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Implementing unitaries

Suppose we want to implement a general /N x NV unitary operation.

How many elementary operations are required?

Simple counting arguments: {2(/V?2) i
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unitary with fixed precision.
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Any unitary can be decomposed into g b
N2 poly(log N) two-level unitary
matrices, so this is nearly achievable. ; !




Black-box unitaries

Another scenario: the matrix elements of U are provided by a black
box.
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This models the setting where we can efficiently compute the matrix
elements.

Counting arguments no longer apply!

What we know: To implement U with bounded error,

Q(V'N) queries are necessary
O(N?/3(loglog N)*3) queries are sufficient
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Black box state preparation

Related problem: prepare a state |¢)) = Z;yzl a;|7) given a black box
for its amplitudes.
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In general, Q(\/N) queries are required (search).

Grover 2000: O(\/N) queries are sufficient!



State preparation by amplitude amplification
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With two queries, we can prepare

) = jﬁfj (aju, 0) + /1~ [a; 21 1>)

Amplitude amplification: Alternately reflect about |¢) and the subspace
with |0) in the second register. Rotate in the two-dimensional subspace

span{|t), |¢)} where

) =) a;lj,0)

J

Time to prepare |¢): = VN — VN
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Grover 2000



Black-box unitaries: Lower bound
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Search with a unique marked item:
Given a binary string z1z2...x N with exactly one z;=1, find .

Consider Ui = Zj_k mod N-
Black box for x — black box for U.

Since U|0) = |i), implementing U performs the search.

So implementing U requires (v N) queries, by BBBV 1997.

Note: This bound cannot be improved using permutation matrices.



From Hamiltonians to unitaries

To implement U, simulate the Hamiltonian H = <(?T g)

Since H? = I, we have e " = cos(t)I — isin(t)H.

So simulating H for time 7/2 implements U:
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Hamiltonian simulation by quantum walk

One way to simulate H is to implement a related discrete-time
(Szegedy) quantum walk.

Expand space from C"V to CN 1 @ CV 1,

Alternately swap the two registers and reflect about
span{|i1), . .., [¥n)}, where

| 1 =
;) = 14) © ( T 2V ok ) IV 1>)

N
|H||1 :=max; ) ., |Hjkl

Using phase estimation, O(||Ht||1/0) steps of this walk suffice to
simulate H for time ¢ with error at most 0 (in trace distance).

AMC, arXiv:0810.03 12, to appear in Commun. Math. Phys.



Application to black-box unitaries

. (0 U B
Simulate H = <UT O> fort=m/2.

We have |H||1 = ||U|l1 < VN, so O(V N)steps of the walk suffice.

To implement the walk, note that reflection about |¢) reduces to
preparing |1) : given a circuit performing |0) Y ),

) 5 10) ) oty
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State preparation in O(\/N) queries [Grover 2000]
= Implementation of U in O( V) queries.



State preparation revisited
Prepare Z;V:l a;|j) with the assumption that |a;| < A.

With two queries, we can prepare

)= > (‘jj, 0)+f1- ) 1>)

Amplitude amplification: Alternately reflect about |¢) and the subspace
with |0) in the second register. Rotate in the two-dimensional subspace

span{|¢), |¢) } where
) =) alj,0)

J

Time to prepare |¢): ‘W:_@‘ = ZXNI:.Q —VNA
j=114;




Tradeoff

The simulation is slow because when | H||; > 1, each step of the
quantum walk doesn’t do much:
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is close to| N + 1).

But consequently, |%;) is easier to prepare!

States with amplitudes at most A: black-box state preparation in

O(vV N A) queries.

Result: Implementation of a black-box U with query complexity
O(V/NIU max(D))

Worst case: ||U||; < VN and max(U) < 1, giving O(N3/%) queries.




Examples: Permutations, Fourier transforms

General query complexity: O (\/NHUH1 max(U))

If U is a permutation, ||U||; = 1 and max(U) = 1.
Query complexity is O(VN).

If U is the discrete Fourier transform, ||U||1 = v N and
max(U) = 1/VN.
Query complexity is O(v N).

Hard cases have a mix of small and large entries.



Examples: Rotation of a big spin

General query complexity: O(\/NHUHl ma,x(U))
Consider a spin-J particle (dimension 2J + 1).
Let U = ¢~ "/=/2 (in J, basis).

Then ||U|1 = O(VJ) and
max(U) = O(J~Y/4)

So the algorithm uses O(J5/8) queries.




Controlling error: Lazy quantum walk

To keep the error under control, we actually define the walk with

95) (\/|H1 > H;kk>+uj\/1eN—|—l>>

Number of queries used in a simulation for time ¢:

0 (t \/NHhEmax(H))

Error in amplitude amplification: O(||Ht||¢)

For total error at most 0, number of queries required:

o (tw N\Hllmax(H)H)
0




Breaking up the Hamiltonian

Hard cases have a mix of small and large entries.

Strategy: Write H = Zle Hy such that all nonzero entries of H,
have similar magnitudes.

Recombine using Lie-Trotter-Suzuki formulae:
(e—iAt/ne—iBt/n)n o~ 6—1(A+B)t

_i(A+B)t
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Breaking up the Hamiltonian: Best case, 2 terms

General query complexity: O (\/NHHH1 max(H) HHH)

Write H = H a1 + Hbig with

° maX(Hsmall) < h
* every nonzero entry of Iy, of magnitude at least h

Then we have
Hgmanll1 < VN = query complexity O(N3/4\/E) for Hypal

2
Hyig ||y < max; Sop_, WHeiditll < L and max(Hy,) < 1

= query complexity O(\/W) for Hy;g

With h = N~1/4, assumingHHsmany, | Hvig|| = O(||H||) = O(1),
overall query complexity is O(N°>/%).



Breaking up the Hamiltonian: Best case

Strategy: Write H = Zle Hy such that all nonzero entries of H,
have similar magnitudes.

General query complexity: O (\/NHHH1 max(H) HHH)

Suppose the nonzero entries satisfy hy < |(Hy) k| < ho_1.

Then maX(Hg) < hg_l andHngl < 1/hg
= query complexity O(\/Nhy_1/hy)for Hy,.

Taking hy ~ hy_1 for all /,and with all || H;|| = O(1), overall query
complexity is O(VN).

Careful error analysis, assuming all || H,|| = O(1): v Npoly(log N)

But this assumption does not hold in general!



Breaking up the Hamiltonian:Worst case

Strategy: Write H = Zle Hy such that all nonzero entries of H,
have similar magnitudes.

General query complexity: O (\/NHHH1 max(H) HHH)

Suppose the nonzero entries satisfy hy < |(Hy) k| < ho_1.

Then || He|| < |[Hellx < [|H[]?/he = 1/he.
So simulating H, takes O(+/N/hy) queries, assuming hy ~ hy_1.

With very small entries, can simulate without amplitude amplification:
Simulating Hp, takes O(Nhy_1) queries.

Set Nhy_1 = \/N/hL_lztake hi_1~N 13t get O(N2/3).

Careful error analysis: O(NQ/S(log log N)4/3)



Summary

To implement U with bounded error,
Q(V'N) queries are necessary
O(N?/3(loglog N)*3) queries are sufficient

(Dependence on error is also understood.)

Open questions

* |s black-box state preparation asymptotically easier than
implementing a black-box unitary?

- Improve the lower bound?

- Improve the algorithm?

* Applications to quantum algorithms?



