
Quantum algorithms

Andrew Childs
Institute for Quantum Computing

University of Waterloo

USEQIP

2 June 2011

Based on slides prepared with Pawel Wocjan (University of Central Florida)

Original full version at www.math.uwaterloo.ca/∼amchilds/talks/qalg.pdf

http://www.math.uwaterloo.ca/~amchilds/talks/qalg.pdf

Outline

I. Quantum circuits

II. Elementary quantum algorithms

III. The QFT and phase estimation

IV. Factoring

V. Quantum search

VI. Beyond Shor and Grover

Part I

Quantum circuits

Quantum circuits

Quantum circuits are generalizations of Boolean circuits

input transformation output (probabilistic)

|0〉 U1
U3 U6

0

|0〉
U2

U5 1

|0〉
U6

0

|0〉
U3

U4
U7

1

|0〉 1

Quantum circuit model

To quantify complexity, a quantum algorithm must be implemented
by a quantum circuit, i.e., a sequence of elementary gates

Quantum mechanics
Quantum circuit model = +

Notion of complexity

A universal gate set

Every unitary can be implemented exactly by quantum circuits
using only

I CNOT gates (acting on adjacent qubits) and

I arbitrary single qubit gates

The gate complexity κ(U) of a unitary U ∈ U(H) is minimal
number of elementary gates needed to implement U

Example: quantum Fourier transform has gate complexity O(n2)

(Approximately) universal gate sets

For every ε ∈ (0, 1) and every unitary U, there is a unitary V such
that

‖U − V ‖ ≤ ε where ‖U − V ‖ = sup
|ψ〉
‖(U − V)|ψ〉‖

where V is implemented by a quantum circuits using only

I CNOT gates (acting on adjacent qubits)

I the single-qubit gates H,R(π4) where

H =
1√
2

(
1 1
1 −1

)
R(θ) =

(
1 0
0 e iθ

)

There are other universal gate sets

Gate complexity of unitaries

The gate complexity κε(U) of a unitary U is the minimal number
of gates (from a universal gate set) need to implement a unitary V
with ‖U − V ‖ ≤ ε

The Solovay-Kitaev theorem implies that

κε(U) = O
(
κ(U) · logc

(
κ(U)/ε

))
for some small constant c

Counting arguments show that most n-qubit unitaries have gate
complexity exponential in n

Structure of quantum algorithms

An efficient quantum algorithm consists of

I preparing the initial state |0〉⊗n,

I applying a quantum circuit of polynomially many in n gates
from some universal gate set, and

I measuring all qubits in the computational basis

These steps can be repeated polynomially many times to collect
statistics, followed by efficient classical post-processing

Reversible computing

The classical AND gate is irreversible because if the output is 0
then we cannot determine which of the three possible pairs was the
actual input

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

But it is easy to simulate the AND gate with one Toffoli gate

|x1〉 • |x1〉
|x2〉 • |x2〉
|0〉 |x1 ∧ x2〉

Problem of garbage

To simulate irreversible circuits with Toffoli gates, we keep the
input and intermediate results to make everything reversible

Consider the function y = x1 ∧ x2 ∧ x3

|x1〉 • |x1〉
|x2〉 • |x2〉
|x3〉 • |x3〉
|0〉 |x1 ∧ x2 ∧ x3〉

|0〉 • |x1 ∧ x2〉 ←− garbage

It is important to not leave any garbage; otherwise, we could not
make use of quantum parallelism and constructive interference
effects

Reversible garbage removal

It is always possible to reversibly remove (uncompute) the garbage

In the case y = x1 ∧ x2 ∧ x3, this can be done with the circuit

|x1〉 • • |x1〉
|x2〉 • • |x2〉
|x3〉 • |x3〉
|0〉 |x1 ∧ x2 ∧ x3〉

|0〉 • |0〉 ←− garbage uncomputed

Simulating irreversible circuits

Let f : {0, 1}n → {0, 1} be any boolean function

Assume this function can be computed classically using only t
classical elementary gates such as AND, OR, NAND

We can implement a unitary Uf on (C2)⊗n ⊗ C2 ⊗ (C2)⊗w such
that

Uf

(
|x〉in ⊗ |y〉out ⊗ |0〉⊗wwork

)
= |x〉 ⊗ |y ⊕ f (x)〉 ⊗ |0〉⊗w

Uf is built from polynomially many in t Toffoli gates and the size
w of the workspace register is polynomial in t

During the computation the qubits of the workspace register are
changed, but at the end they reversibly reset to |0〉⊗w

Part II

Elementary quantum algorithms

Black box problems

Standard computational problem: determine a property of some
input data

I Example: Find the prime factors of N

Alternate model: Input is provided by a black box (or oracle)

I Query: On input x , black box returns f (x)

I Determine a property of f using as few queries as possible

I The minimum number of queries is the query complexity

I Example: Given a black box for f : {1, 2, . . . ,N} → {0, 1}, is
there some x such that f (x) = 1?

