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Part I

Quantum circuits



Quantum circuit model

Quantum circuits are generalizations of Boolean circuits

input transformation output (probabilistic)
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Classical bit

Classical bit (bit): B := {0, 1}

I Basis state: either 0 or 1

I General state: a probability distribution p = (p0, p1) on B



Classical register

Classical register: Bn := B× B× . . .× B︸ ︷︷ ︸
n

I Basis state: a binary string x ∈ Bn

I General state: a probability distribution p = (px : x ∈ Bn) on
Bn (written as a column vector)

Remark: Note that p is a vector with positive entries that is
normalized with respect to the `1-norm (the sum of the
absolute values of the entries)



Classical transformation

Transformations on the classical register B are described by
stochastic matrices

Stochastic matrices preserve the `1-norm, i.e., probability
distributions are mapped on probability distributions

Let p be the state of the register. The state after the
transformation P is given by the matrix-vector-product

Pp



Qubit

Quantum bit (qubit): two-dimensional complex Hilbert space C2

I Computational basis states (classical states):

|0〉 :=

(
1
0

)
and |1〉 :=

(
0
1

)

I General states: superpositions

|ψ〉 =

(
α0

α1

)
= α0|0〉+ α1|1〉 , |α0|2 + |α1|2 = 1

the coefficients α0, α1 ∈ C are called probability amplitudes



Quantum register
Quantum register: 2n-dimensional complex Hilbert space (C2)⊗n

with tensor product structure

(C2)⊗n := C2 ⊗ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n

I Computational basis states (classical states):

|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 , x ∈ Bn

I General state:

|ψ〉 =
∑
x∈Bn

αx |x〉 ,
∑
x

|αx |2 = 1

Remark: Note that |ψ〉 is a column vector (ket) that is
normalized with respect to the `2-norm (Euclidean norm)



Quantum transformations

Transformations on the quantum register H := (C2)⊗n are
described by unitary matrices U ∈ U(H)

Unitary matrices preserve the `2-norm

Let |ψ〉 ∈ H be the state of the quantum register; the state after
the transformation U is given by the matrix-vector product

U |ψ〉



Quantum circuit

Each transformations U has to be implemented by a quantum
circuit, i.e., a sequence of elementary gates

Quantum circuit model = Quantum mechanics + Notion of
complexity



Single qubit gate on two qubits

single-qubit gate U on first qubit
U

action on basis states of C2 ⊗ C2

|0〉 ⊗ |0〉 7→ (U|0〉)⊗ |0〉
|0〉 ⊗ |1〉 7→ (U|0〉)⊗ |1〉
|1〉 ⊗ |0〉 7→ (U|1〉)⊗ |0〉
|1〉 ⊗ |1〉 7→ (U|1〉)⊗ |1〉

corresponding matrix

U ⊗ I =

(
u00 · I u01 · I
u10 · I u11 · I

)
=


u00 0 u01 0
0 u00 0 u01

u10 0 u11 0
0 u10 0 u11





Single qubit gate on two qubits

single-qubit gate U on second qubit
U

action on basis states of C2 ⊗ C2

|0〉 ⊗ |0〉 7→ |0〉 ⊗ U|0〉
|0〉 ⊗ |1〉 7→ |0〉 ⊗ U|1〉
|1〉 ⊗ |0〉 7→ |1〉 ⊗ U|0〉
|1〉 ⊗ |1〉 7→ |1〉 ⊗ U|1〉

corresponding matrix

I ⊗ U =

(
1 · U 0 · U
0 · U 1 · U

)
=


u00 u01 0 0
u10 u11 0 0
0 0 u00 u01

0 0 u10 u11





Controlled-NOT gate

control: first qubit; target: second qubit
•��������

action on basis states of C2 ⊗ C2

|c〉 ⊗ |t〉 7→ |c〉 ⊗ |c ⊕ t〉

corresponding matrix
1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0

 = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ X

where I2 = |0〉〈0|+ |1〉〈1| and X = |0〉〈1|+ |1〉〈0|



Controlled U gate

control: qubit; target: m-qubit register
•

/ U

let U be a unitary acting on the m-qubit register

action on basis states of C2 ⊗ (C2)⊗m

|c〉 ⊗ |t〉 7→ |c〉 ⊗ Uc |t〉 where b ∈ B, t ∈ Bm

corresponding matrix(
I 0

0 U

)
= |0〉〈0| ⊗ I + |1〉〈1| ⊗ U



Toffoli gate
control: first and second qubits; target: third qubit

•
•��������

action on basis states of C2 ⊗ C2 ⊗ C2

|c1〉 ⊗ |c2〉 ⊗ |t〉 7→ |c1〉 ⊗ |c2〉 ⊗ |(c1 ∧ c2)⊕ t〉

corresponding matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


= (I4−|11〉〈11|)⊗ I2 + |11〉〈11|⊗X



Simulating irreversible gates with Toffoli gate

The classical AND gate is irreversible because if the output is 0
then we cannot determine which of the three possible pairs was the
actual input

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

But it is easy to simulate the AND gate with one Toffoli gate

|x1〉 • |x1〉
|x2〉 • |x2〉
|0〉 �������� |x1 ∧ x2〉



Problem of garbage

To simulate irreversible circuits with Toffoli gates, we keep the
input and intermediary results to make everything reversible

Consider the function y = x1 ∧ x2 ∧ x3

|x1〉 • |x1〉
|x2〉 • |x2〉
|x3〉 • |x3〉
|0〉 �������� |x1 ∧ x2 ∧ x3〉
|0〉 �������� • |x1 ∧ x2〉 garbage

It is important to not leave any garbage; otherwise, we could not
make use of quantum parallelism and constructive interference
effects



Reversible garbage removal

It is always possible to reversibly remove (uncompute) the garbage

In the case y = x1 ∧ x2 ∧ x3, this can be done with the circuit

|x1〉 • • |x1〉
|x2〉 • • |x2〉
|x3〉 • |x3〉
|0〉 �������� |x1 ∧ x2 ∧ x3〉
|0〉 �������� • �������� |0〉 garbage uncomputed



Simulating irreversible circuits with Toffoli gates

Let f : {0, 1}n → {0, 1} be any boolean function

Assume this function can be computed classically using only t
classical elementary gates such as AND, OR, NAND

We can implement a unitary Uf on (C2)⊗n ⊗ C2 ⊗ (C2)⊗w such
that

Uf

(
|x〉in ⊗ |y〉out ⊗ |0〉⊗wwork

)
= |x〉 ⊗ |y ⊕ f (x)〉 ⊗ |0〉⊗w

Uf is built from polynomially many in t Toffoli gates and the size
w of the workspace register is polynomial in t

During the computation the qubits of the workspace register are
changed, but at the end they reversibly reset to |0〉⊗w



Universal gate set – exact implementation

Each unitary U ∈ U(H) can be implemented exactly by quantum
circuits using only:

I CNOT gates (acting on adjacent qubits)

I arbitrary single qubit gates



Gate complexity of unitaries – exact implementation

The gate complexity κ(U) of a unitary U ∈ U(H) is minimal
number of elementary gates needed to implement U

For example, quantum Fourier Transform has complexity O(n2)

=⇒ Shor’s factorization algorithm



Universal gate set – approximate implementation

For each ε ∈ (0, 1) and each unitary U ∈ U(H), there is a unitary
V such that

‖U − V ‖ ≤ ε where ‖U − V ‖ = sup
|ψ〉
‖(U − V )|ψ〉‖

and V is implemented by quantum circuits using only:

I CNOT gates (acting on adjacent qubits)

I the single qubit gates

H =
1√
2

(
1 1
1 −1

)
R(θ) =

(
1 0
0 e iθ

)
, with θ =

π

4

There are other universal gate sets



Gate complexity of unitaries – approximate implementation

The gate complexity κε(U) of a unitary U is the minimal number
of gates (from a universal gate set) need to implement a unitary V
with ‖U − V ‖ ≤ ε

The Solovay-Kitaev theorem implies that

κε(U) = O
(
κ(U) · logc

(
κ(U)/ε

))
for some small constant c

Counting arguments show that most n-qubit unitaries have gate
complexity exponential in n.



