and pick out
the correct one?

No! The linearity of quantum mechanics prohibits this.

To get significant speedup, quantum computers need to exploit structure

Key question: What kinds of problems have the right structure for quantum
computers to give exponential speedup?

Another important question: VWhen can we get polynomial quantum speedup, and
how much is possible?



Outline

|. Quantum walk
2. Hamiltonian simulation

3. Quantum linear algebra

For a broader overview of quantum algorithms, see my QIP 2021 tutorial:

https://www.cs.umd.edu/~amchilds/talks/qip2 | .pdf
https://youtu.be/M0e5gkf7QSQ


https://youtu.be/M0e5gkf7QSQ
https://www.cs.umd.edu/~amchilds/talks/qip21.pdf

|. Quantum walk



From random to quantum walk

Quantum analog of a random walk on a graph.

ldea: Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!

classical

e et . quantum




Continuous-time quantum walk
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Exponential speedup

Quantum walk from |in) stays in the
3 : column subspace (uniform superpositions
over vertices at fixed distance from in).

This walk rapidly reaches a state with
significant overlap on |out).

1n out

Using polynomially many queries, a
—— S classical algorithm cannot distinguish the
graph from an infinite binary tree rooted
at 1n.

Problem: Given the label of in and an
adjacency-list black box for the graph,
find the label of out.



Discrete-time quantum walk

A walk with discrete time steps is a little harder to define.

On a path: |z) — jﬁ(\x — 1)+ |z +1))2 e e Not unitary!

Solution: Introduce another register (“coin”) that remembers the previous position

(reduces the potential for interference, but only slightly)

For a stochastic transition matrix P, P,

* Reflect about span{|y,) :v e V'} m

where [1),,) = Z \/Puv|v,u>

uevVv

* Swap the edge direction: S = Z u, v) (v, u
u,veV




Quantum walk search

Problem: Given a graph G = (V, E) with a subset M C V of marked vertices. Using
an oracle that tells whether a vertex is marked, determine whether M is empty.

Take a random walk until we reach a marked vertex.
Time to hit a marked vertex is O(1/d¢), where

6 = spectral gap of walk €= |M|/|V]
1 -6

Consider the Szegedization of the absorbing walk that remains
at a marked vertex

Perform phase estimation on 1)) ngM V)
This state is invariant if [M| = 0 and lives in eigenspaces with

phase Q(Vde) if | M| # 0,s0 O(1/v/ d¢) steps of the walk

suffice to determine whether | M| = 0.



Quantum walk search: examples

Unstructured search: G = complete graph on N vertices 0 =0(1) e=1/N
O(N) O(VN)
Element distinctness:
Given f: [N| — R, are there distinct x,y € [N]|with f(x) = f(y)? [N = {l.....N}
QUN)
Consider walk on Hamming graph H( N, K)

vertices = [N]", edges between K-tuples that differ in one coordinate

store function values associated with the K inputs
0 =Q(1/K) e=Q((K/N)?)
complexity K 4 N/\@, optimized with K = N2/3

This provides a powerful, general tool for search problems



Formula evaluation

Consider a balanced binary AND-OR tree:

and and and and

O0/0/0/0/0/0/0/0/0/0/0/0/0/0/O
Classical complexity: ©(n"">%)

Quantum lower bound: Q(v/n)
(holds for arbitrary AND-OR formulas)



Formula evaluation by scattering

/X

Claim: For k = ©(1/+/n), the wave is transmitted if the formula (translated into
NAND gates) evaluates to 0, and reflected if it evaluates to 1.



General formulas and span programs

In fact the quantum query complexity of any n-input AND-OR formula is O(y/n)

One approach: apply phase estimation to a quantum walk on a tree that encodes the
formula

Alternative: construct a span program, composing span programs for elementary gates

Quantum adversary lower bound: Adv(f) = max
' max; HPZH

The dual of this semidefinite program can be used to construct a quantum algorithm

for evaluating f with O(Adv(f)) queries (apply phase estimation to a kind of

generalized quantum walk)

Useful for understanding general features of query complexity.
In particular: Adv(f og) < Adv(f)Adv(g)



2. Hamiltonian simulation



Simulating Hamiltonian dynamics

“... nature isn’t classical, dammit,
and if you want to make a
simulation of nature, you'd better
make it quantum mechanical, and
by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a
description of the Hamiltonian H, an
evolution time ¢, and an initial state |¢(0)),
produce the final state |¢/(t)) (to within
some error tolerance ¢)

A classical computer cannot even represent
the state efficiently.