I Why black boxes?
I Facilitates proving lower bounds
I Can lead to algorithms for standard problems

Black boxes for reversible/quantum computing

Black box x f f (x) is not reversible

Reversible version: x
f

x

z z ⊕ f (x)

Given a circuit that computes f non-reversibly, we can implement
the reversible version with little overhead

Quantum version: |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

A reversible circuit is a quantum circuit

Deutsch’s problem

Problem

I Given: a black-box function f : {0, 1} → {0, 1}
I Task: determine whether f is constant or balanced

x f1(x)

0 0
1 0

x f2(x)

0 1
1 1

x f3(x)

0 0
1 1

x f4(x)

0 1
1 0︸ ︷︷ ︸

constant: f (0) = f (1)
︸ ︷︷ ︸

balanced: f (0) 6= f (1)

How many queries are needed?

I Classically: 2 queries are necessary and sufficient

I Quantumly: ?

Toward a quantum algorithm for Deutsch’s problem

Quantum black box for f : |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

Compute f in superposition: |0〉 H
f

|0〉

|0〉 ⊗ |0〉 7→ |0〉+ |1〉√
2
⊗ |0〉

7→ 1√
2

(|0〉 ⊗ |f (0)〉+ |1〉 ⊗ |f (1)〉)

Can’t extract more than one bit of information about f

Phase kickback

Quantum black box for f : |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

Phase kickback:
|x〉

f
(−1)f (x)|x〉

|0〉−|1〉√
2

|0〉−|1〉√
2

|x〉 ⊗ 1√
2

(|0〉 − |1〉) = 1√
2

(|x〉 ⊗ |0〉 − |x〉 ⊗ |1〉)

7→ 1√
2

(|x〉 ⊗ |f (x)〉 − |x〉 ⊗ |1⊕ f (x)〉)

= |x〉 ⊗ 1√
2

(|f (x)〉 − |f (x)〉)

= (−1)f (x)︸ ︷︷ ︸
not necessarily global

|x〉 ⊗ 1√
2

(|0〉 − |1〉)

(−1)f (x)︸ ︷︷ ︸
not necessarily global

Quantum algorithm for Deutsch’s problem

|0〉 H
f

H f (0)⊕ f (1)

|0〉−|1〉√
2

|0〉 ⊗ |0〉 − |1〉√
2
7→ |0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2

7→ (−1)f (0)|0〉+ (−1)f (1)|1〉√
2

⊗ |0〉 − |1〉√
2

= (−1)f (0) |0〉+ (−1)f (0)⊕f (1)|1〉√
2

⊗ |0〉 − |1〉√
2

7→ (−1)f (0)|f (0)⊕ f (1)〉 ⊗ |0〉 − |1〉√
2

1 quantum query vs. 2 classical queries!

The Deutsch-Jozsa problem

Problem

I Given: a black-box function f : {0, 1}n → {0, 1}
I Promise: f is either

constant (f (x) is independent of x)
or balanced (f (x) = 0 for exactly half the values of x)

I Task: determine whether f is constant or balanced

How many queries are needed?

I Classically: 2n/2 + 1 queries to answer with certainty

I Quantumly: ?

Phase kickback for a Boolean function of n bits

Black box function: |x1〉

f

|x1〉
...

...

|xn〉 |xn〉
|z〉 |z ⊕ f (x)〉

Phase kickback:

|x1〉 ⊗ · · · ⊗ |xn〉 ⊗
|0〉 − |1〉√

2
7→ (−1)f (x)|x1〉 ⊗ · · · ⊗ |xn〉 ⊗

|0〉 − |1〉√
2

Quantum algorithm for the Deutsch-Jozsa problem

|0〉 H

f

H

...
...

...

|0〉 H H
|0〉−|1〉√

2

|0〉⊗n ⊗ |0〉 − |1〉√
2
7→
(
|0〉+ |1〉√

2

)⊗n
⊗ |0〉 − |1〉√

2

=
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉 − |1〉√
2

7→ 1√
2n

∑
x∈{0,1}n

(−1)f (x)|x〉 ⊗ |0〉 − |1〉√
2

Hadamard transform

What do the final Hadamard gates do?

