Quantum algorithms

Andrew Childs
University of Maryland

UMIACS

University of Maryland

hi Institute for Advanced

COMPUTER SCIENCE Computer Studies

UNIVERSITY OF MARYLAND

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Overview

0. Introduction

|. Quantum query complexity
2.Algebraic problems

3. Quantum walk

4. Hamiltonian simulation

5. Quantum linear algebra

6. Optimization

/. Machine learning

0. Introduction

The origin of quantum speedup

Quantum computers allow for interference between computational paths

N L, T L T

To perform a computation, we should arrange that
* paths to the solution interfere constructively
* paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of high-dimensional interference

Quantum computing # exponential parallelism

Can we just explore all potential solutions in parallel and pick out
the correct one?

No! The linearity of quantum mechanics prohibits this.

To get significant speedup, quantum computers need to exploit structure

Key question: What kinds of problems have the right structure for quantum
computers to exploit?

Unstructured search

Can quantum computers speed up brute-force search?

Given a black-box function f: {1,...,N} — {0,1},isthereanz € {1,..., N} such
that f(2) = 17

Classically: ©(/NV) queries
Quantumly: O(V N) queries

» by phase kickback, can implement an oracle |i) — (—1)7(9|3)
* this is a reflection about the M marked items
e alternate with reflection about —— ZZ L |7)

* rotation by an angle (1/\/7) ha 2D subspace
 significant overlap with marked subspace in time O(v/N/M)

Also quantumly: Q(m) queries necessary

Simon’s problem

Given a black-box function f: {0,1}" — R

0 0...01 x
Promise: There is some s € {0,1}" such that I I o I
flx) = f(y) ifandonlyifx = yorz =9y ® s

S S1 Sn—1Sn Tr oD s

Problem: Find s

One classical strategy:

* Compute f(x) for a random x

» Repeat until we find z; # x; such that f(z;) = f(z;)
* Output s = x; © x;

By the birthday problem, we need about v 2™ steps. This is essentially optimal.

Simon’s algorithm

On a quantum computer, the ability to compute f(z) corresponds to the ability to
perform the unitary transformation |x,0) — |z, f(x))

Subroutine:

* Prepare the uniform superposition \/127 D zefo1n 1, 0)

 Compute fin superposition \/127 D zefon 1T f(2))
* Perform the Hadamard transform on the first n qubits

* Measure the state of the first n qubits
Fact: Measurement returns a uniformly random x subject to the condition x - s = 0
With O(n) samples, these values determine s with good probability

Recall: 2(v/27) classical queries. Exponential quantum speedup!

The collision problem
Given a black-box function f: {0,1}" — R N = 2"

Promise: fis either |-to-l or 2-to-|

ST B A

Problem: Determine which holds

Can be solved with O(N'/3) queries

* query K items
* search through remaining items for a duplicate
e cost O(K + +/N/K) is minimized with K = ©(N1/3)

This is optimal! No exponential speedup.

The prospect of quantum speedup

The collision problem does not have enough structure to allow a fast quantum
algorithm

Simon’s problem is a special case with enough additional structure to give a fast
quantum algorithm (but not a fast classical algorithm) — exponential speedup

Major questions: VWWhat problems have fast quantum algorithms?

What structures enable exponential speedup!?

Another important question: VWhen can we get polynomial quantum speedup, and
how much is possible?

|. Quantum query complexity

Quantum query model

Given a black box for an input string = € "

A query reveals x; € X for any specified ¢ € {1,...,n}

A quantum query is the unitary operation |i, 2) — |2, 2 + x;)
(This is the standard reversible computation of xz;; it can be done efficiently if we
have an efficient circuit to compute z; from 3.)

Main question: How many queries are needed to compute some f: P — 1, where
P C X" specifies a promise on the input?

Models:

» deterministic, D(f): classical algorithm that always suceeds

* randomized, R(f): randomized classical algorithm, success probability at least 2/3
 quantum, (J(f): quantum algorithm, success probability at least 2/3

Query complexity is a very clean setting in which lower bounds are feasible.

Adversary method

The quantum adversary method uses a progress measure
that quantifies entanglement with an adversary who holds a superposition of
Instances.

Theorem. Q(f) = Q(Adv(f)) where Adv(f) = max

Can be computed by a semidefinite program
In principle, always gives a tight bound (more later)! But can be hard to evaluate.