A quantum computer cannot produce a
complete description of the state.

But given succinct descriptions of

* the initial state (suitable for a quantum
computer to prepare it efficiently) and

* a final measurement (say, measurements
of the individual qubits in some basis),

a quantum computer can efficiently answer

questions that (apparently) a classical one

cannot. Simulation is BQP-complete!



omputational quantum physics

e (NI C =
Bt 1“ MEa1o K
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quantum chemistry condensed matter physics/ nuclear/particle
e.g., hitrogen fixation) properties of materials physics



Implementing quantum algorithms

linear/
exponential evaluating differential
speedup by Boolean equations, adiabatic
quantum walk formulas convex optimization

optimization



Product formulas

To get a better approximation, use higher-order

L
Suppose we want to simulate f = Z H,y formulas.

(=1
E.g., second order:

Combine individual simulations with the Lie (6_iAt/2T6_iBt6_iAt/2r)r — g HATB)t

product formula. E.g., with two terms: + O3 /r?)
- —1At/r _—iBt/r\" _ _—i(A+B)t . . .
Lim (e € ) =e Systematic expansions to arbitrary order are

(e—z’At/re—z’Bt/r)"“ _ 6—i(A+B)t 4+ O(tz/r) known
Using the 2kth order expansion, the number of

To ensure error at most ¢, take exponentials required for an approximation
r — O((HHHt)Q/e) with error at most € is at most

. . . . . LHHHt 1/2k
Gives simulation of d-sparse Hamiltonians 52kL2\\H\\t( : )

with complexity poly(d)



Post- Irotter algorithms |

Linear-time simulation

“No Fast-Fowarding Theorem”: simulation for time ¢ has complexity €2(%)

Applying phase estimation to a Szegedization of H gives an O(t) simulation

High-precision simulation

Directly implement the truncated Taylor series of exp(—iHt), cost O(¢ 1olgoﬁ)(gt(/t€/)e))
LCU Lemma:implement U =} . 38;V; with complexity O(}_. |3;)

This is the optimal dependence on ¢



Post- [rotter algorithms ||

Optimal tradeoff

Quantum signal processing (QSP) implements polynomials ofa H
given “block-encoded” Hamiltonian (or more general matrix) S

Gives d-sparse Hamiltonian simulation with cost O(dt + log(1/¢))
QSP and “quantum singular value transformation” provide
versatile tools for other tasks
Lattice Hamiltonians
Can do even better if the Hamiltonian has spatially local interactions

All above methods use ©2(n°) gates to simulate n spins with local interactions
for constant time

Combining forward and backward evolution and applying Lieb-Robinson bounds,
can improve this to O(n ), which is optimal

Also other algorithms using multiproduct formulas, interaction picture, randomization, other norms, ...



Product formulas strike back

Numerical simulations suggest that product formulas can perform much better than
straightforward bounds show

Can give tighter bounds using integral representations of the error

t T1
e—ZBte—ZAt . 6—’&(A—|—B)t — /dTl / d7-2 6_2(A+B)(t_71)62(72_71)3[A, B]e—ZTQBe—ZTlA
0 0

Provides bounds that can take advantage of small commutators between terms

In particular, shows that product formulas nearly reproduce the complexity of
for lattice Hamiltonians



Quantum chemistry

Algorithms depend on many choices:
* Often assume nuclei at fixed positions (Born-Oppenheimer approximation)
* Choose a set of electron basis functions (molecular orbitals, plane waves, etc.)
H = Z hija;raj -+ Zgijklaza;akal fermion operators: {Cli, Clj} = O, {CLZ', Cl;r} — 52'3'
i ikl

* Convert to spins using a suitable transformation (Jordan-Wigner, Bravyi-Kitaey, etc.)