Quantum measurement

A general measurement is described by a collection P0,. . . ,Pm−1 of
orthogonal projectors such that

m−1∑
i=0

Pi = IH where H denotes the identity on H

Let |ψ〉 be the state of the quantum register. The probability of
obtaining the outcome i is given by

Pr(i) = ‖Pi |ψ〉‖2

The post-measurement state (collapse of the wavefunction) is

Pi |ψ〉
‖Pi |ψ〉‖



Elementary quantum measurements

A measurement has to be realized by first applying a suitable
quantum circuit followed by an elementary measurement

An elementary measurement on the n-qubit quantum register H
consists of measuring the first (w.l.o.g.) m qubits (m ≤ n) with
respect to the computational basis

The 2m orthogonal projectors Pb are labeled by m-bit strings
b ∈ Bm and are defined by

Pb = |b1〉〈b1| ⊗ |b2〉〈b2| ⊗ · · · ⊗ |bm〉〈bm| ⊗ I2n−m

The probability of obtaining outcome b is given by

Pr(b) = ‖Pb|ψ〉‖2 =
∑

xm+1,...,xn∈B
|αb1,...,bm,xm+1,...,xn |2



Structure of quantum algorithms

A quantum algorithm consists of

I preparing the initial state |x〉 with x ∈ Bn,

I applying a quantum circuit of polynomially many in n gates
from some universal gate set, and

I performing an elementary measurement

These steps are repeated polynomially many times to collect
enough samples and followed by classical post-processing =⇒
solution of the problem



Hadamard test

|0〉 H • H NM





|ψ〉 / U

The probabilities of obtaining the outcomes 0 and 1 are:

Pr(0) =
1

2
(1 + Re〈ψ|U|ψ〉) Pr(1) =

1

2
(1− Re〈ψ|U|ψ〉)



Hadamard test
|0〉 H • H NM






|ψ〉 / U

|0〉 ⊗ |ψ〉

7→ 1√
2

(|0〉+ |1〉)⊗ |ψ〉

=
1√
2
|0〉 ⊗ |ψ〉+

1√
2
|1〉 ⊗ |ψ〉

7→ 1√
2
|0〉 ⊗ |ψ〉+

1√
2
|1〉 ⊗ U|ψ〉

7→ 1

2
(|0〉+ |1〉)⊗ |ψ〉+

1

2
(|0〉 − |1〉)⊗ U|ψ〉

=
1

2
|0〉 ⊗ (|ψ〉+ U|ψ〉) +

1

2
|1〉 ⊗ (|ψ〉 − U|ψ〉)

=: |Φ〉



Hadamard test

Pr(0)

= ‖P|Φ〉‖2 with P = |0〉〈0| ⊗ I

= ‖
(
|0〉〈0| ⊗ I

) (1

2
|0〉 ⊗ (|ψ〉+ U|ψ〉) +

1

2
|1〉 ⊗ (|ψ〉 − U|ψ〉)

)
‖2

= ‖1

2
|0〉 ⊗ (|ψ〉+ U|ψ〉)‖2

=
1

4
‖|0〉‖2 · ‖|ψ〉+ U|ψ〉‖2

=
1

4

(
〈ψ|+ 〈ψ|U†

) (
|ψ〉+ U|ψ〉

)
=

1

4

(
〈ψ|ψ〉+ 〈ψ|U|ψ〉+ 〈ψ|U†|ψ〉+ 〈ψ|U†U|ψ〉

)
=

1

4

(
2 + 〈ψ|U|ψ〉+ 〈ψ|U|ψ〉

)
=

1

2

(
1 + Re〈ψ|U|ψ〉

)



Hadamard test – Figure it out yourself

How can you estimate the imaginary part of 〈ψ|U|ψ〉?

Hint: Add a simple gate on the control register before the
measurement.



SWAP test – Figure it out yourself
Let S denote the swap gate acting on two qubits

S = |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|

Determine the matrix representation of S with respect to the
computational basis

Consider the Hadamard test where the controlled operation is

|0〉〈0| ⊗ I4 + |1〉〈1| ⊗ S

and the state of the target register |ψ〉 = |ψ1〉 ⊗ |ψ2〉

Determine the probability of obtaining 0 and 1 for the cases:

I arbitrary |ψ1〉 and |ψ2〉,
I 〈ψ1|ψ2〉 = 0 (orthogonal), and

I 〈ψ1|ψ2〉 = 1 (the same).



Part II

Elementary quantum algorithms



Black box problems

Standard computational problem: determine a property of some
input data

I Example: Find the prime factors of N

Alternate model: Input is provided by a black box (or oracle)

I Query: On input x , black box returns f (x)

I Determine a property of f using as few queries as possible

I The minimum number of queries is the query complexity

I Example: Given a black box for f : {1, 2, . . . ,N} → {0, 1}, is
there some x such that f (x) = 1?

I Why black boxes?
I Facilitates proving lower bounds
I Can lead to algorithms for standard problems



Black boxes for reversible/quantum computing

Black box x f f (x) is not reversible

Reversible version: x
f

x

z z ⊕ f (x)

Given a circuit that computes f non-reversibly, we can implement
the reversible version with little overhead

Quantum version: |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

A reversible circuit is a quantum circuit



Deutsch’s problem

Problem

I Given: a black-box function f : {0, 1} → {0, 1}
I Task: determine whether f is constant or balanced

x f1(x)

0 0
1 0

x f2(x)

0 1
1 1

x f3(x)

0 0
1 1

x f4(x)

0 1
1 0︸ ︷︷ ︸

constant: f (0) = f (1)
︸ ︷︷ ︸

balanced: f (0) 6= f (1)

How many queries are needed?

I Classically: 2 queries are necessary and sufficient

I Quantumly: ?



Toward a quantum algorithm for Deutsch’s problem

Quantum black box for f : |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

Compute f in superposition: |0〉 H
f

|0〉

|0〉 ⊗ |0〉 7→ |0〉+ |1〉√
2
⊗ |0〉

7→ 1√
2

(|0〉 ⊗ |f (0)〉+ |1〉 ⊗ |f (1)〉)

Can’t extract more than one bit of information about f



Phase kickback

Quantum black box for f : |x〉
f

|x〉
|z〉 |z ⊕ f (x)〉

Phase kickback:
|x〉

f
(−1)f (x)|x〉

|0〉−|1〉√
2

|0〉−|1〉√
2

|x〉 ⊗ 1√
2

(|0〉 − |1〉) = 1√
2

(|x〉 ⊗ |0〉 − |x〉 ⊗ |1〉)
7→ 1√

2
(|x〉 ⊗ |f (x)〉 − |x〉 ⊗ |1⊕ f (x)〉)

= |x〉 ⊗ 1√
2

(|f (x)〉 − |f (x)〉)
= (−1)f (x)︸ ︷︷ ︸

not necessarily global

|x〉 ⊗ 1√
2

(|0〉 − |1〉)

(−1)f (x)︸ ︷︷ ︸
not necessarily global



Quantum algorithm for Deutsch’s problem

|0〉 H
f

H NM



 f (0)⊕ f (1)

|0〉−|1〉√
2

|0〉 ⊗ |0〉 − |1〉√
2
7→ |0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2

7→ (−1)f (0)|0〉+ (−1)f (1)|1〉√
2

⊗ |0〉 − |1〉√
2

= (−1)f (0) |0〉+ (−1)f (0)⊕f (1)|1〉√
2

⊗ |0〉 − |1〉√
2

7→ (−1)f (0)|f (0)⊕ f (1)〉 ⊗ |0〉 − |1〉√
2

1 quantum query vs. 2 classical queries!