Some variants are easier to apply, but not necessarily tight.

Polynomial method

Another lower bound method uses a connection between quantum query
algorithms and polynomials.

Lemma. The amplitudes of the final state of a t-query quantum algorithm with input
r € {0,1}" are polynomials in x1, ..., x, of degree t.

Proof: Query |i, z) — i,z ® x;) = (1 — x;)|i, 2) + x;]i, Z) increases degree by |

So if we need a high-degree polynomial to represent the output, the query
complexity must be high.

Example: Parity 1

Quantum speedup needs structure

Recall main question: How many queries are needed to compute f: P — 1" (where
P C X" is the promise)?

If fis total (P = X") then D(f) = O(Q(f)").
recently improved to D(f) = O(Q(f)%).

So promises are necessary for exponential quantum speedup.

Symmetry can also prevent speedup by making the promise too unstructured.

Theorem. If fis permutation-invariant then R(f) = O(Q(f)?).

What other symmetries prevent exponential quantum speedup!?

Symmetries of (hyper)graphs

Structured queries

Can get a structured query problem by giving access to some underlying object in a
variety of different ways.

Example |: Bernstein-Vazirani problem. Hidden string s € {0, 1}". Oracle reveals
z - s for any input vector x € {0, 1}". Results of 2" possible queries are specified by

only n bits. Learning s takes n classical queries but only | quantum query.

Example 2: Search with wildcards. Hidden string s € {0, 1}". Oracle takes input
r € {0,1, *}" and tells whether = matches s, where * matches either 0 or 1.

Learning s takes)(n) classical queries, O(1/n) quantum queries.

More recent examples, some with exponential speedup:

* Graph connectivity with cut queries
* Graph properties with OR or PARITY queries
* Linear algebra with matrix-vector queries

Maximal separations

What is the largest possible quantum vs. classical query separation!?

“Forrelation”: O(1) quantum vs. Q(\/ﬁ) classical

Recently improved to [k/2] quantum queries, Q(n' /%) classical queries

Optimal since t quantum queries can be simulated with O(n!~1/2%) randomized
queries

What is the largest possible separation for a total function!?
e Recall R = O(Q?)

* R(OR) = Q(Q(OR)?)

3+ R(f) = 2AQNH*)

* Exponent improved to 3 by the above papers

2.Algebraic problems

Hidden symmetry

Simon’s problem exemplifies a more general class of problems with hidden symmetry

Hidden subgroup problem: Given a known group G and a black-box function
f: G — R.Promised that f is constant on cosets of some (unknown) subgroup
H < G and distinct on different cosets. Goal: find (a generating set for) H.

D) = i Yoea) = i T 0110}

“Standard method’:

Discarding second register gives a coset state |gH) = \/7 D nhepy |gh) fora
uniformly random (unknown) g

Finite abelian HSP

This problem can be solved efficiently whenever G is a finite abelian group.

Quantum Fourier transform over Zn:

1 TIRX
) = VN Z e?TRE N |)

kecZ n

(generalizes to other groups)

Sampling from the a coset state in the Fourier basis gives a result that is “orthogonal

to H” (more precisely, gives a character that is trivial on H). Polynomially many
samples suffice to efficiently determine a generating set for H.

Infinite abelian HSPs

Shor’s algorithm for factoring /V finds the period of a function f: Z — Zx.
Can handle the non-finite domain by truncating to a sufficiently large subset.

B _

Algorithm for Pell’s equation solves a hidden subgroup problem in R

ﬁ

Algorithms for other problems in number fields handle HSPs in R™

Aside: Phase estimation

An equivalent approach to period finding is to apply phase estimation to a unitary
operator that computes the periodic function (in place).

Problem: Given a unitary operator U with eigenvectors |%;), where
> .
U|¢j> — e |¢j>, produce an estimate of 0,

0) — QFT :T QFTT— [0;)

Vj) U* Vj)

Z a;|0)[1;) — Z o050 ;)

To get an estimate with precision ¢, we raise U to a power that is O(1/¢).

This is a useful tool in many quantum algorithms!

