
The computational power	

of quantum walk

Andrew Childs

Department of Combinatorics & Optimization	

and Institute for Quantum Computing	

University of Waterloo

Why quantum computing?

Fast algorithms for classically hard problems

Fast algorithms for classically hard problems

Fast algorithms for classically hard problems
3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609

Fast algorithms for classically hard problems
3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=	

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579	

×	

190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Fast algorithms for classically hard problems
3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=	

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579	

×	

190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Fast algorithms for classically hard problems
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000001000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=	

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579	

×	

190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Fast algorithms for classically hard problems
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000001000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=	

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579	

×	

190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Fast algorithms for classically hard problems

• Computing discrete logarithms	

• Decomposing Abelian groups	

• Computations in number fields	

• Approximating Gauss sums	

• Shifted Legendre symbol	

• Counting points on algebraic curves	

• Approximating the Jones polynomial (and

other topological invariants)	

• Simulating quantum systems	

• Linear systems	

• Computing effective resistance	

• …

• Formula evaluation	

• Collision finding (k-distinctness, k-sum, etc.)	

• Minimum spanning tree, connectivity,

shortest paths, bipartiteness of graphs	

• Network flows, maximal matchings	

• Finding subgraphs	

• Minor-closed graph properties	

• Property testing (distance between

distributions, bipartiteness/expansion of
graphs, etc.)	

• Checking matrix multiplication	

• Group commutativity	

• Subset sum	

• …

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000001000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=	

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579	

×	

190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Post-quantum cryptography
Much of the cryptography in use today (e.g., RSA, elliptic curves) could
be broken by a quantum computer

Post-quantum cryptography
Much of the cryptography in use today (e.g., RSA, elliptic curves) could
be broken by a quantum computer

One possible reaction:

Post-quantum cryptography
Much of the cryptography in use today (e.g., RSA, elliptic curves) could
be broken by a quantum computer

One possible reaction:

Another reaction: Try to understand what quantum computers are
good at so we can design cryptosystems they can’t break

What can be computed efficiently?

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Apparently nature can efficiently solve problems that a classical
computer cannot.

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Only two alternatives:

Apparently nature can efficiently solve problems that a classical
computer cannot.

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Only two alternatives:

Apparently nature can efficiently solve problems that a classical
computer cannot.

• Classical computers can efficiently simulate quantum ones, or

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Only two alternatives:

Apparently nature can efficiently solve problems that a classical
computer cannot.

• Classical computers can efficiently simulate quantum ones, or

• Quantum mechanics is not a good description of nature

What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Only two alternatives:

Apparently nature can efficiently solve problems that a classical
computer cannot.

• Classical computers can efficiently simulate quantum ones, or

• Quantum mechanics is not a good description of nature

Main goal of my research: Understand the advantages of quantum
over classical computation

The origin of quantum speedup

The origin of quantum speedup
Interference between computational paths

The origin of quantum speedup

Arrange so that	

• paths to the solution interfere constructively	

• paths to non-solutions interfere destructively

Interference between computational paths

The origin of quantum speedup

Arrange so that	

• paths to the solution interfere constructively	

• paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of complex
interference phenomena

Interference between computational paths

Quantum walk

Quantum walk
Quantum analog of a random walk on a graph.

Idea: Replace probabilities by quantum amplitudes.	

Interference can produce radically different behavior!

-60 -40 -20 0 20 40 60

-60 -40 -20 0 20 40 60

classical

quantum

in out

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman, STOC 2003]

From random walk to quantum walk

Graph G:

1 2

3 4

5

From random walk to quantum walk

Graph G:

1 2

3 4

5
A =

�

⇧⇧⇧⇧⇤

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⇥

⌃⌃⌃⌃⌅

adjacency matrix

From random walk to quantum walk

Graph G:

1 2

3 4

5
A =

�

⇧⇧⇧⇧⇤

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⇥

⌃⌃⌃⌃⌅

adjacency matrix Laplacian

L =

0

BBBB@

2 �1 �1 0 0
�1 3 0 �1 �1
�1 0 2 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

CCCCA

From random walk to quantum walk

Graph G:

1 2

3 4

5
A =

�

⇧⇧⇧⇧⇤

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⇥

⌃⌃⌃⌃⌅

adjacency matrix Laplacian

L =

0

BBBB@

2 �1 �1 0 0
�1 3 0 �1 �1
�1 0 2 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

CCCCA

Random walk on G

State: Probability pv(t) of being at vertex v at time t

Dynamics: d

dt
~p = L~p

From random walk to quantum walk

Graph G:

1 2

3 4

5
A =

�

⇧⇧⇧⇧⇤

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⇥

⌃⌃⌃⌃⌅

adjacency matrix Laplacian

L =

0

BBBB@

2 �1 �1 0 0
�1 3 0 �1 �1
�1 0 2 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

CCCCA

Random walk on G

State: Probability pv(t) of being at vertex v at time t

Dynamics: d

dt
~p = L~p

Quantum walk on G

State: Amplitude av(t) to be at vertex v at time t

Dynamics: i
d

dt
~a = L~a

Outline

Universal computation

Formula evaluation Quantum simulation

i
d

dt
 (t) = H (t)

|11
in

i

|10
in

i
|01

in

i

|00
in

i

|11
out

i

|10
out

i
|01

out

i

|00
out

i

Formula evaluation

• Ambainis, Childs, Reichardt, Špalek, and Zhang, FOCS 2007, pp. 363–372;  
SIAM Journal on Computing 39, 2513–2530 (2010)

Query complexity of formula evaluation

i x xi

Query model: given a black box for a string x 2 {0, 1}n

Query complexity of formula evaluation

i x xi

Compute some function of x using as few queries as possible

Query model: given a black box for a string x 2 {0, 1}n

Query complexity of formula evaluation

i x xi

Compute some function of x using as few queries as possible

x6

or

or

and
and

or or or

andand

and and

x1

x7

x14 x15

x8 x9 x10 x11 x12

x2 x5x3 x4

x16 x17 x18x13

Query model: given a black box for a string x 2 {0, 1}n

A single OR gate

or

x1 x2 xn…

A single OR gate

or

x1 x2 xn…

Classical complexity: �(n)

A single OR gate

or

x1 x2 xn…

Classical complexity: �(n)

Quantum algorithm [Grover 1996]: O(
�

n)

A single OR gate

or

x1 x2 xn…

Classical complexity: �(n)

Quantum algorithm [Grover 1996]: O(
�

n)

Quantum lower bound [BBBV 1996]: �(
�

n)

Balanced binary AND-OR trees

and

or or

and and and and

or or or or or or or or

x1 x2 xn

Balanced binary AND-OR trees

and

or or

and and and and

or or or or or or or or

x1 x2 xn

Classical complexity [Snir 85; Saks, Wigderson 86; Santha 95]: �(n0.753)

Balanced binary AND-OR trees

and

or or

and and and and

or or or or or or or or

x1 x2 xn

Classical complexity [Snir 85; Saks, Wigderson 86; Santha 95]: �(n0.753)

Quantum lower bound [Barnum, Saks 02]: �(
�

n)
(holds for arbitrary AND-OR formulas)

Formula evaluation by scattering
[Farhi, Goldstone, Gutmann 07]

Formula evaluation by scattering
k [Farhi, Goldstone, Gutmann 07]

Formula evaluation by scattering
k [Farhi, Goldstone, Gutmann 07]

Formula evaluation by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k [Farhi, Goldstone, Gutmann 07]

Formula evaluation by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k [Farhi, Goldstone, Gutmann 07]

Formula evaluation by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

Claim: For small k, the wave is transmitted if the formula (translated
into NAND gates) evaluates to 0, and reflected if it evaluates to 1.

k [Farhi, Goldstone, Gutmann 07]

General formulas
This simple strategy does not work for general formulas.

General formulas
This simple strategy does not work for general formulas.

To get a general algorithm:	

• Rewrite the formula to be

“approximately balanced”	

• Assign weights to the edges

of the tree	

• Show that eigenvectors are

related to the function value

General formulas
This simple strategy does not work for general formulas.

To get a general algorithm:	

• Rewrite the formula to be

“approximately balanced”	

• Assign weights to the edges

of the tree	

• Show that eigenvectors are

related to the function value

. . .