The Deutsch-Jozsa problem

Problem

I Given: a black-box function f : {0, 1}n → {0, 1}
I Promise: f is either

constant (f (x) is independent of x)
or balanced (f (x) = 0 for exactly half the values of x)

I Task: determine whether f is constant or balanced

How many queries are needed?

I Classically: 2n/2 + 1 queries to answer with certainty

I Quantumly: ?



Phase kickback for a Boolean function of n bits

Black box function: |x1〉

f

|x1〉
...

...

|xn〉 |xn〉
|z〉 |z ⊕ f (x)〉

Phase kickback:

|x1〉 ⊗ · · · ⊗ |xn〉 ⊗
|0〉 − |1〉√

2
7→ (−1)f (x)|x1〉 ⊗ · · · ⊗ |xn〉 ⊗

|0〉 − |1〉√
2



Quantum algorithm for the Deutsch-Jozsa problem

|0〉 H

f

H NM





...
...

...

|0〉 H H NM





|0〉−|1〉√
2

|0〉⊗n ⊗ |0〉 − |1〉√
2
7→
( |0〉+ |1〉√

2

)⊗n
⊗ |0〉 − |1〉√

2

=
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉 − |1〉√
2

7→ 1√
2n

∑
x∈{0,1}n

(−1)f (x)|x〉 ⊗ |0〉 − |1〉√
2



Hadamard transform

What do the final Hadamard gates do?

H|x〉 =
1√
2

(|0〉+ (−1)x |1〉)

=
1√
2

∑
y∈{0,1}

(−1)xy |y〉

H⊗n(|x1〉 ⊗ · · · ⊗ |xn〉) =
n⊗

i=1

 1√
2

∑
yi∈{0,1}

(−1)xiyi |yi 〉


=

1√
2n

∑
y∈{0,1}n

(−1)x ·y |y〉



Quantum D-J algorithm: Finishing up

1√
2n

∑
x∈{0,1}n

(−1)f (x)|x〉 H
⊗n

7→ 1

2n

∑
x ,y∈{0,1}n

(−1)f (x)(−1)x ·y |y〉

I If f is constant, the amplitude of |y〉 is

± 1

2n

∑
x∈{0,1}n

(−1)x ·y = ±
{

1 if y = 0 . . . 0

0 otherwise

so we definitely measure 0 . . . 0

I If f is balanced, the amplitude of |0 . . . 0〉 is∑
x∈{0,1}n

(−1)f (x) = 0

so we measure some nonzero string



The Deutsch-Jozsa problem: Quantum vs. classical

Above quantum algorithm uses only one query.

Need 2n/2 + 1 classical queries to answer with certainty.

What about randomized algorithms? Success probability arbitrarily
close to 1 with a constant number of queries.

Can we get a separation between randomized and quantum
computation?



Simon’s problem

Problem

I Given: a black-box function f : {0, 1}n → {0, 1}m
I Promise: there is some s ∈ {0, 1}n such that f (x) = f (y) if

and only if x = y or x = y ⊕ s

I Task: determine s

One classical strategy:

I query a random x

I repeat until we find xi 6= xj such that f (xi ) = f (xj)

I output xi ⊕ xj

By the birthday problem, this uses about
√

2n queries.

It can be shown that this strategy is essentially optimal.



Quantum algorithm for Simon’s problem

Quantum black box: |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉
(x ∈ {0, 1}n, y ∈ {0, 1}m)

|0〉 H

f

H NM





...
...

...

|0〉 H H NM





|0〉
...

...

|0〉

Repeat many times and post-process the measurement outcomes



Quantum algorithm for Simon’s problem: Analysis I

|0〉 H

f

H NM





...
...

...

|0〉 H H NM





|0〉
...

...

|0〉

|0〉⊗n ⊗ |0〉⊗m

7→ 1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉⊗m

7→ 1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |f (x)〉

=
1√

2n−1

∑
x∈R

|x〉+ |x ⊕ s〉√
2

⊗ |f (x)〉

for some R ⊂ {0, 1}n



Quantum algorithm for Simon’s problem: Analysis II

Recall H⊗n|x〉 =
∑

y∈{0,1}n(−1)x ·y |y〉

H⊗n
( |x〉+ |x ⊕ s〉√

2

)
=

1√
2n+1

∑
y∈{0,1}n

[(−1)x ·y + (−1)(x⊕s)·y ]|y〉

=
1√

2n+1

∑
y∈{0,1}n

(−1)x ·y [1 + (−1)s·y ]|y〉

Two cases:

I if s · y = 0 mod 2, 1 + (−1)s·y = 2

I if s · y = 1 mod 2, 1 + (−1)s·y = 0

Measuring gives a random y orthogonal to s (i.e., s · y = 0)



Quantum algorithm for Simon’s problem: Post-processing

Measuring gives a random y orthogonal to s (s · y = 0)

Repeat k times, giving vectors y1, . . . , yk ∈ {0, 1}n; solve a system
of k linear equations for s ∈ {0, 1}n:

y1 · s = 0, y2 · s = 0, . . . , yk · s = 0

How big should k be to give a unique (nonzero) solution?

I Clearly k ≥ n − 1 is necessary

I It can be shown that k = O(n) suffices

O(n) quantum queries, O(n3) quantum gates

Compare to Ω(2n/2) classical queries (even for bounded error)



Recap

We have seen several examples of quantum algorithms that
outperform classical computation:

I Deutsch’s problem: 1 quantum query vs. 2 classical queries

I Deutsch-Jozsa problem: 1 quantum query vs. 2Ω(n) classical
queries (deterministic)

I Simon’s problem: O(n) quantum queries vs. 2Ω(n) classical
queries (randomized)

Quantum algorithms for more interesting problems build on the
tools used in these examples.



Exercise: One-out-of-four search
Let f : {0, 1}2 → {0, 1} be a black-box function taking the value 1 on
exactly one input. The goal is to find the unique (x1, x2) ∈ {0, 1}2 such
that f (x1, x2) = 1.

I Write the truth tables of the four possible functions f .

I How many classical queries are needed to solve the problem?

I Suppose f is given as a quantum black box Uf acting as

|x1, x2, y〉 7→ |x1, x2, y ⊕ f (x1, x2)〉.

Determine the output of the following quantum circuit for each of
the possible black-box functions f :

|0〉 H

f|0〉 H

|1〉 H

I Show that the four possible outputs obtained in the previous part
are pairwise orthogonal. What can you conclude about the quantum
query complexity of one-out-of-four search?



