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Fast algorithms for classically hard problems

• Computing discrete logarithms	


• Decomposing Abelian groups	


• Computations in number fields	


• Approximating Gauss sums	


• Shifted Legendre symbol	


• Counting points on algebraic curves	


• Approximating the Jones polynomial (and 

other topological invariants)	


• Simulating quantum systems	


• Linear systems	


• Computing effective resistance	


• …

• Formula evaluation	


• Collision finding (k-distinctness, k-sum, etc.)	


• Minimum spanning tree, connectivity, 

shortest paths, bipartiteness of graphs	


• Network flows, maximal matchings	


• Finding subgraphs	


• Minor-closed graph properties	


• Property testing (distance between 

distributions, bipartiteness/expansion of 
graphs, etc.)	



• Checking matrix multiplication	


• Group commutativity	


• Subset sum	


• …
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Post-quantum cryptography
Much of the cryptography in use today (e.g., RSA, elliptic curves) could 
be broken by a quantum computer

One possible reaction:

Another reaction:  Try to understand what quantum computers are 
good at so we can design cryptosystems they can’t break
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What can be computed efficiently?

Nature is described by quantum mechanics, so to fully understand 
what can be computed in the real world, we have to understand the 
implications of quantum mechanics for computation.

Only two alternatives:

Apparently nature can efficiently solve problems that a classical 
computer cannot.

• Classical computers can efficiently simulate quantum ones, or

• Quantum mechanics is not a good description of nature

Main goal of my research: Understand the advantages of quantum 
over classical computation
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The origin of quantum speedup

Arrange so that	


• paths to the solution interfere constructively	


• paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of complex 
interference phenomena

Interference between computational paths
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Quantum walk
Quantum analog of a random walk on a graph.

Idea: Replace probabilities by quantum amplitudes.	


Interference can produce radically different behavior!
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in out

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman, STOC 2003]
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0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⇥

⌃⌃⌃⌃⌅

adjacency matrix Laplacian

L =

0

BBBB@

2 �1 �1 0 0
�1 3 0 �1 �1
�1 0 2 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

CCCCA

Random walk on G

State:  Probability pv(t) of being at vertex v at time t

Dynamics: d

dt
~p = L~p

Quantum walk on G

State:  Amplitude av(t) to be at vertex v at time t

Dynamics: i
d

dt
~a = L~a



Outline

Universal computation

Formula evaluation Quantum simulation
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dt
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Formula evaluation

• Ambainis, Childs, Reichardt, Špalek, and Zhang, FOCS 2007, pp. 363–372;  
SIAM Journal on Computing 39, 2513–2530 (2010)
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i x xi

Compute some function of x using as few queries as possible
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Query model: given a black box for a string x 2 {0, 1}n
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x1 x2 xn…

Classical complexity: �(n)

Quantum algorithm [Grover 1996]: O(
�
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Quantum lower bound [BBBV 1996]: �(
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Balanced binary AND-OR trees

and

or or

and and and and

or or or or or or or or

x1 x2 xn

Classical complexity [Snir 85; Saks, Wigderson 86; Santha 95]: �(n0.753)

Quantum lower bound [Barnum, Saks 02]: �(
�

n)
(holds for arbitrary AND-OR formulas)
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0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k [Farhi, Goldstone, Gutmann 07]



Formula evaluation by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

Claim: For small k, the wave is transmitted if the formula (translated 
into NAND gates) evaluates to 0, and reflected if it evaluates to 1.

k [Farhi, Goldstone, Gutmann 07]
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To get a general algorithm:	


• Rewrite the formula to be 

“approximately balanced”	


• Assign weights to the edges 

of the tree	


• Show that eigenvectors are 

related to the function value
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subformula under v

Lemma:  If the formula evaluates to 0, then the tree has an 
eigenstate with eigenvalue 0 that has constant overlap on the 
root.  If the formula evaluates to 1, then all eigenstates with 
eigenvalue                have no overlap on the root.O(1/

p
n)

The quantum query complexity of evaluating any AND-OR formula is 	


              (subsequently improved to            [Reichardt 10])O(n

1
2+✏) O(

p
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Quantum simulation

• Childs, Communications in Mathematical Physics 294, 581–603 (2010)	


• Berry and Childs, Quantum Information and Computation 12, 29–62 (2012)



“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”	


!
Richard Feynman	


Simulating physics with computers (1981)
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Why simulate quantum mechanics?