. .
.

v

p

c hvc

hpv � 4

�
sv

sp

sv = # of inputs in
subformula under v

General formulas
This simple strategy does not work for general formulas.

To get a general algorithm:	

• Rewrite the formula to be

“approximately balanced”	

• Assign weights to the edges

of the tree	

• Show that eigenvectors are

related to the function value

. . .

. .
.

v

p

c hvc

hpv � 4

�
sv

sp

sv = # of inputs in
subformula under v

Lemma: If the formula evaluates to 0, then the tree has an
eigenstate with eigenvalue 0 that has constant overlap on the
root. If the formula evaluates to 1, then all eigenstates with
eigenvalue have no overlap on the root.O(1/

p
n)

General formulas
This simple strategy does not work for general formulas.

To get a general algorithm:	

• Rewrite the formula to be

“approximately balanced”	

• Assign weights to the edges

of the tree	

• Show that eigenvectors are

related to the function value

. . .

. .
.

v

p

c hvc

hpv � 4

�
sv

sp

sv = # of inputs in
subformula under v

Lemma: If the formula evaluates to 0, then the tree has an
eigenstate with eigenvalue 0 that has constant overlap on the
root. If the formula evaluates to 1, then all eigenstates with
eigenvalue have no overlap on the root.O(1/

p
n)

The quantum query complexity of evaluating any AND-OR formula is 	

 (subsequently improved to [Reichardt 10])O(n

1
2+✏) O(

p
n)

Quantum simulation

• Childs, Communications in Mathematical Physics 294, 581–603 (2010)	

• Berry and Childs, Quantum Information and Computation 12, 29–62 (2012)

“... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”	

!
Richard Feynman	

Simulating physics with computers (1981)

Why simulate quantum mechanics?

Why simulate quantum mechanics?

Computational chemistry/physics	

• chemical reactions	

• properties of materials

Why simulate quantum mechanics?

Implementation of quantum algorithms	

• continuous-time quantum walk	

• adiabatic quantum computation	

• linear equations

Computational chemistry/physics	

• chemical reactions	

• properties of materials

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

i
d

dt
 (t) = H (t)

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state Ã(0), produce
the final state Ã(t) (to within some error tolerance)

i
d

dt
 (t) = H (t)

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state Ã(0), produce
the final state Ã(t) (to within some error tolerance)

i
d

dt
 (t) = H (t)

A classical computer cannot even represent the state efficiently

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state Ã(0), produce
the final state Ã(t) (to within some error tolerance)

i
d

dt
 (t) = H (t)

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer
can efficiently answer questions that (apparently) a classical computer
cannot

Sparse Hamiltonians
At most d nonzero entries per row (here d = 4)

H =

Sparse Hamiltonians
At most d nonzero entries per row (here d = 4)

Assumption: we can efficiently compute locations and values of
nonzero entries in any given row

H =

Sparse Hamiltonians
At most d nonzero entries per row (here d = 4)

Assumption: we can efficiently compute locations and values of
nonzero entries in any given row

H =

Simulation via product formulas
Original approach to sparse Hamiltonian simulation:

[AT 03, CCDFGS 03, BACS 07, CK 10]

H =
P

j Hj• Decompose where each is 1-sparseHj

(distributed edge coloring)

• Recombine terms
(product formulas, e.g.,)e�i(A+B)t ⇡ (e�iAt/re�iBt/r)r

Simulation via product formulas
Original approach to sparse Hamiltonian simulation:

[AT 03, CCDFGS 03, BACS 07, CK 10]

H =
P

j Hj• Decompose where each is 1-sparseHj

(distributed edge coloring)

• Recombine terms
(product formulas, e.g.,)e�i(A+B)t ⇡ (e�iAt/re�iBt/r)r

• Superlinear in evolution time t	

• Cubic in sparsity d

Running time of the best approach of this kind:

Discrete-time quantum walk
Can we define a quantum walk that takes discrete steps?

Discrete-time quantum walk

In general, locality and unitarity are incompatible

Can we define a quantum walk that takes discrete steps?