H|x〉 =
1√
2

(|0〉+ (−1)x |1〉)

=
1√
2

∑
y∈{0,1}

(−1)xy |y〉

H⊗n(|x1〉 ⊗ · · · ⊗ |xn〉) =
n⊗

i=1

 1√
2

∑
yi∈{0,1}

(−1)xiyi |yi 〉

=

1√
2n

∑
y∈{0,1}n

(−1)x ·y |y〉

Quantum D-J algorithm: Finishing up

1√
2n

∑
x∈{0,1}n

(−1)f (x)|x〉 H
⊗n

7→ 1

2n

∑
x ,y∈{0,1}n

(−1)f (x)(−1)x ·y |y〉

I If f is constant, the amplitude of |y〉 is

± 1

2n

∑
x∈{0,1}n

(−1)x ·y = ±

{
1 if y = 0 . . . 0

0 otherwise

so we definitely measure 0 . . . 0

I If f is balanced, the amplitude of |0 . . . 0〉 is∑
x∈{0,1}n

(−1)f (x) = 0

so we measure some nonzero string

The Deutsch-Jozsa problem: Quantum vs. classical

Above quantum algorithm uses only one query.

Need 2n/2 + 1 classical queries to answer with certainty.

What about randomized algorithms? Success probability arbitrarily
close to 1 with a constant number of queries.

Can we get a separation between randomized and quantum
computation?

Simon’s problem

Problem

I Given: a black-box function f : {0, 1}n → {0, 1}m

I Promise: there is some s ∈ {0, 1}n such that f (x) = f (y) if
and only if x = y or x = y ⊕ s

I Task: determine s

One classical strategy:

I query a random x

I repeat until we find xi 6= xj such that f (xi) = f (xj)

I output xi ⊕ xj

By the birthday problem, this uses about
√

2n queries.

It can be shown that this strategy is essentially optimal.

Quantum algorithm for Simon’s problem

Quantum black box: |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉
(x ∈ {0, 1}n, y ∈ {0, 1}m)

|0〉 H

f

H

...
...

...

|0〉 H H

|0〉
...

...

|0〉

Repeat many times and post-process the measurement outcomes

Quantum algorithm for Simon’s problem: Analysis I

|0〉 H

f

H

...
...

...

|0〉 H H

|0〉
...

...

|0〉

|0〉⊗n ⊗ |0〉⊗m

7→ 1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉⊗m

7→ 1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |f (x)〉

=
1√

2n−1

∑
x∈R

|x〉+ |x ⊕ s〉√
2

⊗ |f (x)〉

for some R ⊂ {0, 1}n

Quantum algorithm for Simon’s problem: Analysis II

Recall H⊗n|x〉 =
∑

y∈{0,1}n(−1)x ·y |y〉

H⊗n
(
|x〉+ |x ⊕ s〉√

2

)
=

1√
2n+1

∑
y∈{0,1}n

[(−1)x ·y + (−1)(x⊕s)·y]|y〉

=
1√

2n+1

∑
y∈{0,1}n

(−1)x ·y [1 + (−1)s·y]|y〉

Two cases:

I if s · y = 0 mod 2, 1 + (−1)s·y = 2

I if s · y = 1 mod 2, 1 + (−1)s·y = 0

Measuring gives a random y orthogonal to s (i.e., s · y = 0)

Quantum algorithm for Simon’s problem: Post-processing

Measuring gives a random y orthogonal to s (s · y = 0)

Repeat k times, giving vectors y1, . . . , yk ∈ {0, 1}n; solve a system
of k linear equations for s ∈ {0, 1}n:

y1 · s = 0, y2 · s = 0, . . . , yk · s = 0

How big should k be to give a unique (nonzero) solution?

I Clearly k ≥ n − 1 is necessary

I It can be shown that k = O(n) suffices

O(n) quantum queries, O(n3) quantum gates

Compare to Ω(2n/2) classical queries (even for bounded error)

Recap

We have seen several examples of quantum algorithms that
outperform classical computation:

I Deutsch’s problem: 1 quantum query vs. 2 classical queries

I Deutsch-Jozsa problem: 1 quantum query vs. 2Ω(n) classical
queries (deterministic)

I Simon’s problem: O(n) quantum queries vs. 2Ω(n) classical
queries (randomized)

Quantum algorithms for more interesting problems build on the
tools used in these examples.