* Represent in first (locations of electrons) or second (occupation of modes) quantization

Selected asymptotic complexities (/N modes, 1) electrons):

- : O(N1Y)

- : O(N?)
- : O(N?)

) : O(N'1/318/3)



Analog simulation

Another approach: Construct a system that
is described by the Hamiltonian you want to

. Probi ~body dynami
understand, and let it evolve! 51_atom quantwn simulator

Hannes Bernien!, Sylvain Schwartz"?, Alexander Keesling!, Harry Levine!, Ahmed Omran', Hannes Pichler!?, Soonwon Choi,
Alexander S. Zibrov!, Manuel Endres?, Markus Greiner!, Vladan Vuleti¢? & Mikhail D. Lukin!

EX P e ri m e n ta I effo rts a re fu rt h e r a I O n g t h a n Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter,

enable the realization of new quantum phases and could ultimately lead to computational systems that outperfor

ARTICLE

doi:10.1038/nature24622

=

o
existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-bod
quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms wit

° ° °
d I I ta I S I m u I at O r S strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantu
spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions
into spatiallv ordered states that break various discrete svmmetries. verifv the high-fidelitv preparation of these states

S
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Key questions:
* What kind of control is needed to realize Hamiltonians of interest?

* How can we be confident in the results!?

Universality result for spin models on lattices

Universality that does not require spatial locality of the target Hamiltonian



3. Quantum linear algebra



Quantum linear systems algorithm

Given an N x N system of linear equations Ax = b, find x = A~ 'b

Classical (or quantum!) algorithms need time €2(/V) just to write down x
What if we change the model?

* A is sparse; given a black box that specifies the *Can efficiently prepare a quantum state |b)
nonzero entries in any given row or column *Goal is to prepare a state |z) A_l‘b>

We can do this in time poly(log N, 1/¢, k) where x := ||A| - [|[A™}|
Algorithm estimates the eigenvalues of A (in superposition) and replaces them by
their inverse (using postselection)

Subsequent improvements do the same with complexity  poly(log(1/¢)) using
variable-time amplitude amplification and LCU



Differential equations

We can apply a similar framework to other linear-algebraic tasks. For example:

Given a system of linear differential equations Em = Ax + b

with the ability to prepare |b) and |z(0)), and a sparse matrix oracle for A,
prepare |z(1")) for some desired final time T’

Approach: apply a finite difference approximation to give a linear system; solve it
with the QLSA

Generalizations give improved performance and also handle time-dependent
coefficients, partial differential equations, some nonlinear differential equations, ...



Applications!?

Linear equations and differential equations are ubiquitous. Surely we can use this for
something!?

Proposals: electromagnetic scattering, machine learning, finance, ...

The input/output requirements impose serious constraints.
No compelling end-to-end application with rigorous evidence for speedup.



Conclusion



Outlook

Finding quantum algorithms is hard!

e Quantum mechanics is honintuitive
* Classical algorithms are powerful
* We have limited quantum techniques

But we have come a long way in the 25+ years since Shor’s algorithm

* New exponential speedups
* New techniques
* Much better understanding of quantum query complexity

Large-scale quantum computers could dramatically change our understanding of
quantum algorithms



Further reading

Quantum Algorithm Zoo:
Lecture notes:

Montanaro survey:

Andras Gilyen tutorial (QIP 2020):
My QIP 2021 tutorial:

Quantum walk surveys
* Santha (search):
* Reitzner, Nagaj, Buzek:


https://arxiv.org/abs/1511.04206
http://www.koushare.com/video/videodetail/4073
http://quantumalgorithmzoo.org
http://cs.umd.edu/~amchilds/qa/
https://arxiv.org/abs/0808.0059
https://arxiv.org/abs/1207.7283
https://www.cs.umd.edu/~amchilds/talks/qip21.pdf
https://youtu.be/M0e5gkf7QSQ

