
Hamiltonian simulation with nearly
optimal dependence on all parameters

Andrew Childs

CS, UMIACS, & QuICS
University of Maryland

Joint work with Dominic Berry (Macquarie) and Robin Kothari (MIT),
building on previous work also with Richard Cleve (Waterloo) and Rolando Somma (Los Alamos)

arXiv:1312.1414 / STOC 2014 arXiv:1412.4687 / to appear in PRL arXiv:1501.01715

http://arxiv.org/abs/1312.1414
http://arxiv.org/abs/1412.4687
http://arxiv.org/abs/1501.01715

“... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot

i
d

dt
| (t)i = H| (t)i

| (t)i = e�iHt| (0)i

)

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state , produce
the final state (to within some error tolerance ²)

| (0)i
| (t)i

Local and sparse Hamiltonians

In any given row, the
location of the jth nonzero
entry and its value can be
computed efficiently (or is
given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each acts on k = O(1) qubitsH =
Pm

j=1 Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N £ N)

H =

Previous simulation methods

• Decompose Hamiltonian into a sum of terms that are easy to
simulate

• Recombine the terms by alternating between them

Product formulas

• Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

• Use phase estimation to obtain information about the spectrum
• Introduce phases to give the desired evolution

Quantum walk

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

..
.

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)

Complexity of previous simulation methods
Parameters: dimension N

evolution time t
sparsity d
allowed error ²

[Lloyd 96]: (for local Hamiltonians only)
poly(logN) (kHkt)2/✏

[Aharonov, Ta-Shma 02]: poly(d, logN) (kHkt)3/2/
p
✏

(for any ± > 0)[Childs 04]: O
�
(d4 log4 NkHkt)1+�/✏�

�

[Berry, Ahokas, Cleve, Sanders 07]: O
�
(d4 log⇤ NkHkt)1+�/✏�

�

[Childs, Kothari 11]: O
�
(d3 log⇤ NkHkt)1+�/✏�

�

[Childs10; Berry, Childs 12]: O(dkHk
max

t/
p
✏)

New result: O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�
⌧ := d2kHk

max

t ⌧ := dkHk
max

t

Improved simulation algorithms
We have developed a novel approach that directly implements the
Taylor series of the evolution operator

• Implementing linear combinations of unitary operations

• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead

Linear combinations of unitaries

LCU Lemma: Given the ability to perform unitaries Vj with unit
complexity, one can perform the operation with
complexity . Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i

Implementing U with some amplitude

U =
X

j

�jVj (WLOG)�j > 0

|0i

| i

9
=

;
1

s
|0iU | i+

r
1� 1

s2
|�i

h0|�i = 0with

B B†

Vj

j

Ancilla state: B|0i = 1p
s

X

j

p
�j |ji s :=

X

j

�j

Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

We also give a robust version that works even when U is not exactly
unitary.

W |0i| i = sin ✓|0iU | i+ cos ✓|�i

Simulating the Taylor series

e�iHt =
1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Taylor series of the dynamics generated by H:

Write where each is unitaryH =
P

` ↵`H` H`

Then e�iHt ⇡
KX

k=0

X

`1,...,lk

(�it)k

k!
↵`1 · · ·↵`k H`1 · · ·H`k

is a linear combination of unitaries

Decomposing sparse Hamiltonians
To express H as a linear combination of unitaries:

• Approximately decompose into terms with all nonzero entries equal
0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 3
0 0 0 0 3 0

1

CCCCCCA
=

0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

Ex:

• Remove zero blocks so that all terms are rescaled unitaries
0

BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

CCA =
1

2

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA+
1

2

0

BB@

�1 0 0 0
0 �1 0 0
0 0 0 1
0 0 1 0

1

CCA
Ex:

H =
Pd2

j=1 Hj• Edge coloring: where each Hj is 1-sparse
new trick: H is bipartite wlog since it suffices to simulate H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:

Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e�iA/re�iB/r)r = e�i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e�iHt ⇡
KX

k=0

(�iHt)k

k!
has error ² provided

K = O

✓
log(1/✏)

log log(1/✏)

◆

A discrete-time quantum walk for any H

[Childs 10]

Expand space from to . CN CN+1 ⌦ CN+1

Walk operator is the product of two reflections:

• Swap: S |j, k i = |k, j i
span{| 1i, . . . , | N i}• Reflect about , where

| ji := |ji ⌦

1p
kHk1

NX

k=1

q
H⇤

jk |ki+ ⌫j |N + 1i
!

kHk1 := maxj
PN

k=1 |Hjk|

i.e., where2TT † � T |ji = | ji

Another way to simulate an Hamiltonian H is to implement a
related discrete-time (Szegedy) quantum walk.

N ⇥N

Quantum walk simulation
Each eigenvalue ¸ of H corresponds to two eigenvalues
of the walk operator (with eigenvectors closely related to those of H)

±e±i arcsin�

Strategy: Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]

⌧ := dkHk
max

tComplexity: O(⌧/
p
✏)

Linear combination of quantum walk steps
Another approach: find coefficients so that

and implement this using the LCU Lemma

e�iH ⇡ T †
KX

k=�K

�kU
k T

By a generating series for Bessel functions,

e�i�t =
1X

k=�1
Jk(�t) eik arcsin�

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t

Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦(log(1/✏)
log log(1/✏))

• Query complexity of parity is even for unbounded error.
• The same Hamiltonian as above computes parity with unbounded

error by running for any positive time. Running for constant time
gives the parity with probability £(1/n!).

⌦(n)

• Query complexity of computing the parity of n bits is .
• There is a Hamiltonian that can compute parity by running for

time O(n).

⌦(n)

0 0 1 0 1 1 0

New lower bound: ⌦(dt)
• Replacing each edge with Kd,d effectively boosts Hamiltonian by d.

Query complexity of sparse Hamiltonian simulation

Lower bound: ⌦
�
⌧ + log(1/✏)

log log(1/✏)

�

or for :↵ 2 (0, 1] O
�
⌧1+↵/2

+ ⌧1�↵/2
log(1/✏)

�

Quantum walk + LCU [BCK 15]: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

• Gate complexity is only slightly larger than query complexity
• These techniques assume time-independent Hamiltonians (otherwise,

use fractional queries/LCU on Dyson series [BCCKS 14])

Notes:

Quantum walk + phase estimation [BC 10]: ⌧ := dkHk
max

tO

✓
⌧p
✏

◆

Outlook
Improved simulation algorithms

New quantum algorithms

Applications to simulating physics
• What is the cost in practice for simulating molecular systems?
• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation
• Faster algorithms for structured problems
• Simulating open quantum systems

• Improved algorithms for linear systems
• New applications of linear systems
• Other quantum algorithms from quantum simulation