Abelian HSP applications

Finite abelian groups:

* Discrete log

* Decomposing abelian groups
* Counting points on curves

Infinite abelian groups:

* Factoring

* Pell’s equation (z° — dy* = 1)

* Unit group of a number field

* Principal ideal problem, class groups
* Ray class groups, Hilbert class fields

Nonabelian HSP

What if G is a nonabelian group?

HSP definition still makes sense: given f: G — R constant on a subgroup H < G,
distinct on different (say, left) cosets H,g1 H,goH, . ..

The “standard method” generates coset states |gH) for uniformly random
(unknown) g € GG

If H, K are distinct subgroups, the states |xH) and |y K) cannot have high overlap

This can be used to show that polynomially many coset state samples are sufficient
to determine H

The “only” problem: how do we determine H efficiently?

Nonabelian HSP: Examples and applications

Standard method algorithms can start with nonabelian Fourier sampling WLOG

Efficient algorithms known for specific HSPs: normal subgroups, metacyclic groups,
Heisenberg/extraspecial groups, etc.

HSPs with exciting potential applications:

* Symmetric group: graph isomorphism, code equivalence
* Dihedral group: lattice problems

A standard method algorithm for the symmetric group HSP would require highly
entangled measurements

“Kuperberg sieve” solves the dihedral HSP in subexponential time
* No quantum speedup for lattice problems

* Subexponential quantum algorithm for elliptic curve isogenies

Dihedral HSP challenge problem

The standard method and Fourier sampling produces a qubit state

1 2misk /N
ﬁ<|0> +e 1))

with £ € Zx known, selected uniformly at random.

With poly(log N) samples of such states, we have enough info to determine s.

Can we determine s efficiently?

3. Quantum walk

From random to quantum walk

Quantum analog of a random walk on a graph.

ldea: Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!

classical

e et . quantum

Continuous-time quantum walk

o 2 /0
Graph G: i ek
13 \8

adjacency matrix

Random walk on G

State: Probability p,(t) of being
at vertex v at time ¢
d

D ics: —p = Lp
ynamics dtp D

—_ o O =

1

_ o O

0

—_— O = = O

—_ O = O

0

/ 2 —1
—~1 3
—1 0

—1

0
\ 0 -1

Laplacian

Quantum walk on ¢

dt

d

-1 0 0
0 -1 -1
2 =1 0
-1 3 -1
0 -1 2

State: Amplitude a.(t) to be at
vertex v at time ¢

d

Dynamlcs 1—a = Lad

1—a = Aa

dt

Exponential speedup

Quantum walk from |in) stays in the
3 : column subspace (uniform superpositions
over vertices at fixed distance from in).

This walk rapidly reaches a state with
significant overlap on |out).

1n out

Using polynomially many queries, a
—— S classical algorithm cannot distinguish the
graph from an infinite binary tree rooted
at 1n.

Problem: Given the label of in and an
adjacency-list black box for the graph,
find the label of out.

Discrete-time quantum walk

A walk with discrete time steps is a little harder to define.

On a path: |z) — jﬁ(\x — 1)+ |z +1))2 e e Not unitary!

Solution: Introduce another register (“coin”) that remembers the previous position

(reduces the potential for interference, but only slightly)

For a stochastic transition matrix P, P,

* Reflect about span{|y,) :v e V'} m

where [1),,) = Z \/Puv|v,u>

uevVv

* Swap the edge direction: S = Z u, v) (v, u
u,veV

Quantum walk search

Problem: Given a graph G = (V, E) with a subset M C V of marked vertices. Using
an oracle that tells whether a vertex is marked, determine whether M is empty.

Take a random walk until we reach a marked vertex.
Time to hit a marked vertex is O(1/d¢), where

6 = spectral gap of walk €= |M|/|V]
1 -6

Consider the Szegedization of the absorbing walk that remains
at a marked vertex

Perform phase estimation on 1)) ngM V)
This state is invariant if [M| = 0 and lives in eigenspaces with

phase Q(Vde) if | M| # 0,s0 O(1/v/ d¢) steps of the walk

suffice to determine whether | M| = 0.

