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“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)



Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials



Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the 
state, but by performing measurements on the state, it can answer 
questions that (apparently) a classical computer cannot

i
d

dt
| (t)i = H| (t)i

| (t)i = e�iHt| (0)i

)

Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an initial state          , produce 
the final state          (to within some error tolerance ²)

| (0)i
| (t)i



Local and sparse Hamiltonians

In any given row, the 
location of the jth nonzero 
entry and its value can be 
computed efficiently (or is 
given by a black box)

Note:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each      acts on k = O(1) qubitsH =
Pm

j=1 Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries 
per row, d = poly(log N) 
(where H is N £ N)

H =



Previous simulation methods

• Decompose Hamiltonian into a sum of terms that are easy to 
simulate

• Recombine the terms by alternating between them

Product formulas

• Define an easy-to-implement unitary operation (a step of a quantum 
walk) whose spectrum is related to the Hamiltonian

• Use phase estimation to obtain information about the spectrum
• Introduce phases to give the desired evolution

Quantum walk

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

..
.

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)



Complexity of previous simulation methods
Parameters: dimension N

evolution time t
sparsity d
allowed error ²

[Lloyd 96]: (for local Hamiltonians only)
poly(logN) (kHkt)2/✏

[Aharonov, Ta-Shma 02]: poly(d, logN) (kHkt)3/2/
p
✏

(for any ± > 0)[Childs 04]: O
�
(d4 log4 NkHkt)1+�/✏�

�

[Berry, Ahokas, Cleve, Sanders 07]: O
�
(d4 log⇤ NkHkt)1+�/✏�

�

[Childs, Kothari 11]: O
�
(d3 log⇤ NkHkt)1+�/✏�

�

[Childs10; Berry, Childs 12]: O(dkHk
max

t/
p
✏)

New result: O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�
⌧ := d2kHk

max

t ⌧ := dkHk
max

t



Improved simulation algorithms
We have developed a novel approach that directly implements the 
Taylor series of the evolution operator

• Implementing linear combinations of unitary operations

• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential 
improvement over previous work

Algorithms are also simpler, with less overhead



Linear combinations of unitaries

LCU Lemma:  Given the ability to perform unitaries Vj with unit 
complexity, one can perform the operation                       with 
complexity                  .  Furthermore, if U is (nearly) unitary then this 
implementation can be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i



Implementing U with some amplitude

U =
X

j

�jVj (WLOG           )�j > 0

|0i

| i

9
=

;
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r
1� 1

s2
|�i

h0|�i = 0with
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Ancilla state: B|0i = 1p
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X

j

p
�j |ji s :=

X
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Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal 
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a      -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

We also give a robust version that works even when U is not exactly 
unitary.

W |0i| i = sin ✓|0iU | i+ cos ✓|�i



Simulating the Taylor series

e�iHt =
1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Taylor series of the dynamics generated by H:

Write                        where each      is unitaryH =
P

` ↵`H` H`

Then e�iHt ⇡
KX

k=0

X

`1,...,lk

(�it)k

k!
↵`1 · · ·↵`k H`1 · · ·H`k

is a linear combination of unitaries



Decomposing sparse Hamiltonians
To express H as a linear combination of unitaries:

• Approximately decompose into terms with all nonzero entries equal
0
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• Remove zero blocks so that all terms are rescaled unitaries
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H =
Pd2

j=1 Hj• Edge coloring:                         where each Hj is 1-sparse
new trick:  H is bipartite wlog since it suffices to simulate            H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:



Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e�iA/re�iB/r)r = e�i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e�iHt ⇡
KX

k=0

(�iHt)k

k!
has error ² provided

K = O

✓
log(1/✏)

log log(1/✏)

◆



A discrete-time quantum walk for any H

[Childs 10]

Expand space from      to                       . CN CN+1 ⌦ CN+1

Walk operator is the product of two reflections:

• Swap:  S |j, k i = |k, j i
span{| 1i, . . . , | N i}• Reflect about                                 , where

| ji := |ji ⌦
 

1p
kHk1

NX

k=1

q
H⇤

jk |ki+ ⌫j |N + 1i
!

kHk1 := maxj
PN

k=1 |Hjk|

i.e.,                  where2TT † � T |ji = | ji

Another way to simulate an             Hamiltonian H is to implement a 
related discrete-time (Szegedy) quantum walk.

N ⇥N



Quantum walk simulation
Each eigenvalue ¸  of H  corresponds to two eigenvalues                   
of the walk operator (with eigenvectors closely related to those of H)

±e±i arcsin�

Strategy:  Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]

⌧ := dkHk
max

tComplexity: O(⌧/
p
✏)



Linear combination of quantum walk steps
Another approach: find coefficients so that

and implement this using the LCU Lemma

e�iH ⇡ T †
KX

k=�K

�kU
k T

By a generating series for Bessel functions,

e�i�t =
1X

k=�1
Jk(�t) eik arcsin�

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t



Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦( log(1/✏)
log log(1/✏) )

• Query complexity of parity is         even for unbounded error.
• The same Hamiltonian as above computes parity with unbounded 

error by running for any positive time.  Running for constant time 
gives the parity with probability £(1/n!).

⌦(n)

• Query complexity of computing the parity of n bits is        .
• There is a Hamiltonian that can compute parity by running for 

time O(n).

⌦(n)

0 0 1 0 1 1 0

New lower bound: ⌦(dt)
• Replacing each edge with Kd,d effectively boosts Hamiltonian by d.



Query complexity of sparse Hamiltonian simulation

Lower bound: ⌦
�
⌧ + log(1/✏)

log log(1/✏)

�

or for               :↵ 2 (0, 1] O
�
⌧1+↵/2

+ ⌧1�↵/2
log(1/✏)

�

Quantum walk + LCU [BCK 15]: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

• Gate complexity is only slightly larger than query complexity
• These techniques assume time-independent Hamiltonians (otherwise, 

use fractional queries/LCU on Dyson series [BCCKS 14])

Notes:

Quantum walk + phase estimation [BC 10]: ⌧ := dkHk
max

tO

✓
⌧p
✏

◆



Outlook
Improved simulation algorithms

New quantum algorithms

Applications to simulating physics
• What is the cost in practice for simulating molecular systems?
• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation
• Faster algorithms for structured problems
• Simulating open quantum systems

• Improved algorithms for linear systems
• New applications of linear systems
• Other quantum algorithms from quantum simulation


