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Implementing unitaries

Suppose we want to implement a general N£N unitary operation.

How many elementary operations are required?

Simple counting arguments: ­(N 
2) 

gates just to approximate a general 
unitary with fixed precision.

Any unitary can be decomposed into 
N 

2 poly(log N) two-level unitary 
matrices, so this is nearly achievable.
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Black-box unitaries
Another scenario: the matrix elements of U are provided by a black 
box.

This models the setting where we can efficiently compute the matrix 
elements.

Counting arguments no longer apply!

|j�
|k�
|z� |z ⊕ Ujk�

|j�
|k�U

What we know:  To implement U with bounded error,

Ω(
√

N) queries are necessary

queries are sufficientO(N2/3(log log N)4/3)
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Black box state preparation
Related problem: prepare a state                            given a black box 
for its amplitudes.

|ψ� =
�N

j=1 aj |j�

|j�

|z�

|j�
Ã

|z ⊕ aj�

In general,              queries are required (search).Ω(
√

N)

Grover 2000:              queries are sufficient!O(
√

N)



State preparation by amplitude amplification

Grover 2000

With two queries, we can prepare

|φ� :=
1√
N

N�

j=1

�
aj |j, 0�+

�
1− |aj |2 |j, 1�

�

Start from
1√
N

N�

j=1

|j�

|ψ� :=
�

j

aj |j, 0�

Amplitude amplification:  Alternately reflect about      and the subspace 
with     in the second register.  Rotate in the two-dimensional subspace
                       where

|φ�
|0�

span{|ψ�, |φ�}

Time to prepare      :|ψ� 1
|�ψ|φ�| =

√
N

�N
j=1 |aj |2

=
√

N



Black-box unitaries: Lower bound

|j�
|k�
|z� |z ⊕ Ujk�

|j�
|k�U

Search with a unique marked item:
Given a binary string x1x2...xN with exactly one xi=1, find i.

Consider                            .Ujk = xj−k mod N

Black box for x → black box for U.

Note:  This bound cannot be improved using permutation matrices.

So implementing U requires             queries, by BBBV 1997.Ω(
√

N)

U |0� = |i�Since                , implementing U performs the search.



From Hamiltonians to unitaries

H =
�

0 U

U
† 0

�
To implement U, simulate the Hamiltonian                         .

e
−iHt = cos(t)I − i sin(t)HH

2 = ISince            , we have                                           .

e−iHπ/2|1� ⊗ |ψ� = −i|0� ⊗ U |ψ�
So simulating H for time ¼/2 implements U:



Hamiltonian simulation by quantum walk

AMC, arXiv:0810.0312, to appear in Commun. Math. Phys.

One way to simulate H is to implement a related discrete-time 
(Szegedy) quantum walk.

Expand space from      to                       . CN CN+1 ⊗ CN+1

span{|ψ1�, . . . , |ψN �}
Alternately swap the two registers and reflect about
                                , where

|ψj� := |j� ⊗
�

1�
�H�1

N�

k=1

�
H

∗
jk |k�+ νj |N + 1�

�

�H�1 := maxj
�N

k=1 |Hjk|

Using phase estimation,                     steps of this walk suffice to 
simulate H for time t with error at most ± (in trace distance).

O(�Ht�1/δ)



Application to black-box unitaries

H =
�

0 U

U
† 0

�
Simulate                          for t  = ¼/2.

We have                                 , so             steps of the walk suffice.�H�1 = �U�1 ≤
√

N O(
√

N)

|ψ�To implement the walk, note that reflection about      reduces to 
preparing      : given a circuit performing                ,|ψ� |0� V�→ |ψ�

�→ −|0�
V�→ −|ψ�

|ψ� V †
�→ |0� |ψ⊥� V †

�→ |0⊥�
�→ |0⊥�
V�→ |ψ⊥�

State preparation in             queries [Grover 2000]
⇒ Implementation of U in          queries.

O(
√

N)
O(N)



State preparation revisited

|φ� :=
1√
N

N�

j=1

�
aj

A
|j, 0�+

�
1− |aj |2

A2
|j, 1�

�
With two queries, we can prepare

|ψ� :=
�

j

aj |j, 0�

Amplitude amplification:  Alternately reflect about      and the subspace 
with     in the second register.  Rotate in the two-dimensional subspace
                       where

|φ�
|0�

span{|ψ�, |φ�}

1
|�ψ|φ�| =

√
NA

�N
j=1 |aj |2

=
√

NATime to prepare      :|ψ�

Prepare                   with the assumption that              .
�N

j=1 aj |j� |aj | ≤ A



Tradeoff
The simulation is slow because when                 , each step of the 
quantum walk doesn’t do much:

�H�1 � 1

|ψj� := |j� ⊗
�

1�
�H�1

N�

k=1

�
H

∗
jk |k�+ νj |N + 1�

�

is close to            .|N + 1�

But consequently,        is easier to prepare!|ψj�

States with amplitudes at most A:  black-box state preparation in
                queries.O(
√

NA)

Result:  Implementation of a black-box U with query complexity

O

��
N�U�1 max(U)

�

Worst case:                     and                    , giving               queries.max(U) ≤ 1 O(N3/4)�U�1 ≤
√

N



Examples: Permutations, Fourier transforms

Hard cases have a mix of small and large entries.