Discrete-time quantum walk

In general, locality and unitarity are incompatible

Workaround: define a walk on the directed edges (a “coined walk”)

Can we define a quantum walk that takes discrete steps?

Discrete-time quantum walk

In general, locality and unitarity are incompatible

Workaround: define a walk on the directed edges (a “coined walk”)

Szegedy 05: For a stochastic transition matrix P,
v u

Puv

• Swap the edge direction

• Reflect about span{ v : v 2 V }

(v)(w,u) =

(p
Puv if v = w

0 otherwise

where

Can we define a quantum walk that takes discrete steps?

Discrete-time quantum walk

In general, locality and unitarity are incompatible

Workaround: define a walk on the directed edges (a “coined walk”)

This gives a quantum analog of the Markov chain P

Szegedy 05: For a stochastic transition matrix P,
v u

Puv

• Swap the edge direction

• Reflect about span{ v : v 2 V }

(v)(w,u) =

(p
Puv if v = w

0 otherwise

where

Can we define a quantum walk that takes discrete steps?

Hamiltonian simulation by quantum walk
1. Define an analog of Szegedy’s walk for any Hamiltonian H  

(in place of the stochastic matrix P)	

2. Show how to perform steps of this walk using queries to the

sparse Hamiltonian	

3. Relate the spectrum of the walk to the spectrum of H	

4. Infer information about the spectrum of the walk (and hence of H)

using quantum phase estimation	

5. Introduce the appropriate phase e—iÁt for each eigenstate of H with

eigenvalue Á

Hamiltonian simulation by quantum walk
1. Define an analog of Szegedy’s walk for any Hamiltonian H  

(in place of the stochastic matrix P)	

2. Show how to perform steps of this walk using queries to the

sparse Hamiltonian	

3. Relate the spectrum of the walk to the spectrum of H	

4. Infer information about the spectrum of the walk (and hence of H)

using quantum phase estimation	

5. Introduce the appropriate phase e—iÁt for each eigenstate of H with

eigenvalue Á

Theorem: This running time of this approach is O(dt).

Hamiltonian simulation by quantum walk
1. Define an analog of Szegedy’s walk for any Hamiltonian H  

(in place of the stochastic matrix P)	

2. Show how to perform steps of this walk using queries to the

sparse Hamiltonian	

3. Relate the spectrum of the walk to the spectrum of H	

4. Infer information about the spectrum of the walk (and hence of H)

using quantum phase estimation	

5. Introduce the appropriate phase e—iÁt for each eigenstate of H with

eigenvalue Á

Theorem: This running time of this approach is O(dt).

This algorithm is optimal with respect to either d or t alone

Universal computation

• Childs, Physical Review Letters 102, 180501 (2009)	

• Childs, Gosset, and Webb, Science 339, 791–794 (2013)

Scattering on graphs
Attach semi-infinite paths to two vertices of an arbitrary finite graph.

Ĝ

Scattering on graphs

Before:
k !

Attach semi-infinite paths to two vertices of an arbitrary finite graph.

Ĝ

Scattering on graphs

Before:
k !

Attach semi-infinite paths to two vertices of an arbitrary finite graph.

Ĝ

After:
k !

T (k)R(k)
 k

Ĝ

Scattering on graphs

Before:
k !

Attach semi-infinite paths to two vertices of an arbitrary finite graph.

More generally, attach any number of semi-infinite paths. The
scattering behavior is described a unitary matrix called the S-matrix.

Ĝ

After:
k !

T (k)R(k)
 k

Ĝ

Implementing a gate

Ĝ
0in 0

out

1
out

1in

. . .

. . .

Implementing a gate

k !
encoded 0

Ĝ
0in 0

out

1
out

1in

. . .

. . .

Implementing a gate

encoded 1
k ! Ĝ

0in 0
out

1
out

1in

. . .

. . .

Implementing a gate

To perform a gate, design a graph whose S-matrix implements the
desired transformation at the momentum used for the encoding. U

Ĝ
0in 0

out

1
out

1in

Implementing a gate

S(k) =

✓
0 V
U 0

◆

To perform a gate, design a graph whose S-matrix implements the
desired transformation at the momentum used for the encoding. U

Ĝ
0in 0

out

1
out

1in

Universal set of single-qubit gates

1
in

1
out

0
in

0
out 0

in

1
in

0
out

1
out

k = ⇡/4momentum for logical states:

✓
1 0
0

p
i

◆
� 1p

2

✓
i 1
1 i

◆

Universality construction

Implement sequences of gates by concatenation.