Part III

The QFT and phase estimation



Quantum phase estimation

Problem
We are given a unitary U and an eigenvector |ψ〉 of U with
unknown eigenvalue

We seek to determine its eigenphase ϕ ∈ [0, 1) such that

U|ψ〉 = e2πiϕ|ψ〉

More precisely, we want to obtain an estimate ϕ̂ such that

Pr
(
|ϕ̂− ϕ| ≤ 1

2n
)
≥ 3

4

The deviation |ϕ̂− ϕ| is computed modulo 1



Phase kick back

|+〉 •
|ψ〉 U

|0〉+ |1〉√
2
⊗ |ψ〉 =

|0〉√
2
⊗ |ψ〉+

|1〉√
2
⊗ |ψ〉

7→ |0〉√
2
⊗ |ψ〉+

|1〉√
2
⊗ U|ψ〉

=
|0〉√

2
⊗ |ψ〉+

|1〉√
2
⊗ e2πiϕ|ψ〉

=
|0〉√

2
⊗ |ψ〉+

e2πiϕ|1〉√
2
⊗ |ψ〉

=
|0〉+ e2πiϕ|1〉√

2
⊗ |ψ〉



Phase kick back

|+〉 •
|ψ〉 U

|0〉+ |1〉√
2
⊗ |ψ〉 7→ |0〉+ e2πiϕ|1〉√

2
⊗ |ψ〉

The eigenstate |ψ〉 in the target register emerges unchanged

⇒ It suffices to focus on the control register

The state |0〉+ |1〉 of the control qubit is changed to |0〉+ e2πiϕ|1〉
by phase kick back



Hadamard test + phase kick back

|0〉 H • H NM





|ψ〉 / U

|0〉+ e2πiϕ|1〉√
2

7→ 1

2

(
(|0〉+ |1〉) + e2πiϕ(|0〉 − |1〉)

)
7→ 1

2

(
(1 + e2πiϕ)|0〉+ (1− e2πiϕ)|1〉)

)
:= |ϕ〉



Hadamard test + phase kick back

|ϕ〉 =
1

2

(
(1 + e2πiϕ)|0〉+ (1− e2πiϕ)|1〉)

)

The probability of obtaining 0 is

Pr(0) = ‖|0〉〈0| |ϕ〉‖2

= |1
2

(1 + e2πiϕ)|2

=
1

4
|eπiϕ + e−πiϕ)|2

=
1

4
|2 cos(πϕ)|2

= cos2(πϕ) =
1

2

(
1 + cos(2πϕ)

)



Phase kick back due to higher powers of U

For arbitrary k , we obtain

|0〉 H • 1√
2

(|0〉+ e2πi2kϕ|1〉)

|ψ〉 / U2k |ψ〉

since

U2k |ψ〉 = e2πi2kϕ|ψ〉



Phase kick back part of phase estimation

|0〉 H • |0〉+e2πi2n−1ϕ|1〉√
2

|0〉 H • |0〉+e2πi2n−2ϕ|1〉√
2... · · · ...

|0〉 H • |0〉+e2πi20ϕ|1〉√
2

|ψ〉 / U20
U21

U2n−1 |ψ〉

We set

|ϕ〉 :=
|0〉+ e2πi2n−1ϕ|1〉√

2
⊗|0〉+ e2πi2n−2ϕ|1〉√

2
⊗· · ·⊗ |0〉+ e2πi20ϕ|1〉√

2



Binary fractions

Assume that the eigenphase ϕ is an exact n-bit binary fraction, i.e.,

ϕ = 0.x1x2 . . . xn =
n∑

i=1

xi
2i

For arbitrary k ∈ {0, . . . , n − 1}, we have

2k ϕ = x1x2 . . . xk .xk+1 . . . xn

e2πi2kϕ = e2πi(x1x2...xk .xk+1...xn)

= e2πi(x1x2...xk+0.xk+1...xn)

= e2πi(x1x2...xk ) · e2πi(0.xk+1...xn)

= e2πi(0.xk+1...xn)



Phase kick back part of phase estimation

|0〉 H • |0〉+e2πi0.xn |1〉√
2

|0〉 H • |0〉+e2πi0.xn−1xn |1〉√
2... · · · ...

|0〉 H • |0〉+e2πi0.x1...xn−1xn |1〉√
2

|ψ〉 / U20
U21

U2n−1 |ψ〉



Quantum Fourier transform

The quantum Fourier transform F is defined by

F
(
|xn〉 ⊗ |xn−1〉 ⊗ · · · ⊗ |x1〉

)
=
|0〉+ e2πi0.xn |1〉√

2
⊗ |0〉+ e2πi0.xn−1xn |1〉√

2
⊗· · ·⊗ |0〉+ e2πi0.x1x2...xn |1〉√

2

We use inverse quantum Fourier transform F † to obtain the bits of
the eigenphase

Note: QFT is defined by F |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 = |0.x1x2 . . . xn〉
in the literature; we use the above definition for the sake of
notational simplicity (otherwise, we would have to include the
so-called bit-reversal)



Quantum circuit for phase estimation

|0〉 H •

F †

|xn〉

|0〉 H • |xn−1〉
... · · ·

|0〉 H • |x1〉

|ψ〉 / U20
U21

U2n−1 |ψ〉



Inverse quantum Fourier transform for 3 bits

|0〉+e2πi0.x3 |1〉√
2

H • • |x3〉

|0〉+e2πi0.x2x3 |1〉√
2

R†2 H • |x2〉

|0〉+e2πi0.x1x2x3 |1〉√
2

R†3 R†2 H |x1〉

_ _ _�
�
�

�
�
�_ _ _

_ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _

_ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _

The phase shift Rk is defined by

Rk :=

[
1 0

0 e2πi/2k

]



QPE: least significant bit – top qubit

|0〉+e2πi0.x3 |1〉√
2

H

_ _ _�
�
�

�
�
�

_ _ _

|0〉+ e2πi0.x3 |1〉√
2

=
|0〉+ (−1)x3 |1〉√

2
H−→ |x3〉



QPE: second bit – middle qubit

|x3〉 •
|0〉+e2πi0.x2x3 |1〉√

2
R†2 H

_ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _

|x3〉 ⊗
|0〉+ e2πi0.x2x3 |1〉√

2

ctrl R†2−−−−→ |x3〉 ⊗
|0〉+ e2πi0.x20|1〉√

2
I⊗H−−−→ |x3〉 ⊗ |x2〉



QPE: most significant bit – bottom qubit

|x3〉 •
|x2〉 •

|0〉+e0.x1x2x3 |1〉√
2

R†3 R†2 H

_ _ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

|x3〉 ⊗ |x2〉 ⊗
|0〉+ e2πi0.x1x2x3 |1〉√

2

ctrl R†3−−−−→ |x3〉 ⊗ |x2〉 ⊗
|0〉+ e2πi0.x1x20|1〉√

2

ctrl R†2−−−−→ |x3〉 ⊗ |x2〉 ⊗
|0〉+ e2πi0.x100|1〉√

2
I⊗I⊗H−−−−→ |x3〉 ⊗ |x2〉 ⊗ |x1〉



Summary of phase estimation circuit

We use phase kick back due to the controlled U2k gate to prepare
the state

|0〉+ e2πi0.xk+1xk+2...xn |1〉√
2

Using the previously determined bits xk+2, . . . , xn, we change this
state to

|0〉+ e2πi0.xk+10...0|1〉√
2

=
|0〉+ (−1)xk |1〉√

2

We apply the Hadamard gate to obtain

|xk+1〉

The controlled phase shifts enable us to reduce the problem of
determining each bit to distinguishing between |+〉 and |−〉
(deterministic Hadamard test)



