Spatial search
and the Dirac equation

Andrew Childs
Jeffrey Goldstone
MIT Center for Theoretical Physics




“"What this field needs most is more algorithms”

Fourier sampling
e Factoring, discrete log
e Hidden subgroup problems
e Pell’'s equation
e Hidden shift problems

Amplitude amplification
e Unstructured search
e Constant-depth AND-OR trees
e Various graph problems

Quantum walk
e Exponential speedup for a black box problem
e Spatial search
e Element distinctness (— triangle finding, etc.)



Unstructured search

N items {1,2,...,N}
Find one “"marked item” w

uery: “is w=x?"
Query { 0O xz#+w

I.e., black box function f(z) = 1 2= w

Classical complexity: 6(N)
: O(NY2) quantum algorithm
: This is optimal

Grover searching can be applied to a wide variety of other
problems. But can it be used to search a physical database,
where the N items are distributed in space?



Spatial search

@ ® ®
Suppose the N items are the vertices of a graph,
and the algorithm is restricted to access them by e ® ®
local moves along edges.

[ @ @

( : "Quantum robot”)

Geometry matters.

Example: If the items are arranged on a line, no speedup is
possible.

Two (essentially equivalent) models
1. Local Hamiltonian with a marking term —-|w)(w|

2. Alternate between queries and local unitary
transformations



Searching a d-dimensional space

Naive implementation of Grover: Each reflection about a
uniform state (“inversion about average”) takes time N1/d
(radius of database), and there are N'/2 such steps.

Running time O(N1/2+1/d),

: Carefully optimized recursive search
of subcubes using amplitude amplification.
d>2: O(N/2)
d=2: O(N1/2 log2N)

But do we really need such a complicated algorithm?
And can we do better when d=27



Quantum walk algorithms

Can we search a region of space using homogeneous, time-
independent dynamics?

Two possibilities:
e Continuous-time quantum walk
e Discrete-time quantum walk (needs a “coin”)

Results

Simple continuous-time walk: d>4
Discrete-time walk with appropriate “coin”:; d>2
Continuous-time walk with spin: d>2



Spatial search by quantum walk
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Analysis

Use eigenstates of L to find eigenstates of H.

Periodic cubic lattice with N sites, size N/9in each dimension.
Exact eigenstates and eigenvalues of —yL:

1 - . d
) = —Y *7|z) E(k) =2v|d— " cosk
| > \/N%; ( ) Y J;l J
2mm;
o _[o=+1,. .,i%(Nl/d —1) N1/d odd
771 0,41, £5(NYE —2), +IN/4 N1/d even



Results of analysis

Graph Success amplitude Run time
Complete 1-0(1) O(N1/2)
Hypercube 1-0(1) O(N1/2)

Lattice, d>4 O(1) O(N1/2)

Lattice, d=4
Lattice, d=3

Lattice, d=2

O(1/log/2 N)
O(N-1/6)
O((log N/N)¥/2)

O((N log N)/2)
O(N2/3)
O(N/log N)



Results of analysis, d>4

Success probability: [(w|e™

Critical Y. Yx — Il,d
/1> 4N
Optimal run time: T = Qlf’j

dispersion relation
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The Dirac equation

d
Hamiltonian:  Hpjrac = Y a;pj + Bm p=—i
j=1
where {ajaak} — 25]k7 {Oéjaﬁ} =0, ﬁz =1

(number of spin components in d dimensions: 2[d4/21)

Then HZ. = |p|?+m?, i.e. Epjac = £|p] for m=0.

dispersion relation

d
Lattice version: Ho=w ) «;P;
j=1

S Ui o~ L
where Pj|7) = S(|7+¢;) — |7 — &)

d
E(k) ==w | Y sin?k;
j=1
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Discrete-time quantum walk search

: Discrete-time quantum walk
search algorithm in d dimensions using a 2d-dimensional
“coin” space

Run times: O(NY2) for d>2, O(NY/2 log N) for d=2

A discrete-time quantum walk cannot be defined on a state
space consisting only of vertices ( )



Making Dirac work
(or, Fixing fermion doubling)

d
Better lattice approximation: Ho=w ) o;P; +~4L

1=1

d d
E(k) =+ |w? > sin? k; +72[2 > (1- coskj)f

=

dispersion relation

Algorithm:
Let H=H,—B|w)(w].
Start in |n,s).

Choose some constants w,y
such that for as small a T as
possible, [(n,w|e*Tn,s)? is
large.
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Results of analysis (Dirac)

Graph Success amplitude Run time
Lattice, d>2 O(1) O(N1/2)
Lattice, d=2 O(1/log!’2 N) O((N log N)1/2)

\

Run time O(N1/2 log3/2 N) using classical repetition
O(NY/2 log N) using amplitude amplification



How many spin degrees of freedom?

Dirac particle in d dimensions: 2[d9/2]

(Smallest representation of Dirac algebra
{Oéj,ak} — 25jk7 {Ozj,ﬁ} — O, ﬁz =1
uses matrices of dimension 2[9/21,)

Simple continuous-time quantum walk: no spin!

Ambainis, Kempe, Rivosh discrete-time algorithm:
2d “coin states” (or 2 for d=2)

But it is sufficient to reproduce the action of the Dirac algebra
on a single spin state n):

{oy, agtln) = 265,ln),  {ey, B}y =0,  Bln) =[n)

d+1 states suffice: a; = |0)(j] + [5)(0|, B8 =2]0)(0| -1, |n) =10)



Adiabatic algorithms for spatial search

Adiabatic algorithm ( ):
Start in the ground state of a simple Hamiltonian and slowly
change the Hamiltonian so that the ground state encodes the
solution to the problem.

Simple algorithm: H = L — |w)(w|

Slowly lower y from a large value to O.

With an appropriate schedule, can search in time
O(N1/2) for d>4
O(N1/2 log3/2N) for d=4

d
Dirac algorithm: H =w ) «;P; + 8L — Blw)(w|
j=1
Starting state |s) is in the middle of the spectrum, and states

in middle of spectrum with w,y small have very little overlap
on |w).



Open questions

What is the actual complexity of spatial search in d=27

Other algorithms using quantum walks?