Quantum walk search: examples

Unstructured search: G = complete graph on N vertices 0 =0(1) e=1/N
O(N) O(VN)
Element distinctness:
Given f: [N| — R, are there distinct x,y € [N]|with f(x) = f(y)? [N = {l.....N}
QUN)
Consider walk on Hamming graph H(N, K)

vertices = [N]", edges between K-tuples that differ in one coordinate

store function values associated with the K inputs
0 =Q(1/K) e=Q((K/N)?)
complexity K 4 N/\@, optimized with K = N2/3

This provides a powerful, general tool for search problems

Quantum walk search: refinements and generalization

Can give a quantum walk search algorithm with quadratic speedup over the classical
hitting time, not just the upper bound O(1/de¢)

Quantum walk can find (multiple) marked items in this time

Formula evaluation

Consider a balanced binary AND-OR tree:

and and and and

O0/0/0/0/0/0/0/0/0/0/0/0/0/0/O
Classical complexity: ©(n"">%)

Quantum lower bound: Q(v/n)
(holds for arbitrary AND-OR formulas)

Formula evaluation by scattering

/X

Claim: For k = ©(1/+/n), the wave is transmitted if the formula (translated into
NAND gates) evaluates to 0, and reflected if it evaluates to 1.

General formulas and span programs

In fact the quantum query complexity of any n-input AND-OR formula is O(y/n)

One approach: apply phase estimation to a quantum walk on a tree that encodes the
formula

Alternative: construct a span program, composing span programs for elementary gates

[
Recall the quantum adversary method: Adv(f) = max Y
' max; ||FZH

The dual of this semidefinite program can be used to construct a quantum algorithm
for evaluating f with O(Adv(f)) queries (apply phase estimation to a kind of
generalized quantum walk)

Useful for understanding general features of query complexity.
In particular: Adv(f og) < Adv(f)Adv(g)

4. Hamiltonian simulation

Simulating Hamiltonian dynamics

“... nature isn’t classical, dammit,
and if you want to make a
simulation of nature, you'd better
make it quantum mechanical, and
by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a
description of the Hamiltonian H, an
evolution time ¢, and an initial state |¢(0)),
produce the final state |¢/(t)) (to within
some error tolerance ¢)

A classical computer cannot even represent
the state efficiently.

A quantum computer cannot produce a
complete description of the state.

But given succinct descriptions of

* the initial state (suitable for a quantum
computer to prepare it efficiently) and

* a final measurement (say, measurements
of the individual qubits in some basis),

a quantum computer can efficiently answer

questions that (apparently) a classical one

cannot. Simulation is BQP-complete!

omputational quantum physics

e (NI C =
Bt 1“ MEa1o K

+4

quantum chemistry condensed matter physics/ nuclear/particle
e.g., hitrogen fixation) properties of materials physics

Implementing quantum algorithms

linear/
exponential evaluating differential
speedup by Boolean equations, adiabatic
quantum walk formulas convex optimization

optimization

Product formulas

To get a better approximation, use higher-order

L
Suppose we want to simulate f = Z H,y formulas.

(=1
E.g., second order:

Combine individual simulations with the Lie (6_iAt/2T6_iBt6_iAt/2r)r — g HATB)t

product formula. E.g., with two terms: + O3 /r?)
- —1At/r _—iBt/r\" _ _—i(A+B)t . . .
Lim (e €) =e Systematic expansions to arbitrary order are

(e—z’At/re—z’Bt/r)"“ _ 6—i(A+B)t 4+ O(tz/r) known
Using the 2kth order expansion, the number of

To ensure error at most ¢, take exponentials required for an approximation
r — O((HHHt)Q/e) with error at most € is at most

. LHHHt 1/2k
Gives simulation of d-sparse Hamiltonians 52kL2\\H\\t(:)

with complexity poly(d)

Post- Irotter algorithms |

Linear-time simulation

“No Fast-Fowarding Theorem”: simulation for time ¢ has complexity €2(%)

Applying phase estimation to a Szegedization of H gives an O(t) simulation

High-precision simulation

Directly implement the truncated Taylor series of exp(—iHt), cost O(¢ 1olgoﬁ)(gt(/t€/)e))
LCU Lemma:implement U =} . 38;V; with complexity O(}_. |3;)

This is the optimal dependence on ¢

Post- [rotter algorithms ||

Optimal tradeoff

Quantum signal processing (QSP) implements polynomials ofa H
given “block-encoded” Hamiltonian (or more general matrix) S

Gives d-sparse Hamiltonian simulation with cost O(dt + log(1/¢))
QSP and “quantum singular value transformation” provide
versatile tools for other tasks
Lattice Hamiltonians
Can do even better if the Hamiltonian has spatially local interactions

All above methods use ©2(n°) gates to simulate n spins with local interactions
for constant time

Combining forward and backward evolution and applying Lieb-Robinson bounds,
can improve this to O(n), which is optimal

Also other algorithms using multiproduct formulas, interaction picture, randomization, other norms, ...