Special case: exact n-bit binary fraction

Assume that ϕ is an exact n-bit binary fraction, i.e.,
ϕ = 0.x1 . . . xn−1xn

|0〉 H •

F †

|xn〉

|0〉 H • |xn−1〉
... · · ·

|0〉 H • |x1〉

|ψ〉 / U20
U21

U2n−1 |ψ〉

⇒ The measurment of the qubits yields the bits xn, xn−1, . . . , x1

deterministically



General case: arbitrary eigenphases

Let ϕ be arbitrary

Unless ϕ is an exact n-bit fraction, the application of the inverse
quantum Fourier transform

F †|ϕ〉

produces a superposition of n-bit strings



Geometric summation

Lemma
We have

N−1∑
y=0

e2πiθy = N for θ = 0

N−1∑
y=0

e2πiθy =
1− e2πiNθ

1− e2πiθ
for θ ∈ (0, 1)

Assume that θ = x
N for some x ∈ [0,N − 1]

⇒ We have

N−1∑
y=0

e2πi x
N
y = N δx ,0



Probability of obtaining a certain estimate

Lemma
Let x =

∑n
k=1 xi2

n−i and ϕx := 0.x1x2 . . . xn = x
2n be the

corresponding n-bit fraction

The probability of obtaining the estimate ϕx is

Pr(x) =
1

22n

sin2
(
2n π (ϕ− ϕx)

)
sin2

(
π (ϕ− ϕx)

)



Examples of probability distributions for different ϕ
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Examples of probability distributions for different ϕ



Examples of probability distributions for different ϕ



Probability of obtaining a certain estimate

Proof.
The probability of obtaining the estimate ϕx is

Pr(x)

= |〈x |F †|ϕ〉|2
= |〈ϕx |ϕ〉|2

=
1

22n

∣∣ 2n−1∑
y=0

e2πi (ϕ−ϕx ) y
∣∣2 geometric summation

=
1

22n

∣∣∣1− e2πi(2n(ϕ−ϕx ))

1− e2πi(ϕ−ϕx )

∣∣∣2 |1− e i2θ| = |e−iθ − e iθ| = 2| sin θ|

=
1

22n

sin2(2n π(ϕ− ϕx))

sin2(π(ϕ− ϕx))



Lower bound on success probability

Theorem
Let x be such that x

2n ≤ ϕ < x+1
2n

The probability of returning one of the two closest n-bit fractions
ϕx and ϕx+1 is at least 8

π2



Proof of lower bound on success probability

Pr(success) := Pr(x) + Pr(x + 1)

=
1

22n

∣∣ 2n−1∑
y=0

e2πi(ϕ−ϕx )y
∣∣2 +

∣∣ 2n−1∑
y=0

e2πi(ϕ−ϕx )y
∣∣2

This function attains its minimum at ϕ = 1
2 (ϕx + ϕx+1) ⇒

Pr(success) ≥ 2

22n

∣∣ 2n−1∑
y=0

e2πi y

2n+1
∣∣2

≥ 2

22n

4

4 sin2( π
2n+1 )

≥ 8

π2

The last inequality follows from 1
| sin θ|2 ≥ 1

|θ|2



Summary of phase estimation

We are given a unitary U and an eigenvector |ψ〉 of U with
unknown eigenphase ϕ

We obtain an estimate ϕ̂ such that

Pr
(
|ϕ̂− ϕ| ≤ 1

2n
)
≥ 8

π2

To do this, we need invoke each of the controlled U, U2,. . . ,U2n−1

gates once

We can boost the success probability to 1− ε by repeating the
above algorithm O(log(1/ε)) times and outputting the median of
the outcomes



Phase estimation applied to superpositions of eigenstates

We are given a unitary U with eigenvectors |ψi 〉 and corresponding
eigenphases ϕi

Let
|ψ〉 =

∑
i

αi |ψi 〉

What happens if we apply phase estimation to |0〉⊗n ⊗ |ψ〉?

After the n phase kick-backs due to U20
, U21

, . . . U2n−1
, we obtain∑

i

αi |ϕi 〉 ⊗ |ψi 〉

After applying the inverse quantum Fourier transform, we obtain∑
i

αi |x̃i 〉 ⊗ |ψi 〉

where |x̃i 〉 denotes a superpositions of n-bit estimates of ϕi



Part IV

Factoring



The fundamental theorem of arithmetic

Theorem
Every positive integer larger than 1 can be factored as a product of
prime numbers, and this factorization is unique (up to the order of
the factors).

N = 2n2 × 3n3 × 5n5 × 7n7 × · · ·



Examples

15 = 3× 5

239815173914273 = 15485863× 15486071

3107418240490043721350750
0358885679300373460228427
2754572016194882320644051
8081504556346829671723286
7824379162728380334154710
7310850191954852900733772
4822783525742386454014691
736602477652346609

=

16347336458092538484
43133883865090859841
78367003309231218111
08523893331001045081
51212118167511579

×
19008712816648221131
26851573935413975471
89678996851549366663
85390880271038021044
98957191261465571



“The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic. It
has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to
discuss the problem at length... Further, the dignity of the science
itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.”

– Carl Friedrich Gauss, Disquisitiones Arithmeticæ (1801)



RSA

Alice Eve Bob

M
message

primes p, q

n n n = pq

e e
e ∈ Z×(p−1)(q−1)
encryption key

d := e−1 mod (p − 1)(q − 1)
decryption key

C := Me mod n
ciphertext

C Cd = Med mod n = M



Order finding

Definition
Given a,N ∈ Z with gcd(a,N) = 1, the order of a modulo N is the
smallest positive integer r such that ar ≡ 1 (mod N).

Problem

I Given: a,N ∈ Z with gcd(a,N) = 1

I Task: find the order of a modulo N



Spectrum of a cyclic shift

Let P be a cyclic shift modulo r : P|x〉 = |x + 1 mod r〉

Claim. For any k ∈ Z, the state |uk〉 :=
1√
r

r−1∑
x=0

e−2πikx/r |x〉 is an

eigenstate of P.

Proof. U|uk〉 =
1√
r

r−1∑
x=0

e−2πikx/r |x + 1 mod r〉

=
1√
r

r−1∑
x=0

e2πik/re−2πik(x+1)/r |x + 1 mod r〉

= e2πik/r 1√
r

r∑
x=1

e−2πikx/r |x mod r〉

= e2πik/r |uk〉



The multiplication-by-a map

Define U by U|x〉 = |ax〉 for x ∈ ZN .

Computing U:

|x , 0〉 7→ |x , ax〉 (reversible multiplication by a)

7→ |ax , x〉 (swap)

7→ |ax , 0〉 (uncompute reversible division by a)

High powers of U can be implemented efficiently using repeated
squaring



Spectrum of the multiplication-by-a map

Define U by U|x〉 = |ax〉 for x ∈ ZN .

Claim. Let r be the order of a modulo N. For any k ∈ Z, the state

|uk〉 :=
1√
r

r−1∑
x=0

e−2πikx/r |ax mod N〉

is an eigenstate of U with eigenvalue e2πik/r .

Proof.
Same as for the cyclic shift, due to the isomorphism

x mod r ↔ ax mod N



Order finding and phase estimation

U|uk〉 = e2πik/r |uk〉

Phase estimation of U on |uk〉 can be used to approximate k/r .

Problems:

I We don’t know r , so we can’t prepare |uk〉.
I We only get an approximation of k/r .