Part III

The QFT and phase estimation

Quantum phase estimation

Problem
We are given a unitary U and an eigenvector |ψ〉 of U with
unknown eigenvalue

We seek to estimate its eigenphase ϕ ∈ [0, 1) such that

U|ψ〉 = e2πiϕ|ψ〉

Phase kickback for U

|+〉 •
|ψ〉 / U

|0〉+ |1〉√
2
⊗ |ψ〉 7→ |0〉+ e2πiϕ|1〉√

2
⊗ |ψ〉

The eigenstate |ψ〉 in the target register emerges unchanged

⇒ It suffices to focus on the control register

The state |0〉+ |1〉 of the control qubit is changed to |0〉+ e2πiϕ|1〉

Hadamard test

|0〉 H • H

|ψ〉 / U

|0〉+ e2πiϕ|1〉√
2

7→ 1

2

(
(|0〉+ |1〉) + e2πiϕ(|0〉 − |1〉)

)
=

1

2

(
(1 + e2πiϕ)|0〉+ (1− e2πiϕ)|1〉)

)

Hadamard test

1

2

(
(1 + e2πiϕ)|0〉+ (1− e2πiϕ)|1〉)

)
The probability of obtaining 0 is

Pr(0) = |〈0|ϕ〉|2

= |1
2

(1 + e2πiϕ)|2

=
1

4
|eπiϕ + e−πiϕ|2

=
1

4
|2 cos(πϕ)|2

= cos2(πϕ)

Phase kickback due to higher powers of U

For arbitrary k , we obtain

|0〉 H • 1√
2

(|0〉+ e2πi2kϕ|1〉)

|ψ〉 / U2k |ψ〉

since

U2k |ψ〉 = e2πi2kϕ|ψ〉

Phase kickback part of phase estimation

|0〉 H • |0〉+e2πi2n−1ϕ|1〉√
2

|0〉 H • |0〉+e2πi2n−2ϕ|1〉√
2... · · · ...

|0〉 H • |0〉+e2πi20ϕ|1〉√
2

|ψ〉 / U20
U21

U2n−1 |ψ〉

We set

|ϕ〉 := |0〉+e2πi2n−1ϕ|1〉√
2

⊗ |0〉+e2πi2n−2ϕ|1〉√
2

⊗ · · · ⊗ |0〉+e2πi20ϕ|1〉√
2

Binary fractions

Assume that the eigenphase ϕ is an exact n-bit binary fraction, i.e.,

ϕ = 0.x1x2 . . . xn =
n∑

i=1

xi
2i

For k ∈ {0, . . . , n − 1}, we have

2k ϕ = x1x2 . . . xk .xk+1 . . . xn

e2πi2kϕ = e2πi(x1x2...xk .xk+1...xn)

= e2πi(x1x2...xk+0.xk+1...xn)

= e2πi(x1x2...xk) · e2πi(0.xk+1...xn)

= e2πi(0.xk+1...xn)

Phase kickback part of phase estimation

|0〉 H • |0〉+e2πi0.xn |1〉√
2

|0〉 H • |0〉+e2πi0.xn−1xn |1〉√
2... · · · ...

|0〉 H • |0〉+e2πi0.x1...xn−1xn |1〉√
2

|ψ〉 / U20
U21

U2n−1 |ψ〉

Quantum Fourier transform

The quantum Fourier transform F is defined by

F
(
|xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉

)
= |0〉+e2πi0.xn |1〉√

2
⊗ |0〉+e2πi0.xn−1xn |1〉√

2
⊗ · · · ⊗ |0〉+e2πi0.x1x2...xn |1〉√

2

Use inverse quantum Fourier transform F † to obtain the bits of the
eigenphase

Quantum circuit for phase estimation

|0〉 H •

F †

|xn〉

|0〉 H • |xn−1〉
... · · · ...

|0〉 H • |x1〉

|ψ〉 / U20
U21

U2n−1 |ψ〉

Inverse quantum Fourier transform for 3 bits

|0〉+e2πi0.x3 |1〉√
2

H • • |x3〉

|0〉+e2πi0.x2x3 |1〉√
2

R†2 H • |x2〉

|0〉+e2πi0.x1x2x3 |1〉√
2

R†3 R†2 H |x1〉

The phase shift Rk is defined by

Rk :=

[
1 0

0 e2πi/2k

]

Summary of phase estimation circuit

We use phase kick back due to the controlled U2k gate to prepare
the state

|0〉+ e2πi0.xk+1xk+2...xn |1〉√
2

Using the previously determined bits xk+2, . . . , xn, we change this
state to

|0〉+ e2πi0.xk+10...0|1〉√
2

=
|0〉+ (−1)xk |1〉√

2

We apply the Hadamard gate to obtain

|xk+1〉

The controlled phase shifts enable us to reduce the problem of
determining each bit to distinguishing between |+〉 and |−〉
(deterministic Hadamard test)