Implementation of quantum algorithms	



• continuous-time quantum walk	



• adiabatic quantum computation	



• linear equations

Computational chemistry/physics	



• chemical reactions	



• properties of materials
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Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an initial state Ã(0), produce 
the final state Ã(t) (to within some error tolerance)

i
d

dt
 (t) = H  (t)

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer 
can efficiently answer questions that (apparently) a classical computer 
cannot
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Simulation via product formulas
Original approach to sparse Hamiltonian simulation:

[AT 03, CCDFGS 03, BACS 07, CK 10]

H =
P

j Hj• Decompose                     where each      is 1-sparseHj

(distributed edge coloring)

• Recombine terms 
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Simulation via product formulas
Original approach to sparse Hamiltonian simulation:

[AT 03, CCDFGS 03, BACS 07, CK 10]

H =
P

j Hj• Decompose                     where each      is 1-sparseHj

(distributed edge coloring)

• Recombine terms 
(product formulas, e.g.,                                                )e�i(A+B)t ⇡ (e�iAt/re�iBt/r)r

• Superlinear in evolution time t	



• Cubic in sparsity d

Running time of the best approach of this kind:
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Discrete-time quantum walk

In general, locality and unitarity are incompatible

Workaround: define a walk on the directed edges (a “coined walk”)

This gives a quantum analog of the Markov chain P

Szegedy 05:  For a stochastic transition matrix P,
v u

Puv

• Swap the edge direction

• Reflect about span{ v : v 2 V }

( v)(w,u) =

(p
Puv if v = w

0 otherwise

where

Can we define a quantum walk that takes discrete steps?
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sparse Hamiltonian	
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using quantum phase estimation	
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eigenvalue Á
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Hamiltonian simulation by quantum walk
1. Define an analog of Szegedy’s walk for any Hamiltonian H  

(in place of the stochastic matrix P )	


2. Show how to perform steps of this walk using queries to the 

sparse Hamiltonian	


3. Relate the spectrum of the walk to the spectrum of H	


4. Infer information about the spectrum of the walk (and hence of H) 

using quantum phase estimation	


5. Introduce the appropriate phase e—iÁt for each eigenstate of H with 

eigenvalue Á

Theorem:  This running time of this approach is O(dt).

This algorithm is optimal with respect to either d or t alone



Universal computation

• Childs, Physical Review Letters 102, 180501 (2009)	


• Childs, Gosset, and Webb, Science 339, 791–794 (2013)



Scattering on graphs
Attach semi-infinite paths to two vertices of an arbitrary finite graph.

Ĝ
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Scattering on graphs

Before:
k !

Attach semi-infinite paths to two vertices of an arbitrary finite graph.

More generally, attach any number of semi-infinite paths.  The 
scattering behavior is described a unitary matrix called the S-matrix.

Ĝ

After:
k !

T (k)R(k)
 k

Ĝ
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Implementing a gate

To perform a gate, design a graph whose S-matrix implements the 
desired transformation     at the momentum used for the encoding. U

Ĝ
0in 0

out

1
out

1in



Implementing a gate

S(k) =

✓
0 V
U 0

◆

To perform a gate, design a graph whose S-matrix implements the 
desired transformation     at the momentum used for the encoding. U

Ĝ
0in 0

out

1
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Universal set of single-qubit gates
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Universality construction

Implement sequences of gates by concatenation.

With an appropriate encoding of   -qubit states, two-qubit gates are 
trivial.

n

Result:  Any   -qubit circuit can be simulated by some graph.n

|11
in

i

|10
in

i
|01

in

i

|00
in

i

|11
out

i

|10
out

i
|01

out

i

|00
out

i



Quantum walk is computationally universal
In principle, any quantum computation can be performed by a 
quantum walk (of a very restricted form: unweighted, simple graph 
with maximum degree 3).



Quantum walk is computationally universal
In principle, any quantum computation can be performed by a 
quantum walk (of a very restricted form: unweighted, simple graph 
with maximum degree 3).

Quantum walks are computationally powerful!



Quantum walk is computationally universal
In principle, any quantum computation can be performed by a 
quantum walk (of a very restricted form: unweighted, simple graph 
with maximum degree 3).

Quantum walks are computationally powerful!

The construction suggests an algorithmic technique (scattering on 
graphs)…



Quantum walk is computationally universal
In principle, any quantum computation can be performed by a 
quantum walk (of a very restricted form: unweighted, simple graph 
with maximum degree 3).

Quantum walks are computationally powerful!

The construction suggests an algorithmic technique (scattering on 
graphs)…

… but not a new architecture (the graph is necessarily exponentially 
large).
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Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are nm states

Theorem:  Any   -qubit,   -gate quantum circuit can be simulated by 
a quantum walk with          walkers interacting for time	


on an unweighted planar graph with                vertices.

n g

poly(n, g)
n+ 1 poly(n, g)

Consequences: 
• Quantum walks with many interacting walkers (on small graphs) are 

also computationally powerful
• New architecture for a quantum computer (with no time-dependent 

control)
• Simulating the dynamics of interacting many-body systems is BQP-

hard (e.g., the “Bose-Hubbard model” on a sparse, unweighted, planar 
graph)



Universal computation with many walkers
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Main new idea: a gadget that implements a two-qubit interaction via 
momentum-dependent routing
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(+ extensive analysis to show the strategy works on a finite graph 
with small error)



Summary

Universal computation

Formula evaluation Quantum simulation
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Quantum walk is a powerful algorithmic tool.
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Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.”  –Niels Bohr

We can (and should!) address many crucial questions now:

• How can we design cryptosystems that resist quantum attacks?

• How efficiently can quantum computers simulate quantum systems?

• What other problems have fast quantum algorithms?

• What other tools are useful for building quantum algorithms?

• What problems are hard even for quantum computers?