I Even if we knew k/r exactly, k and r could have common
factors.



Estimating k/r in superposition

A useful identity:

r−1∑
k=0

e2πikx/r =

{
r if x = 0

0 otherwise

Consider

1√
r

r−1∑
k=0

|uk〉 =
1

r

r−1∑
k,x=0

e−2πikx/r |ax mod N〉

= |a0 mod N〉 = |1〉

Phase estimation:

|0〉 ⊗ |1〉 =
1√
r

r−1∑
k=0

|0〉 ⊗ |uk〉 7→
1√
r

r−1∑
k=0

|k̃/r〉 ⊗ |uk〉

Measurement gives an approximation of k/r for a random k



Continued fractions

Problem
Given samples x of the form bk 2n

r c, dk 2n

r e (k ∈ {0, 1, . . . , r − 1}),
determine r .

Continued fraction expansion:

x

2n
=

1

a1 + 1
a2+ 1

a3+···

Gives an efficiently computable sequence of rational approximations

Theorem
If 2n ≥ N2, then k/r is the closest convergent of the CFE to x/2n

among those with denominator smaller than N.

Since r < N, it suffices to take n = 2 log2 N



Common factors

If gcd(k , r) = 1, then the denominator of k/r is r

Fact
The probability that gcd(k, r) = 1
for a random k ∈ {0, 1, . . . , r − 1} is

φ(r)

r
= Ω

(
1

log log r

)
0 200 400 600 800 1000

n
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1.0

jHnL�n

Thus Ω(log log N) repetitions suffice to give r with constant
probability

Alternatively, find two (or more) denominators and take their least
common multiple; then O(1) repetitions suffice



Factoring → finding a nontrivial factor

Suppose we want to factor the positive integer N.

Since primality can be tested efficiently, it suffices to give a
procedure for finding a nontrivial factor of N with constant
probability.

function factor(N)

if N is prime

output N

else

repeat

x=find_nontrivial_factor(N)

until success

factor(x)

factor(N/x)

end if

We can assume N is odd, since it is easy to find the factor 2.

We can also assume that N contains at least two distinct prime
powers, since it is easy to check if it is a power of some integer.



Reduction of factoring to order finding

Factoring N reduces to order finding in Z×N [Miller 1976].

Choose a ∈ {2, 3, . . . ,N − 1} uniformly at random.

If gcd(a,N) 6= 1, then it is a nontrivial factor of N.

If gcd(a,N) = 1, let r denote the order of a modulo N.

Suppose r is even. Then

ar = 1 mod N
m

(ar/2)2 − 1 = 0 mod N
m

(ar/2 − 1)(ar/2 + 1) = 0 mod N

so we might hope that gcd(ar/2− 1,N) is a nontrivial factor of N.



Miller’s reduction

Question
Given (ar/2 − 1)(ar/2 + 1) = 0 mod N, when does gcd(ar/2 − 1,N)
give a nontrivial factor of N?

Note that ar/2 − 1 6= 0 mod N (otherwise the order of a would be
r/2, or smaller).

So it suffices to ensure that ar/2 + 1 6= 0 mod N.

Lemma
Suppose a ∈ Z×N is chosen uniformly at random, where N is an odd
integer with at least two distinct prime factors. Then with
probability at least 1/2, the order r of a is even and
ar/2 6= −1 mod N.



Proof (part 1 of 2)

Let N = pm1
1 × · · · × pmk

k (pi distinct odd primes, k ≥ 2)

a = ai mod pmi
i

ri = order of ai mod pmi
i

2ci = largest power of 2 that divides ri

Claim 1. If r is odd or ar/2 + 1 = 0 mod N, then c1 = · · · = ck .

Since r = lcm(r1, . . . , rk), r is odd iff c1 = . . . = ck = 0.

If r is even and ar/2 = −1 mod N, then ar/2 = −1 mod pmi
i for

each i , so ri does not divide r/2; but notice that ri does divide r .

Hence r/ri is an odd integer for each i , and every ri must contain
the same number of powers of 2 as r .



Proof (part 2 of 2)

Claim 2. Pr(ci = any particular value) ≤ 1/2

(Then the lemma follows, since in particular Pr(c1 = c2) ≤ 1/2.)

a ∈ Z×N
uniformly at random

⇔
ai ∈ Z×

p
mi
i

uniformly at random

Since Z×
p
mi
i

is cyclic and of even order, exactly half its elements

have the maximal value of ci , so in particular the probability of any
particular ci is at most 1/2.



Shor’s algorithm

Input: Integer N
Output: A nontrivial factor of N

1. Choose a random a ∈ {2, 3, . . . ,N − 1}
2. Compute gcd(a,N); if it is not 1 then it is a nontrivial factor,

and otherwise we continue

3. Perform phase estimation with the multiplication-by-a
operator U on the state |1〉 using n = 2 log2 N bits of precision

4. Compute the continued fraction expansion of the estimated
phase, and find the best approximation with denominator less
than N; call the result r

5. Compute gcd(ar/2 − 1,N). If it is a nontrivial factor of N, we
are done; if not, go back to step 1



Quantum vs. classical factoring algorithms

Best known classical algorithm for factoring N

I Proven running time: 2O((log N)1/2(log log N)1/2)

I With plausible heuristic assumptions: 2O((log N)1/3(log log N)1/3)

Shor’s quantum algorithm

I QFT modulo 2n with n = O(log N): takes O(n2) steps

I Modular exponentiation: compute ax for x < 2n. With
repeated squaring, takes O(n3) steps

I Running time of Shor’s algorithm: O(log3 N)



Beyond factoring

There are many fast quantum algorithms based on related ideas

I Computing discrete logarithms

I Decomposing abelian/solvable groups

I Estimating Gauss sums

I Counting points on algebraic curves

I Computations in number fields (Pell’s equation, etc.)

I Abelian hidden subgroup problem

I Non-abelian hidden subgroup problem?



Part V

Quantum search



Unstructured search

Quantum computers can quadratically outperform classical
computers at a very basic computational task, called unstructured
search.

There is a set X containing N items, some of which are marked

We are given a Boolean black box f : X → {0, 1} that indicates
whether a given item is marked

The problem is to decide if any item is marked, or alternatively, to
find a marked item given that one exists



Applications of unstructured search

Unstructured search can be thought of as a model for solving
problems in NP by brute force search

If a problem is in NP, then we can efficiently recognize a solution,
so one way to find a solution is to solve unstructured search

Of course, this may not be the best way to find a solution in
general, even if the problem is NP-hard

We don’t know if NP-hard problems are really “unstructured”



Unstructured search

It is obvious that even a randomized classical algorithm needs
Ω(N) queries to decide if any item is marked

On the other hand, a quantum algorithm can do much better!