General query complexity: O

��
N�U�1 max(U)

�

If U is a permutation,                 and                    .�U�1 = 1 max(U) = 1

O(
√

N)Query complexity is             .

�U�1 =
√

NIf U is the discrete Fourier transform,                     and
                           .max(U) = 1/

√
N

O(
√

N)Query complexity is             .



Examples: Rotation of a big spin

Consider a spin-J particle (dimension 2 J  + 1).

Let                        (in Jz basis).U = e−iπJx/2

General query complexity: O

��
N�U�1 max(U)

�

�U�1 = O(
√

J)
max(U) = O(J−1/4)

Then                          and

So the algorithm uses              queries.O(J5/8)



Controlling error: Lazy quantum walk
To keep the error under control, we actually define the walk with

|ψ�
j� := |j� ⊗

��
�

�H�1

N�

k=1

�
H

∗
jk |k�+ νj

√
1− � |N + 1�

�

Error in amplitude amplification: O(�Ht��)

Number of queries used in a simulation for time t:

O

�
t

�
N�H�1 max(H)

�

�

For total error at most ±, number of queries required:

O

�
t3/2

�
N�H�1 max(H)�H�

δ

�



Breaking up the Hamiltonian

Hard cases have a mix of small and large entries.

H�Strategy:  Write                        such that all nonzero entries of      
have similar magnitudes.

H =
�L

�=1 H�

Recombine using Lie-Trotter-Suzuki formulae:
�
e−iAt/ne−iBt/n

�n ≈ e−i(A+B)t

�
e−iAt/2ne−iBt/ne−iAt/2n

�n ≈ e−i(A+B)t

..
.



Breaking up the Hamiltonian: Best case, 2 terms

Write                               withH = Hsmall + Hbig

max(Hsmall) ≤ h•  
• every nonzero entry of         of magnitude at least hHbig

Then we have

�Hsmall�1 ≤
√

N O(N3/4
√

h)⇒ query complexity                    for Hsmall

General query complexity: O
��

N�H�1 max(H)�H�
�

With                 , assuming                                                       , 
overall query complexity is              .

h = N−1/4

O(N5/8)
�Hsmall�, �Hbig� = O(�H�) = O(1)

�Hbig�1 ≤ maxj

�
n

k=1
|(Hbig)jk|2

h
≤ 1

h
max(Hbig) ≤ 1and

⇒ query complexity                 for HbigO(
�

N/h)



Breaking up the Hamiltonian: Best case

Careful error analysis, assuming all                     :�H�� = O(1)
√

Npoly(log N)

But this assumption does not hold in general!

H�Strategy:  Write                        such that all nonzero entries of      
have similar magnitudes.

H =
�L

�=1 H�

General query complexity: O
��

N�H�1 max(H)�H�
�

Suppose the nonzero entries satisfy                                 .h� ≤ |(H�)jk| ≤ h�−1

�H��1 ≤ 1/h�Then                           and                      max(H�) ≤ h�−1

⇒ query complexity                          for     .H�O(
�

Nh�−1/h�)

O(
√

N)
Taking                 for all `, and with all                     , overall query 
complexity is             .

h� ≈ h�−1 �H�� = O(1)



Breaking up the Hamiltonian: Worst case

Careful error analysis: O(N2/3(log log N)4/3)

H�Strategy:  Write                        such that all nonzero entries of      
have similar magnitudes.

H =
�L

�=1 H�

General query complexity: O
��

N�H�1 max(H)�H�
�

Suppose the nonzero entries satisfy                                 .h� ≤ |(H�)jk| ≤ h�−1

So simulating      takes                   queries, assuming                .H� O(
�

N/h�) h� ≈ h�−1

Then                                                     .�H�� ≤ �H��1 ≤ �H�2
/h� = 1/h�

With very small entries, can simulate without amplitude amplification:
O(NhL−1)Simulating       takes                  queries.HL

Set                                  : take                        to get              .hL−1 ≈ N−1/3
O(N2/3)NhL−1 =

�
N/hL−1



Summary
To implement U with bounded error,

• Is black-box state preparation asymptotically easier than 
implementing a black-box unitary?

- Improve the lower bound?

- Improve the algorithm?

• Applications to quantum algorithms?

Open questions

(Dependence on error is also understood.)

Ω(
√

N) queries are necessary

queries are sufficientO(N2/3(log log N)4/3)