Product formulas strike back

Numerical simulations suggest that product formulas can perform much better than
straightforward bounds show

Can give tighter bounds using integral representations of the error

t T1
e—the—zAt B e—z(A—I—B)t — /d’]‘l / d7o 6—7/(14—|—B)(t—7'1)67,(7'2—7'1)B[147 B]G—ZTgBe—fLﬁA
0 0

Provides bounds that can take advantage of small commutators between terms

In particular, shows that product formulas nearly reproduce the complexity of
for lattice Hamiltonians

Can give even better bounds if we know the state has low energy

Quantum chemistry

Algorithms depend on many choices:
* Often assume nuclei at fixed positions (Born-Oppenheimer approximation)
* Choose a set of electron basis functions (molecular orbitals, plane waves, etc.)
H = Z hija;raj -+ Zgijklaza;akal fermion operators: {Cli, Clj} = O, {CLZ', Cl;r} — 52'3'
i ikl

* Convert to spins using a suitable transformation (Jordan-Wigner, Bravyi-Kitaey, etc.)

* Represent in first (locations of electrons) or second (occupation of modes) quantization

Selected asymptotic complexities (/N modes, 1) electrons):

- : O(N1Y)

- : O(N?)
- : O(N?)

) : O(N'1/318/3)

Analog simulation

Another approach: Construct a system that
is described by the Hamiltonian you want to

. Probi ~body dynami
understand, and let it evolve! 51_atom quantwn simulator

Hannes Bernien!, Sylvain Schwartz"?, Alexander Keesling!, Harry Levine!, Ahmed Omran', Hannes Pichler!?, Soonwon Choi,
Alexander S. Zibrov!, Manuel Endres?, Markus Greiner!, Vladan Vuleti¢? & Mikhail D. Lukin!

EX P e ri m e n ta I effo rts a re fu rt h e r a I O n g t h a n Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter,

enable the realization of new quantum phases and could ultimately lead to computational systems that outperfor

ARTICLE

doi:10.1038/nature24622

=

o
existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-bod
quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms wit

° ° °
d I I ta I S I m u I at O r S strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantu
spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions
into spatiallv ordered states that break various discrete svmmetries. verifv the high-fidelitv preparation of these states

S

8 5

Key questions:
* What kind of control is needed to realize Hamiltonians of interest?

* How can we be confident in the results!?

Universality result for spin models on lattices

Universality that does not require spatial locality of the target Hamiltonian

5. Quantum linear algebra

Quantum linear systems algorithm

Given an N x N system of linear equations Ax = b, find x = A~ 'b

Classical (or quantum!) algorithms need time €2(/V) just to write down x
What if we change the model?

* A is sparse; given a black box that specifies the *Can efficiently prepare a quantum state |b)
nonzero entries in any given row or column *Goal is to prepare a state |z) A_l‘b>

We can do this in time poly(log N, 1/¢, k) where x := ||A| - [|[A™}|
Algorithm estimates the eigenvalues of A (in superposition) and replaces them by
their inverse (using postselection)

Subsequent improvements do the same with complexity poly(log(1/¢)) using
variable-time amplitude amplification and LCU

Differential equations

We can apply a similar framework to other linear-algebraic tasks. For example:

Given a system of linear differential equations Em = Ax + b

with the ability to prepare |b) and |z(0)), and a sparse matrix oracle for A,
prepare |z(1")) for some desired final time T’

Approach: apply a finite difference approximation to give a linear system; solve it
with the QLSA

Generalizations give improved performance and also handle time-dependent
coefficients, partial differential equations, some nonlinear differential equations, ...

Applications!?

Linear equations and differential equations are ubiquitous. Surely we can use this for
something!?

Proposals: electromagnetic scattering, machine learning, finance, ...

The input/output requirements impose serious constraints.
No compelling end-to-end application with rigorous evidence for speedup.