Phase oracle

We assume that we a unitary operator U satisfying

U|x〉 = (−1)f (x)|x〉 =

{
|x〉 x is not marked

−|x〉 x is marked



Target state

We consider the case where there is exactly one x ∈ X element
that is marked; call this element m

Our goal is to prepare the state |m〉



Initial state

We have no information about which item might be marked

⇒ We take

|ψ〉 :=
1√
N

N∑
x=1

|x〉

as the initial state



Rough idea behind Grover search

We start with the initial state |ψ〉

We prepare the target state |m〉 by implementing a rotation that
moves |ψ〉 toward |m〉

We realize the rotation with the help of two reflections



Visualization of a reflection in R2
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Visualization of a reflection in R2
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Reflections

U = I − 2|m〉〈m| is a reflection about the target state |m〉

V = I − 2|ψ〉〈ψ| is the reflection around about the initial state |ψ〉:

V |ψ〉 = − |ψ〉
V |ψ⊥〉 = |ψ⊥〉

for any state |ψ⊥〉 orthogonal to |ψ〉



Structure of Grover

The algorithm is as follows:

I start in |ψ〉,

I apply the Grover iteration G := V U some number of times,

I make a measurement, and hope that the outcome is m



Invariant subspace

Observe that span{|m〉, |ψ〉} is a U- and V -invariant subspace, and
both the inital and target states belong to this subspace

⇒ It suffices to understand the restriction of VU to this subspace

Consider an orthonormal basis {|m〉, |φ〉} for span{|m〉, |ψ〉}

The Gram-Schmidt process yields

|φ〉 =
|ψ〉 − α|m〉√

1− α2

where α := 〈m|ψ〉 = 1/
√

N



Invariant subspace

Now in the basis {|m〉, |φ〉}, we have

|ψ〉 = sin θ|m〉+ cos θ|φ〉 where sin θ = 〈m|ψ〉 = 1/
√

N

U =

(
−1 0
0 1

)
V = I − 2|ψ〉〈ψ|

=

(
1 0
0 1

)
− 2

(
sin θ
cos θ

)(
sin θ cos θ

)
=

(
1− 2 sin2 θ −2 sin θ cos θ
−2 sin θ cos θ 1− 2 cos2 θ

)
= −

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)



Grover iteration within the invariant subspace

⇒ We find

V U = −
(
− cos 2θ sin 2θ

sin 2θ cos 2θ

) (
−1 0
0 1

)
= −

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)

This is a rotation up to a minus sign



Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Visualization of first Grover iteration
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Grover search

Geometrically, U is a reflection around the |m〉 axis and V is a
reflection around the |ψ〉 axis, which is almost but not quite
orthogonal to the |m〉 axis

The product of these two reflections is a clockwise rotation by an
angle 2θ, up to an overall minus sign

From this geometric picture, or by explicit calculation using trig
identities, it is easy to verify that

(VU)k = (−1)k
(

cos 2kθ sin 2kθ
− sin 2kθ cos 2kθ

)



Grover search

Recall that our initial state is |ψ〉 = sin θ|m〉+ cos θ|φ〉

How large should k be before (VU)k |ψ〉 is close to |m〉?

We start an angle θ from the |φ〉 axis and rotate toward |m〉 by an
angle 2θ per iteration

⇒ To rotate by π/2, we need

θ + 2kθ = π/2

k ≈ π

4
θ−1 ≈ π

4

√
N



Grover search

It is easy to calculate that

|〈m|(VU)k |ψ〉|2 = sin2((2k + 1)θ)

This is the probability that, after k steps of the algorithm, a
measurement reveals the marked state

We are solving a completely unstructured search problem with N
possible solutions, yet we can find a unique solution in only
O(
√

N) queries!

While this is only a polynomial separation, it is very generic, and it
is surprising that we can obtain a speedup for a search in which we
have so little information to go on



Grover search

It can also be shown that this quantum algorithm is optimal

Any quantum algorithm needs at least Ω(
√

N) queries to find a
marked item (or even to decide if some item is marked)



Multiple solutions

Assume that there are t marked items

⇒ There is a two-dimensional invariant subspace spanned by
span{|µ〉, |ψ〉} where

|µ〉 =
1√
t

∑
x marked

|x〉

is the uniform superposition of all solutions

The Gram-Schmidt process yields the ONB {|µ〉, |φ〉} where

|φ〉 =
1√

N − t

∑
x unmarked

|x〉

is the uniform superposition of all non-solutions



Invariant subspace

Now in the basis {|µ〉, |φ〉}, we have

|ψ〉 = sin θ|µ〉+ cos θ|φ〉 where sin θ = 〈µ|ψ〉 =

√
t

N

VU = −
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)



Overshooting

The success probability is given by

sin((2k + 1)θ) where sin θ =

√
t

N

⇒ We need to apply VU

k ≈ π

4

√
N

t

times

Due to the oscillatory behaviour of the success probability it is
important not to overshoot, i.e., to choose a number of iterations
that it too large, so that the probability starts decreasing



Quantum counting

The eigenvalues of

−VU =

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
are e i2θ and e−i2θ

The initial state |ψ〉 is a superposition of the two eigenvectors
corresponding to the above two eigenvalues

⇒ Using phase estimation, we can obtain an estimate θ̃ such that

|θ − θ̃| ≤ ε

by invoking the controlled version of −VU

O(1/ε) times



Quantum counting

Using the estimate θ̃, we obtain an estimate t̃ satifying

|t − t̃| ≤ (2
√

tN + ε) ε



Quantum counting

We use the following two inequalities:

| sin θ + sin θ̃| ≤ 2 sin θ + |θ − θ̃| ≤ 2

√
t

N
+ ε

| sin θ − sin θ̃| ≤ |θ − θ̃| ≤ ε

We have ∣∣∣∣ t

N
− t̃

N

∣∣∣∣ = | sin2 θ − sin2 θ̃|

= | sin θ + sin θ̃| | sin θ − sin θ̃|

≤
(

2

√
t

N
+ ε

)
ε



Amplitude amplification

Assume that there is a classical (randomized) algorithm that
produces a solution to some problem with probability p

Assume that we can recognized if the output produced by the
algorithm is a valid solution or not

⇒ We repeat the algorithm until we obtain a solution

The expected number of times we have to repeat is O(1/p)
(geometric random variable)

Quantum amplitude amplification makes it possible to reduce the
complexity to O(1/

√
p)



Part VI

Quantum walk



Randomized algorithms

Randomness is an important tool in computer science

Black-box problems

I Huge speedups are possible (Deutsch-Jozsa: 2Ω(n) vs. O(1))

I Polynomial speedup for some total functions (game trees:
Ω(n) vs. O(n0.754))

Natural problems

I Majority view is that derandomization should be possible
(P=BPP)

I Randomness may give polynomial speedups (Schöning
algorithm for k-SAT)

I Can be useful for algorithm design



Random walk

Graph G = (V ,E )

u

u

u

u
u

�
�
�
��

Q
Q
Q
QQ

Two kinds of walks:

I Discrete time

I Continuous time



Random walk algorithms

Undirected s–t connectivity in log space

I Problem: given an undirected graph G = (V ,E ) and s, t ∈ V ,
is there a path from s to t?

I A random walk from s eventually reaches t iff there is a path

I Taking a random walk only requires log space

I Can be derandomized (Reingold 2004), but this is nontrivial

Markov chain Monte Carlo

I Problem: sample from some probability distribution (uniform
distribution over some set of combinatorial objects, thermal
equilibrium state of a physical system, etc.)

