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Quantum computation

By storing and processing information stored in quantum states, a quantum computer can solve
certain problems dramatically faster than ordinary (“classical”) computers.

factoring, discrete log, computations in algebraic number fields, simulating
quantum mechanics, approximating topological invariants, ...

Polynomial speedup: unstructured search, collision finding, graph properties, Boolean formula
evaluation, NP-hard problems, ...

Quantum computers also provide a novel approach to problems in numerical analysis.

Main idea:
e Represent a vector z € C*" by a quantum state |2) of log,, IV qubits.
e Show how to prepare such a state using poly(log V) operations.

* Produces a quantum encoding of the solution. Less informative than an explicit solution, but
much faster and still potentially useful.



Quantum simulation

¢

“... nature isn’t classical, dammit, and if you want to make a simulation of

nature, you'd better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time ¢,
and an initial state |1/(0)), produce the final state |¢/(%)) (to within some error tolerance ¢)

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the state, but by performing
measurements, it can answer questions that (apparently) a classical computer cannot



omputational quantum physics
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Implementing quantum algorithms
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Quantum linear systems algorithm

Given an N x N system of linear equations Ax = b,find z = A~ b

Classical (or quantum!) algorithms need time €2(/NV) just to write down x

What if we change the model?

* A is sparse; given a black box that specifies the *Can efficiently prepare a quantum state |b)
nonzero entries in any given row or column *Goal is to prepare a state |z) oc A~ |b)

We can do this in time poly(log N, 1/¢, k) where xk = [|A| - [|[A™]]

Algorithm estimates the eigenvalues of A (in superposition) and replaces them by their inverse
(using postselection)

Subsequent improvements do the same with complexity  poly(log(1/€)) using variable-time
amplitude amplification and LCU



Quantum algorithms for differential equations

Given a linear ODE $Z = Ax + b with an initial condition z(0), determine x(T') at some time T
Quantum simulation is the special case with A =—1¢H (anti-Hermitian), b =0
But we can handle more general ODEs using the quantum linear systems algorithm

Main idea:
* Approximate the dynamics by a system of linear equations (e.g., finite difference method)

* Bound the approximation error, the condition number of the system, and the success
probability of the procedure in terms of properties of the ODE

This approach comes with the caveats of the QLSA: we need an implicit description of the
system, and we only produce a quantum encoding of the solution

The norm of the solution cannot decay exponentially (postselection is PP-hard)

Later work gives improved/generalized algorithms (time-dependent coefficients, BVPs, PDEs)



Nonlinear dynamics

What about nonlinear differential equations!?

: Algorithm for N-dimensional nonlinear ODEs for time I’ with complexity
poly (log N), exp(T)

Main idea: Use multiple copies of the solution to represent polynomial nonlinearities
Problem: These copies are used up as we evolve. By the no-cloning

theorem, need to maintain all copies throughout the algorithm. This leads
to exponential overhead.

Nonlinear dynamics are computationally powerful. In particular, nonlinear variants of quantum
mechanics can quickly solve hard problems (e.g., unstructured search)

So maybe there is a fundamental obstacle?



Problem statement

d
Quantum quadratic ODE problem. Consider an ODE d_QtL = [Lbu®® 4+ Flu + Fy(t)

with u(t), Fy(t) € R™, F; e R"*", F; € R™*"" Assume we are given an oracle to prepare a
quantum state proportional to u(0) = uin, and sparse matrix oracles for Fy(t), I, F5. Let the
eigenvalues \; of F satisfy Re(\,) < --- < Re(A1) < 0.Parametrize the problem in terms of

1 | Fo|
R (HuinHHFQH = )
Re(\) |

and assume the values ||ui, ||, || Fo(2) ][, || F1||, || F2||, Re(A1), max; || Fo(t)||, max; | Fj(t)] are
known.

Goal: Produce a quantum state proportional to u(1") for some given T' > 0.

R quantifies the strength of the nonlinearity and driving relative to dissipation.
Qualitatively similar to Reynolds number.