Explicit output

Suppose we are given adjacency-list query access to A and an explicit vector b.
Can we find an explicit description of © = A~ 'b with (polynomial) quantum speedup?

Yes, if A is the Laplacian of a (weighted) graph, or more generally, if it is symmetric
and weakly diagonally dominant.

Related to the problem of “spectral sparsification.”

Further polynomial speedups for quantum linear algebra!?

6. Optimization

Discrete optimization

Grover’s algorithm = quadratic speedup for minimization

Graph algorithms

* shortest paths

* minimum spanning trees

* maximum flows/matchings

Speeding up exponential-time algorithms for NP-hard problems (SAT, subset sum,
lattice problems, TSP, set cover, ...)

Some of these algorithms introduce interesting new tools:
* quantum backtracking using quantum walk
* quantum methods for dynamic programming

Continuous optimization

Linear/semidefinite programming
* polynomial speedups based on Gibbs sampling
* faster algorithms in a stronger input model

Gradient-based algorithms
* Fast algorithm for computing gradients
* Minimization using gradient descent

* Quantum query speedup for convex optimization with membership and evaluation
oracles

* For high-dimensional non-smooth convex optimization with a gradient oracle,
cannot achieve a quantum speedup as a function of the allowed error

Adiabatic optimization and QAOA \ -

Strategy: encode a constraint problem with a diagonal Hamiltonian. Start in known\
ground state of a simple, non-diagonal Hamiltonian. Slowly interpolate to the H(1)
problem Hamiltonian to produce its ground state.

Complexity depends on the minimum spectral gap, but this is hard to estimate.

Often this is done with a Hamiltonian that has all negative off-diagonal entries
(“stoquastic”). Then we can in principle apply quantum Monte Carlo (a classical
algorithm), but its efficiency is also unclear.

Related strategy: quantum approximate optimization algorithm (QAQOA).Alternate
between diagonal & off-diagonal evolutions with optimized parameters.

/. Machine learning

Quantum machine learning

A challenge: much of the impressive success of classical machine learning is empirical

Quantum algorithms for some ML tasks have been proposed, e.g., recommendation
systems

Data structures that enable coherent quantum access can be exploited classically

Other proposed algorithms for principal component analysis, clustering, etc.
Potential for quantum speedup is unclear.

Another direction: computational learning theory

Learn a concept given the ability to interact with it quantumly
* query access to a concept c: {0,1}" — {0, 1}
* quantum examples > . /p,|x, c(x))

Conclusion

Outlook

Finding quantum algorithms is hard!

e Quantum mechanics is honintuitive
* Classical algorithms are powerful
* We have limited quantum techniques

But we have come a long way in the 25+ years since Shor’s algorithm

* New exponential speedups
* New techniques
* Much better understanding of quantum query complexity

Large-scale quantum computers could dramatically change our understanding of
quantum algorithms

Challenge problems

|. Quantum query complexity
» triangle problem (Q(n), O(n°/%))
2. Algebraic problems
* quantum algorithms/hardness results for lattice problems

3. Quantum walk
* exponential speedups for natural problems

4. Hamiltonian simulation
* more practical algorithms for quantum chemistry, other applications
* theoretical foundations for robust analog simulation

5. Quantum linear algebra
* end-to-end applications

6. Optimization
* query complexity of convex optimization
* better evidence for/against exponential speedup by adiabatic optimization/QAOA

/. Machine learning
* evidence for speedup in a realistic model

Further reading

Quantum Algorithm Zoo:

Lecture notes:

Montanaro survey:

Andras Gilyen tutorial (QIP 2020):

Topical surveys:

* quantum walk search (Santha):

* quantum walk (Reitzner, Nagaj, Buzek):

* algebraic problems (Childs, van Dam):

* optimization (de VVolf):

* computational learning theory (Arunachalam, de Wolf):

https://arxiv.org/abs/1511.04206
http://www.koushare.com/video/videodetail/4073
http://quantumalgorithmzoo.org
http://cs.umd.edu/~amchilds/qa/
https://arxiv.org/abs/0808.0059
https://arxiv.org/abs/1207.7283
https://arxiv.org/abs/0812.0380
https://youtu.be/1-2LIopvNIk
https://arxiv.org/abs/1701.06806