Special case: exact n-bit binary fraction

Assume that ϕ is an exact n-bit binary fraction, i.e.,
ϕ = 0.x1 . . . xn−1xn

|0〉 H •

F †

|xn〉

|0〉 H • |xn−1〉
... · · ·

|0〉 H • |x1〉

|ψ〉 / U20
U21

U2n−1 |ψ〉

⇒ The measurment of the qubits yields the bits xn, xn−1, . . . , x1

deterministically

General case: arbitrary eigenphases

Let ϕ be arbitrary

Unless ϕ is an exact n-bit fraction, the application of the inverse
quantum Fourier transform

F †|ϕ〉

produces a superposition of n-bit strings

Probability of obtaining a certain estimate

Lemma
Let x =

∑n
k=1 xi2

n−i and ϕx := 0.x1x2 . . . xn = x
2n be the

corresponding n-bit fraction

The probability of obtaining the estimate ϕx when the true
eigenphase is ϕ is

Pr(x) =
1

22n

sin2
(
2n π (ϕ− ϕx)

)
sin2

(
π (ϕ− ϕx)

)

This distribution is peaked around the true value

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Examples of probability distributions for different ϕ

Lower bound on success probability

Theorem
Let x be such that x

2n ≤ ϕ <
x+1
2n

The probability of returning one of the two closest n-bit fractions
ϕx and ϕx+1 is at least 8

π2

Summary of phase estimation

We are given a unitary U and an eigenvector |ψ〉 of U with
unknown eigenphase ϕ

We obtain an estimate ϕ̂ such that

Pr
(
|ϕ̂− ϕ| ≤ 1

2n
)
≥ 8

π2

To do this, we need invoke each of the controlled U, U2,. . . ,U2n−1

gates once

We can boost the success probability to 1− ε by repeating the
above algorithm O(log(1/ε)) times and outputting the median of
the outcomes

Phase estimation applied to superpositions of eigenstates

We are given a unitary U with eigenvectors |ψi 〉 and corresponding
eigenphases ϕi

Let
|ψ〉 =

∑
i

αi |ψi 〉

What happens if we apply phase estimation to |0〉⊗n ⊗ |ψ〉?

After the n phase kickbacks due to U20
, U21

, . . .U2n−1
, we obtain∑

i

αi |ϕi 〉 ⊗ |ψi 〉

After applying the inverse quantum Fourier transform, we obtain∑
i

αi |x̃i 〉 ⊗ |ψi 〉

where |x̃i 〉 denotes a superpositions of n-bit estimates of ϕi

Part IV

Factoring

The fundamental theorem of arithmetic

Theorem
Every positive integer larger than 1 can be factored as a product of
prime numbers, and this factorization is unique (up to the order of
the factors).

N = 2n2 × 3n3 × 5n5 × 7n7 × · · ·

Examples

15 = 3× 5

239815173914273 = 15485863× 15486071

3107418240490043721350750
0358885679300373460228427
2754572016194882320644051
8081504556346829671723286
7824379162728380334154710
7310850191954852900733772
4822783525742386454014691
736602477652346609

=

16347336458092538484
43133883865090859841
78367003309231218111
08523893331001045081
51212118167511579

×
19008712816648221131
26851573935413975471
89678996851549366663
85390880271038021044
98957191261465571

Why care about factoring?

“The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic. It
has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to
discuss the problem at length... Further, the dignity of the science
itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.”

– Carl Friedrich Gauss, Disquisitiones Arithmeticæ (1801)

More practically: The presumed hardness of factoring is the basis
of much of modern cryptography (RSA cryptosystem)

Order finding

Definition
Given a,N ∈ Z with gcd(a,N) = 1, the order of a modulo N is the
smallest positive integer r such that ar ≡ 1 (mod N).

Problem

I Given: a,N ∈ Z with gcd(a,N) = 1

I Task: find the order of a modulo N

Spectrum of a cyclic shift

Let P be a cyclic shift modulo r : P|x〉 = |x + 1 mod r〉

Claim. For any k ∈ Z, the state |uk〉 :=
1√
r

r−1∑
x=0

e−2πikx/r |x〉 is an

eigenstate of P.