Main result | (algorithm)

Theorem |. For R < 1, there is a quantum algorithm for the quantum quadratic ODE problem
with query and gate complexity

T2
i poly (log T, log n, log(1/¢))
€
where s is the sparsity of the input, ¢ := ||uin||/||w(T")||, and € is the error in the approximation

of u(T) /|[u(T) |

Ingredients:

e Carleman linearization (novel convergence analysis)
* Forward Euler discretization

e State preparation procedure

e Condition number and success probability analysis



Carleman linearization

Approximate the nonlinear ODE by an infinite sequence of linear ODEs in u, u®?, u®”, . ..
d du? d
Example: d_tfb = au® + bu+c d—ut = Zud—?; = 2au” + 2bu* + 2cu
1 4l
Y Ar A w\  [Fo(t)
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Lemma. N = O(log(T||Fz||/d)/log(1/||uin||)) suffices to approximate the solution within .



Main result 2 (lower bound)

Previous results show hardness of simulating nonlinear quantum mechanics, but not for models
with dissipation

Theorem 2. Assume R > v/2.Then there is an instance of the quantum quadratic ODE
problem such that any quantum algorithm for producing a quantum state approximating
u(T) /||u(T)| with bounded error must have worst-case time complexity exponential in 7.

Ingredients: —

* Hardness of distinguishing nonorthogonal quantum states \
e Quadratic ODE that rapidly distinguishes nonorthogonal states



Hardness of state distinguishability

Lemma. Let [¢), |¢) be quantum states with |(1)|¢)| = 1 — €. Suppose we are either given a
black box that prepares |1) or a black box that prepares |¢). Then any bounded-error protocol
for determining whether the state is |¢)) or |¢) must take time 2(1/¢).

Proof:
e If we use the box k times, we produce states with overlap (1 — €)".
e These states have trace distance O(V ke).

e By the Helstrom bound, need k£ = €)(1/¢) to distinguish with bounded error.



Distinguishing states with dissipative nonlinear dynamics

q 1
Consider the ODE d_:fb — —u + Ru? Solution: u(t) = R —et(R — 1/u(0))

Let this act on both basis states of a qubit

The uniform superposition %(\O) 1)) does not evolve (up to normalization)

But for small 0, the state cos(% + 0)|0) + sin(% + 0)|1) changes exponentially in ¢

Example. R = v2, 6 = 0.01 o
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In general, the time to separate states with overlap 1 — € by a constant amount is O(log(1/¢)).



Applications: Epidemiology

SEIR model of a pandemic: dPs _ _APS P A — P i
dt P T'vacl's 1 I'tradl™S 2
= —A | raP =
dt P T 9P
dP] P[ PE PI
= —A |
dt P CZﬂ'ladt Czjilrlf
dPR PR PI
= —A | VaCP |
d¢ P ' > CZﬂinf
Realistic parameters (with fairly rapid vaccination) can satisfy R < 1

A high-dimensional version can model many interacting cities



Applications: Fluid dynamics

Forced viscous Burgers equation:

Ot + U0, u = V@iu + f

Discretize space with central differences to
give an ODE

Carleman method shows good convergence
even for R ~ 40

Solutions at t = T}/
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Summary

We have shown how to efficiently produce a quantum encoding of the solution of a system of

dissipative nonlinear ODEs provided the nonlinearity and forcing are sufficiently weak relative to
dissipation (R < 1) and the solution does not decay exponentially.

* Linear ODEs are BQP-complete, so this problem is classically hard

* Exponential decay is an insurmountable obstacle (even for the linear case) due to the hardness
of postselection

* Dissipative, non-driven ODEs necessarily decay exponentially, so no algorithm for long-time
evolution can be efficient

* Driven ODEs need not decay exponentially even under dissipation

We have also shown that there can be no efficient quantum algorithm for general nonlinear
ODEs with R > /2.

However, numerical evidence suggests that the algorithm may be efficient for certain cases even
with R much larger.



Open questions

* What can we say about efficiency/hardness for 1 < R < /22
* Our algorithm has complexity quadratic in 7. Can this be improved!?

e Our algorithm has complexity O(1/¢), whereas other quantum algorithms for simulation/
linear equations/ODEs have complexity poly(log(1/¢)). Can this be improved?

e Can we identify conditions under which the algorithm is efficient for larger R/?

* End-to-end applications