I Create a Markov chain whose stationary distribution is the
desired one

I Run the chain until it converges



Continuous-time quantum walk

Graph G

r
r

r
r r
�
��

Q
QQ

1 2

3 4

5

A =


0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0


adjacency matrix

L =


−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2


Laplacian

Random walk on G

I State: probability pv (t) of being at vertex v at time t

I Dynamics: d
dt~p(t) = −L~p(t)

Quantum walk on G

I State: amplitude qv (t) to be at vertex v at time t
(i.e., |ψ(t)〉 =

∑
v∈V qv (t)|v〉)

I Dynamics: i d
dt~q(t) = −L~q(t)



Random vs. quantum walk on the line

r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Classical:

-60 -40 -20 0 20 40 60

Quantum:

-60 -40 -20 0 20 40 60



Random vs. quantum walk on the hypercube

V = {0, 1}n

E = {(x , y) ∈ V × V :

x and y differ in

exactly one bit}

n = 3:

s
s

s
s

s
s

s
s

�
��

�
���

��

�
��

000 100

010

001

110

011

101

111

Classical random walk: reaching 11 . . . 1 from 00 . . . 0 is
exponentially unlikely

Quantum walk: with A =
∑n

j=1 Xj ,

e−iAt =
n∏

j=1

e−iXj t =
n⊗

j=1

(
cos t −i sin t
−i sin t cos t

)



Glued trees problem

in out

Black-box description of a graph

I Vertices have arbitrary labels

I Label of ‘in’ vertex is known

I Given a vertex label, black box returns labels of its neighbors

I Restricts algorithms to explore the graph locally



Glued trees problem: Classical query complexity

in out

Let n denote the height of one of the binary trees

Classical random walk from ‘in’: probability of reaching ‘out’ is
2−Ω(n) at all times

In fact, the classical query complexity is 2Ω(n)



Glued trees problem: Exponential speedup

in out

↓

col 0 col 1 col 2 col 3 col 4 col 5 col 6 col 7 col 8 col 9

√
2 2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

Column subspace

|col j〉 :=
1√
Nj

∑
v∈column j

|v〉

Nj :=

{
2j if j ∈ [0, n]

22n+1−j if j ∈ [n + 1, 2n + 1]

Reduced adjacency matrix

〈col j |A|col j + 1〉

=


√

2 if j ∈ [0, n − 1]√
2 if j ∈ [n + 1, 2n]

2 if j = n



Discrete-time quantum walk: Need for a coin

Quantum analog of discrete-time random walk?

Unitary matrix U ∈ C|V |×|V | with Uvw 6= 0 iff (v ,w) ∈ E

Consider the line:r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Define walk by |x〉 7→ 1√
2

(|x − 1〉+ |x + 1〉)?

But then |x + 2〉 7→ 1√
2

(|x + 1〉+ |x + 3〉), so this is not unitary!

In general, we must enlarge the state space.



Discrete-time quantum walk on a line

r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Add a “coin”: state space span{|x〉 ⊗ |←〉, |x〉 ⊗ |→〉 : x ∈ Z}

Coin flip: C := I ⊗ H

Shift:
S |x〉 ⊗ |←〉 = |x − 1〉 ⊗ |←〉
S |x〉 ⊗ |→〉 = |x + 1〉 ⊗ |→〉

Walk step: SC

-60 -40 -20 0 20 40 60



The Szegedy walk

State space: span{|v〉 ⊗ |w〉, |w〉 ⊗ |v〉 : (v ,w) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk)

Define |ψv 〉 := |v〉 ⊗
∑
w∈V

√
Wwv |w〉 (note 〈ψv |ψw 〉 = δv ,w )

R := 2
∑
v∈V
|ψv 〉〈ψv | − I

S(|v〉 ⊗ |w〉) := |w〉 ⊗ |v〉

Then a step of the walk is the unitary operator U := SR



Spectrum of the walk

Let T :=
∑

v∈V |ψv 〉〈v |, so R = 2TT † − I .

Theorem (Szegedy)

Let W be a stochastic matrix. Suppose the matrix∑
v ,w

√
WvwWwv |w〉〈v |

has an eigenvector |λ〉 with eigenvalue λ. Then

I − e±i arccosλS√
2(1− λ2)

T |λ〉

are eigenvectors of U = SR with eigenvalues

e±i arccosλ.



Proof of Szegedy’s spectral theorem

Proof sketch.
Straightforward calculations give

TT † =
∑
v∈V
|ψv 〉〈ψv | T †T = I

T †ST =
∑

v ,w∈V

√
WvwWwv |w〉〈v | =

∑
λ

|λ〉〈λ|

which can be used to show

U(T |λ〉) = ST |λ〉 U(ST |λ〉) = 2λST |λ〉 − T |λ〉.

Diagonalizing within the subspace span{T |λ〉,ST |λ〉} gives the
desired result.

Exercise. Fill in the details



Random walk search algorithm

Given G = (V ,E ), let M ⊂ V be a set of marked vertices

Start at a random unmarked vertex

Walk until we reach a marked vertex:

W ′
vw :=


1 w ∈ M and v = w

0 w ∈ M and v 6= w

Wvw w /∈ M.

=

(
WM 0
V I

)
(WM : delete marked rows and columns of W )

Question. How long does it take to reach a marked vertex?



Classical hitting time

Take t steps of the walk:

(W ′)t =

(
W t

M 0

V (I + WM + · · ·+ W t−1
M ) I

)
=

(
W t

M 0

V
I−W t

M
I−WM

I

)

Convergence time depends on how close ‖WM‖ is to 1, which
depends on the spectrum of W

Lemma
Let W = W T be a symmetric Markov chain. Let the second
largest eigenvalue of W be 1− δ, and let ε = |M|/|V | (the fraction
of marked items). Then the probability of reaching a marked
vertex is Ω(1) after t = O(1/δε) steps of the walk.



Quantum walk search algorithm

Start from the state 1√
N−|M|

∑
v 6∈M |ψv 〉

Consider the walk U corresponding to W ′:∑
v ,w∈V

√
W ′

v ,wW ′
w ,v |w〉〈v | =

(
WM 0

0 I

)

Eigenvalues of U are e±i arccosλ where the λ are eigenvalues of WM

Perform phase estimation on U with precision O(
√
δε)

I no marked items =⇒ estimated phase is 0

I ε fraction of marked items =⇒ nonzero phase with
probability Ω(1)

Further refinements give algorithms for finding a marked item



Grover’s algorithm revisited

Problem
Given a black box f : X → {0, 1}, is there an x with f (x) = 1?

Markov chain on N = |X | vertices:

W :=
1

N

1 · · · 1
...

. . .
...

1 · · · 1

 = |ψ〉〈ψ|, |ψ〉 :=
1√
N

∑
x∈X
|x〉

Eigenvalues of W are 0, 1 =⇒ δ = 1

Hard case: one marked vertex, ε = 1/N

Hitting times

I Classical: O(1/δε) = O(N)

I Quantum: O(1/
√
δε) = O(

√
N)



Element distinctness

Problem
Given a black box f : X → Y , are there distinct x , x ′ with
f (x) = f (x ′)?

Let N = |X |; classical query complexity is Ω(N)

Consider a quantum walk on the Hamming graph H(N,M)

I Vertices: {(x1, . . . , xM) : xi ∈ X}
I Store the values (f (x1), . . . , f (xM)) at vertex (x1, . . . , xM)

I Edges between vertices that differ in exactly one coordinate



Element distinctness: Analysis

Spectral gap: δ = O(1/M)

Fraction of marked vertices: ε ≥
(N−2
M−2

)
/
(N
M

)
= Θ(M2/N2)

Quantum hitting time: O(1/
√
δε) = O(N/

√
M)

Quantum query complexity:

I M queries to prepare the initial state

I 2 queries for each step of the walk (compute f , uncompute f )

I Overall: M + O(N/
√

M)

Choose M = N2/3: query complexity is O(N2/3) (optimal!)



Quantum walk algorithms

Quantum walk search algorithms

I Spatial search

I Finding a triangle in a graph

I Checking matrix multiplication

I Testing if a black-box group is abelian

Evaluating Boolean formulas

Exponential speedup for a natural problem?
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