Proof. U|uk〉 =
1√
r

r−1∑
x=0

e−2πikx/r |x + 1 mod r〉

=
1√
r

r−1∑
x=0

e2πik/re−2πik(x+1)/r |x + 1 mod r〉

= e2πik/r 1√
r

r∑
x=1

e−2πikx/r |x mod r〉

= e2πik/r |uk〉

The multiplication-by-a map

Define U by U|x〉 = |ax〉 for x ∈ ZN .

Computing U:

|x , 0〉 7→ |x , ax〉 (reversible multiplication by a)

7→ |ax , x〉 (swap)

7→ |ax , 0〉 (uncompute reversible division by a)

High powers of U can be implemented efficiently using repeated
squaring

Spectrum of the multiplication-by-a map

Define U by U|x〉 = |ax〉 for x ∈ ZN .

Claim. Let r be the order of a modulo N. For any k ∈ Z, the state

|uk〉 :=
1√
r

r−1∑
x=0

e−2πikx/r |ax mod N〉

is an eigenstate of U with eigenvalue e2πik/r .

Proof.
Same as for the cyclic shift, due to the isomorphism

x mod r ↔ ax mod N

Order finding and phase estimation

U|uk〉 = e2πik/r |uk〉

Phase estimation of U on |uk〉 can be used to approximate k/r .

Problems:

1. We don’t know r , so we can’t prepare |uk〉.
2. We only get an approximation of k/r .

3. Even if we knew k/r exactly, k and r could have common
factors.

Solutions:

1. Estimate k/r for a superposition of the |uk〉.
2. Use the continued fraction expansion.

3. Show that gcd(k , r) = 1 with reasonable probability.

Estimating k/r in superposition

A useful identity:

r−1∑
k=0

e2πikx/r =

{
r if x = 0

0 otherwise

Consider

1√
r

r−1∑
k=0

|uk〉 =
1

r

r−1∑
k,x=0

e−2πikx/r |ax mod N〉

= |a0 mod N〉 = |1〉

Phase estimation:

|0〉 ⊗ |1〉 =
1√
r

r−1∑
k=0

|0〉 ⊗ |uk〉 7→
1√
r

r−1∑
k=0

|k̃/r〉 ⊗ |uk〉

Measurement gives an approximation of k/r for a random k

Continued fractions

Problem
Given samples x of the form bk 2n

r c, dk
2n

r e (k ∈ {0, 1, . . . , r − 1}),
determine r .

Continued fraction expansion:

x

2n
=

1

a1 + 1
a2+ 1

a3+···

Gives an efficiently computable sequence of rational approximations

Theorem
If 2n ≥ N2, then k/r is the closest convergent of the CFE to x/2n

among those with denominator smaller than N.

Since r < N, it suffices to take n = 2 log2 N

Common factors

If gcd(k , r) = 1, then the denominator of k/r is r

Fact
The probability that gcd(k, r) = 1
for a random k ∈ {0, 1, . . . , r − 1} is

φ(r)

r
= Ω

(
1

log log r

)
0 200 400 600 800 1000

n

0.2

0.4

0.6

0.8

1.0

jHnL�n

Thus Ω(log logN) repetitions suffice to give r with constant
probability

Alternatively, find two (or more) denominators and take their least
common multiple; then O(1) repetitions suffice

Factoring → finding a nontrivial factor

Suppose we want to factor the positive integer N.

Since primality can be tested efficiently, it suffices to give a
procedure for finding a nontrivial factor of N with constant
probability.

function factor(N)

if N is prime

output N

else

repeat

x=find_nontrivial_factor(N)

until success

factor(x)

factor(N/x)

end if

We can assume N is odd, since it is easy to find the factor 2.

We can also assume that N contains at least two distinct prime
powers, since it is easy to check if it is a power of some integer.

Reduction of factoring to order finding

Factoring N reduces to order finding in Z×N [Miller 1976].

Choose a ∈ {2, 3, . . . ,N − 1} uniformly at random.

If gcd(a,N) 6= 1, then it is a nontrivial factor of N.

If gcd(a,N) = 1, let r denote the order of a modulo N.

Suppose r is even. Then

ar = 1 mod N
m

(ar/2)2 − 1 = 0 mod N
m

(ar/2 − 1)(ar/2 + 1) = 0 mod N

so we might hope that gcd(ar/2− 1,N) is a nontrivial factor of N.

Miller’s reduction

Question
Given (ar/2 − 1)(ar/2 + 1) = 0 mod N, when does gcd(ar/2 − 1,N)
give a nontrivial factor of N?

Note that ar/2 − 1 6= 0 mod N (otherwise the order of a would be
r/2, or smaller).