With an appropriate encoding of -qubit states, two-qubit gates are
trivial.

n

Result: Any -qubit circuit can be simulated by some graph.n

|11
in

i

|10
in

i
|01

in

i

|00
in

i

|11
out

i

|10
out

i
|01

out

i

|00
out

i

Quantum walk is computationally universal
In principle, any quantum computation can be performed by a
quantum walk (of a very restricted form: unweighted, simple graph
with maximum degree 3).

Quantum walk is computationally universal
In principle, any quantum computation can be performed by a
quantum walk (of a very restricted form: unweighted, simple graph
with maximum degree 3).

Quantum walks are computationally powerful!

Quantum walk is computationally universal
In principle, any quantum computation can be performed by a
quantum walk (of a very restricted form: unweighted, simple graph
with maximum degree 3).

Quantum walks are computationally powerful!

The construction suggests an algorithmic technique (scattering on
graphs)…

Quantum walk is computationally universal
In principle, any quantum computation can be performed by a
quantum walk (of a very restricted form: unweighted, simple graph
with maximum degree 3).

Quantum walks are computationally powerful!

The construction suggests an algorithmic technique (scattering on
graphs)…

… but not a new architecture (the graph is necessarily exponentially
large).

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem: Any -qubit, -gate quantum circuit can be simulated by
a quantum walk with walkers interacting for time	

on an unweighted planar graph with vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem: Any -qubit, -gate quantum circuit can be simulated by
a quantum walk with walkers interacting for time	

on an unweighted planar graph with vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Consequences:

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem: Any -qubit, -gate quantum circuit can be simulated by
a quantum walk with walkers interacting for time	

on an unweighted planar graph with vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Consequences:
• Quantum walks with many interacting walkers (on small graphs) are

also computationally powerful

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem: Any -qubit, -gate quantum circuit can be simulated by
a quantum walk with walkers interacting for time	

on an unweighted planar graph with vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Consequences:
• Quantum walks with many interacting walkers (on small graphs) are

also computationally powerful
• New architecture for a quantum computer (with no time-dependent

control)

Quantum walks with many walkers
Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem: Any -qubit, -gate quantum circuit can be simulated by
a quantum walk with walkers interacting for time	

on an unweighted planar graph with vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Consequences:
• Quantum walks with many interacting walkers (on small graphs) are

also computationally powerful
• New architecture for a quantum computer (with no time-dependent

control)
• Simulating the dynamics of interacting many-body systems is BQP-

hard (e.g., the “Bose-Hubbard model” on a sparse, unweighted, planar
graph)

Universal computation with many walkers

A

3

1 2

1 2

3

=

B

1m,in

0m,in 0m,out

0c,in 0c,out

1c,in

1m,out

1c,out

Main new idea: a gadget that implements a two-qubit interaction via
momentum-dependent routing

A

3

1 2

1 2

3

=

B

1m,in

0m,in 0m,out

0c,in 0c,out

1c,in

1m,out

1c,out

(+ extensive analysis to show the strategy works on a finite graph
with small error)

Summary

Universal computation

Formula evaluation Quantum simulation

i
d

dt
 (t) = H (t)

|11
in

i

|10
in

i
|01

in

i

|00
in

i

|11
out

i

|10
out

i
|01

out

i

|00
out

i

Quantum walk is a powerful algorithmic tool.

Outlook

When will we have large-scale quantum computers?

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

• How efficiently can quantum computers simulate quantum systems?

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

• How efficiently can quantum computers simulate quantum systems?

• What other problems have fast quantum algorithms?

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

• How efficiently can quantum computers simulate quantum systems?

• What other problems have fast quantum algorithms?

• What other tools are useful for building quantum algorithms?

Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

• How efficiently can quantum computers simulate quantum systems?

• What other problems have fast quantum algorithms?

• What other tools are useful for building quantum algorithms?

• What problems are hard even for quantum computers?