So it suffices to ensure that ar/2 + 1 6= 0 mod N.

Lemma
Suppose a ∈ Z×N is chosen uniformly at random, where N is an odd
integer with at least two distinct prime factors. Then with
probability at least 1/2, the order r of a is even and
ar/2 6= −1 mod N.

Shor’s algorithm

Input: Integer N
Output: A nontrivial factor of N

1. Choose a random a ∈ {2, 3, . . . ,N − 1}
2. Compute gcd(a,N); if it is not 1 then it is a nontrivial factor,

and otherwise we continue

3. Perform phase estimation with the multiplication-by-a
operator U on the state |1〉 using n = 2 log2 N bits of precision

4. Compute the continued fraction expansion of the estimated
phase, and find the best approximation with denominator less
than N; call the result r

5. Compute gcd(ar/2 − 1,N). If it is a nontrivial factor of N, we
are done; if not, go back to step 1

Quantum vs. classical factoring algorithms

Best known classical algorithm for factoring N

I Proven running time: 2O((log N)1/2(log log N)1/2)

I With plausible heuristic assumptions: 2O((log N)1/3(log log N)1/3)

Shor’s quantum algorithm

I QFT modulo 2n with n = O(logN): takes O(n2) steps

I Modular exponentiation: compute ax for x < 2n. With
repeated squaring, takes O(n3) steps

I Running time of Shor’s algorithm: O(log3 N)

Part V

Quantum search

Unstructured search

Quantum computers can quadratically outperform classical
computers at a very basic computational task, called unstructured
search.

There is a set X containing N items, some of which are marked

We are given a black box f : X → {0, 1} that indicates whether a
given item is marked

The problem is to decide if any item is marked, or alternatively, to
find a marked item given that one exists

Unstructured search as a model for NP

Unstructured search can be thought of as a model for solving
problems in NP by brute force search

If a problem is in NP, then we can efficiently recognize a solution,
so one way to find a solution is to solve unstructured search

Of course, this may not be the best way to find a solution in
general, even if the problem is NP-hard: we don’t know if NP-hard
problems are really “unstructured”

Unstructured search

It is obvious that even a randomized classical algorithm needs
Ω(N) queries to decide if any item is marked

On the other hand, a quantum algorithm can do much better!

Phase oracle

We assume that we have a unitary operator U satisfying

U|x〉 = (−1)f (x)|x〉 =

{
|x〉 x is not marked

−|x〉 x is marked

By phase kickback, this can easily be implemented using a
reversible black fox for f

Target state

Consider the case where there is exactly one x ∈ X element that is
marked; call this element m

This is essentially the hardest case

Goal: prepare the state |m〉

Initial state

We have no information about which item might be marked

⇒ We take

|ψ〉 :=
1√
N

N∑
x=1

|x〉

as the initial state

Rough idea behind Grover search

Start with the initial state |ψ〉

Prepare the target state |m〉 by implementing a rotation that
moves |ψ〉 toward |m〉

Realize the rotation as a product of two reflections

Visualization of a reflection in R2

PIC 1

v

PIC 1

v

w

ω

'w

2ω

ω

PIC 1

ω

v

w

Visualization of a reflection in R2

PIC 1

v

PIC 1

v

w

ω

'w

2ω

ω

PIC 1

ω

v

w

Visualization of a reflection in R2

PIC 1

v

PIC 1

v

w

ω

'w

2ω

ω

PIC 1

ω

v

w

Reflections

U = I − 2|m〉〈m| is a reflection about the target state |m〉

V = I − 2|ψ〉〈ψ| is the reflection around about the initial state |ψ〉:

V |ψ〉 = − |ψ〉
V |ψ⊥〉 = |ψ⊥〉

for any state |ψ⊥〉 orthogonal to |ψ〉

Structure of Grover

The algorithm is as follows:

I start in |ψ〉,

I apply the Grover iteration G := V U some number of times,

I make a measurement, and hope that the outcome is m

Invariant subspace

Observe that span{|m〉, |ψ〉} is a U- and V -invariant subspace, and
both the inital and target states belong to this subspace

⇒ It suffices to understand the restriction of VU to this subspace

Consider an orthonormal basis {|m〉, |φ〉} for span{|m〉, |ψ〉}

The Gram-Schmidt process yields

|φ〉 =
|ψ〉 − α|m〉√

1− α2

where α := 〈m|ψ〉 = 1/
√
N

Invariant subspace

Now in the basis {|m〉, |φ〉}, we have

|ψ〉 = sin θ|m〉+ cos θ|φ〉 where sin θ = 〈m|ψ〉 = 1/
√
N

U =

(
−1 0
0 1

)
V = I − 2|ψ〉〈ψ|

=

(
1 0
0 1

)
− 2

(
sin θ
cos θ

)(
sin θ cos θ

)
=

(
1− 2 sin2 θ −2 sin θ cos θ
−2 sin θ cos θ 1− 2 cos2 θ

)
= −

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)

Grover iteration within the invariant subspace

⇒ We find

V U = −
(
− cos 2θ sin 2θ

sin 2θ cos 2θ

) (
−1 0
0 1

)
= −

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)

This is a rotation up to a minus sign

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Visualization of first Grover iteration
PIC 4

m

φ
ψ

θ

PIC 4

m

φ
ψ

θ

2
π θ−

2
π θ−

U ψ

PIC 4

m

φ
ψ

U ψ

VU ψ

2π θ−2π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

2π θ−

θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3π θ−

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

3θ

3θ

PIC 4

m

φ
ψ

U ψ

VU ψ

VU ψ−

θ
2θ

Grover search

Geometrically, U is a reflection around the |m〉 axis and V is a
reflection around the |ψ〉 axis, which is almost but not quite
orthogonal to the |m〉 axis

The product of these two reflections is a clockwise rotation by an
angle 2θ, up to an overall minus sign

From this geometric picture, or by explicit calculation using trig
identities, it is easy to verify that

(VU)k = (−1)k
(

cos 2kθ sin 2kθ
− sin 2kθ cos 2kθ

)

Grover search

Recall that our initial state is |ψ〉 = sin θ|m〉+ cos θ|φ〉

How large should k be before (VU)k |ψ〉 is close to |m〉?

We start an angle θ from the |φ〉 axis and rotate toward |m〉 by an
angle 2θ per iteration

⇒ To rotate by π/2, we need

θ + 2kθ = π/2

k ≈ π

4
θ−1 ≈ π

4

√
N

Grover search

It is easy to calculate that

|〈m|(VU)k |ψ〉|2 = sin2((2k + 1)θ)

This is the probability that, after k steps of the algorithm, a
measurement reveals the marked state

We are solving a completely unstructured search problem with N
possible solutions, yet we can find a unique solution in only
O(
√
N) queries!

While this is only a polynomial separation, it is very generic, and it
is surprising that we can obtain a speedup for a search in which we
have so little information to go on

Grover search

It can also be shown that this quantum algorithm is optimal

Any quantum algorithm needs at least Ω(
√
N) queries to find a

marked item (or even to decide if some item is marked)

Part VI

Beyond Shor and Grover

Beyond factoring

There are many fast quantum algorithms based on ideas related to
Shor’s factoring algorithm:

I Computing discrete logarithms

I Decomposing abelian/solvable groups

I Estimating Gauss sums

I Counting points on algebraic curves

I Computations in number fields (Pell’s equation, etc.)

I Abelian hidden subgroup problem

I Non-abelian hidden subgroup problem?

Beyond unstructured search

I Quantum counting

I Amplitude amplification
I Applications

I Collision problem
I Finding the median, minimum, etc.
I Graph problems (spanning trees, matchings, flows, . . .)
I And many more . . .

Quantum walk

Quantum analogs of random walks have led to several new
quantum algorithms:

I Exponential speedup for a black-box problem
I General framework for search on graphs

I Spatial search
I Element distinctness
I Subgraph finding (e.g., triangle problem)
I Checking matrix multiplication
I Checking group commutativity

I Evaluating Boolean formulas

Other quantum algorithms

I Oracle interrogation

I Simulating Hamiltonian dynamics

I Gradient estimation
I Approximation of #P-hard problems

I Jones polynomial
I Tutte polynomial
I Manifold invariants
I Tensor networks

I Linear systems, differential equations

Further reading

I P. Kaye, R. Laflamme, and M. Mosca, An Introduction to
Quantum Computing (Oxford University Press, 2007)

I M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2000)

I M. Mosca, Quantum Algorithms, in Encyclopedia of
Complexity and Systems Science (Springer, 2009),
arXiv:0808.0369

I A. M. Childs and W. van Dam, Quantum algorithms for
algebraic problems, Reviews of Modern Physics 82, 1–52
(2010), arXiv:0812.0380

http://arxiv.org/abs/0808.0369
http://arxiv.org/abs/0812.0380

	Quantum circuits
	Elementary quantum algorithms
	The QFT and phase estimation
	Factoring
	Quantum search
	Beyond Shor and Grover

